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Abstract
Mi’kmaq is an Indigenous language spoken primarily in Eastern Canada. It is polysynthetic and low-resource. In this paper we consider
a range of n-gram and RNN language models for Mi’kmaq. We find that an RNN language model, initialized with pre-trained fastText
embeddings, performs best, highlighting the importance of sub-word information for Mi’kmaq language modelling. We further consider
approaches to language modelling that incorporate cross-lingual word embeddings, but do not see improvements with these models.
Finally we consider language models that operate over segmentations produced by SentencePiece — which include sub-word units as
tokens — as opposed to word-level models. We see improvements for this approach over word-level language models, again indicating
that sub-word modelling is important for Mi’kmaq language modelling.
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1. Introduction
Mi’kmaq is an Indigenous language spoken primarily in
Eastern Canada (Johnson, 1996). It is polysynthetic and
verb-oriented, and in the Eastern Algonquian language
family. Mi’kmaq has roughly 8,000 speakers in Canada,1

and is a low-resource language. There are Mi’kmaq dic-
tionaries (Rand, 1888; DeBlois, 1996) and translated texts
(DeBlois, 1990), but no large corpora. There has been very
little prior computational work on Mi’kmaq, with the ex-
ception of Maheshwari et al. (2018), who built a web cor-
pus of Mi’kmaq and carried out preliminary language mod-
elling experiments using this corpus.
Language models are a crucial component for many
language technology systems including spelling correc-
tion and word suggestion on smartphone soft keyboards.
Mi’kmaq language modelling is, however, particularly
challenging due to its rich morphology and the relatively
small amount of data available. Mi’kmaq is polysynthetic,
so each word is composed of many morphemes (Johnson,
1996). Rand (1888, p. iv) explains that a single Mi’kmaq
word can essentially describe a whole English sentence.
Language models are often trained on billions of tokens of
text (Chelba et al., 2014; Merity et al., 2017; Jozefowicz et
al., 2016), but the Mi’kmaq corpus built by Maheshwari et
al. (2018) is only 76k tokens.
The rich morphology of Mi’kmaq suggests that language
models that operate only at the word level, and do not
model the internal structure of words, might perform
poorly. Moreover, because of this rich morphology, we ex-
pect many out-of-vocabulary (OOV) words, and therefore
it is important that a Mi’kmaq language model be able to
handle OOVs.
In this paper we consider n-gram and RNN language mod-
els for Mi’kmaq. We tune these models over a range of pa-
rameters in an effort to establish a strong baseline. We then

1https://www12.statcan.gc.ca/
census-recensement/2011/as-sa/98-314-x/
98-314-x2011003_3-eng.cfm

consider the use of pre-trained word embeddings to initial-
ize the input layer of the RNN language models. We find
that, even when trained on a small amount of data, fastText
embeddings (Bojanowski et al., 2017) — which incorporate
sub-word knowledge and are able to form representations
for OOVs — give a substantial improvement.
Cross-lingual word embeddings (CLWEs) are methods to
create word embeddings for multiple languages in the same
vector space (Duong et al., 2016; Ruder et al., 2019).
Adams et al. (2017) showed promising results incorpo-
rating cross-lingual embeddings into language models for
some simulated low-resource languages. We further con-
sider the use of CLWE methods to initialize our models,
including the method used by Adams et al. (2017). We find
that language models that incorporate cross-lingual embed-
dings do not perform better than models initialized with
fastText embeddings.
The experiments described so far use a variation of per-
plexity for evaluation. We then consider an evaluation that
measures the potential savings in terms of keystrokes when
typing that is motivated by word suggestion on smartphone
soft keyboards. In these experiments we again find that
a language model incorporating fastText embeddings per-
forms well. We further consider language models that oper-
ate over segmentations produced by SentencePiece,2 which
include subword units as tokens, in addition to the word-
level language models considered so far. We see further
improvements using SentencePiece, reinforcing the impor-
tance of subword modelling for Mi’kmaq language mod-
elling.

2. Related Work
Our work draws on two major areas that are explored in this
section. We first discuss language modelling techniques,
and then discuss work on low resource languages, including
applications of CLWEs.

2https://github.com/google/sentencepiece
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2.1. Neural Network Language Modelling

Language models are a core component of many language
technology systems, for applications such as spelling cor-
rection and next word prediction. Language modelling
has traditionally been approached using n-gram models
which work by counting sequences of n-grams in a cor-
pus. Smoothing and back-off techniques can improve the
performance of these models, and models using Kneser-
Ney smoothing have shown strong results (Kneser and Ney,
1995; Chen and Goodman, 1999). More recently, neu-
ral network language modes have shown excellent results
(Bengio et al., 2003; Mikolov et al., 2010). These mod-
els can incorporate contexts of arbitrary length, which can
be much more powerful than simply counting fixed length
word sequences (Goldberg, 2017). The first layer of these
models is an embedding layer, which takes a high dimen-
sional word vector and embeds it into a much smaller vector
space (Goldberg, 2017).

Recurrent neural network (RNN) language models, in par-
ticular, have shown excellent performance because of their
long memories (Mikolov et al., 2010). RNNs can be chal-
lenging to train because it is hard to back propagate gra-
dients far into their memory, so RNN architectures with
gated mechanisms to control the memory are often used
(Goldberg, 2017). Long-short term memory (LSTM) mod-
els (Hochreiter and Schmidhuber, 1997) are a gated RNN
architecture and have shown good results for English lan-
guage modelling (Jozefowicz et al., 2015). Gated-recurrent
unit (GRU) (Cho et al., 2014) networks are an alternate sim-
pler architecture, and they have shown comparable results
(Jozefowicz et al., 2015).

Weight initialization is an important consideration when
training neural networks. Weights are often initialized us-
ing the uniform distribution (Glorot and Bengio, 2010;
Mikolov et al., 2013b) or the normal distribution (He et
al., 2015). Pre-training word embeddings, and using them
to initialize a model’s embedding layer, has been shown
to improve language model performance (Bojanowski et
al., 2017). These embeddings are typically trained using
an algorithm such as continuous bag-of-words (CBOW) or
skip-gram (Mikolov et al., 2013a; Mikolov et al., 2013b).
FastText is a an implementation of these algorithms, and
it has the advantage of also considering sub-word informa-
tion to build embeddings (Bojanowski et al., 2017). Fast-
Text works by splitting words into character n-grams and
learning vector representations for those n-grams. It forms
the vector representation of a word by summing the repre-
sentations of the character n-grams that compose it. These
character n-grams can then be used to share sub-word rep-
resentations between words, and we can build word repre-
sentations for unseen words using their character n-grams.

Language models are often intrinsically evaluated using
perplexity, which considers the probabilities given to se-
quences of words in a test corpus (Jurafsky et al., 2018).
Better models obtain smaller values of perplexity. Perplex-
ity (PPL) is calculated as follows (Jurafsky et al., 2018; Ue-
berla, 1994):

LTP =

N∑
i=1

log(P (wi|w1...wi−1)) (1)

PPL = (2LTP )
−1
N (2)

where N is the number of tokens.
Perplexity cannot be used to compare language models
trained using different vocabulary sizes (Ueberla, 1994; Ju-
rafsky et al., 2018). Adjusted perplexity is an alternate met-
ric that applies a discount to out-of-vocabulary words, i.e.,
UNK tokens. This discount allows a fair comparison be-
tween models trained on different vocabulary sizes (Ue-
berla, 1994). Adjusted perplexity (APP) is calculated as
follows:

ALTP = LTP − s× log(r) (3)

APP = (2ALTP )
−1
N (4)

where s is the number of UNK occurrences and r is the
number of UNK types (Ueberla, 1994).

2.2. Low Resource Languages
Language models for English and other high-resource lan-
guages are often trained on billions of tokens (Chelba et al.,
2014; Jozefowicz et al., 2016); however, many languages
have only much smaller corpora available, which makes
language models harder to train. Transferring information
from a high-resource language to a low-resource language
is a technique that has proven useful in some NLP tasks
(Duong et al., 2015; Adams et al., 2017). One of these tech-
niques is the use of cross-lingual word embeddings (Ruder
et al., 2019), which aims to build word embeddings for mul-
tiple languages in a common vector space. One method for
building these embeddings is to use monolingual corpora
from two languages and a bilingual lexicon (Duong et al.,
2016). The approach suggested by (Duong et al., 2016)
is an extension of the CBOW algorithm (Mikolov et al.,
2013b), in which the target word in a context is replaced
with its translation. A bilingual lexicon is used to do the
translation. An approach based on the expectation maxi-
mization (EM) algorithm is used to pick the best transla-
tion when there are multiple translations for an entry in the
lexicon.
Adams et al. (2017) relax the assumption of (Duong et al.,
2016) that both target and source language corpora should
be the same size, and use this technique for low-resource
language modelling. They showed promising results on
simulated low-resource languages, which were made by
sampling high-resource languages. However, they failed to
show positive results for Yongning Na, which is a real low-
resource language. Adams et al. (2017) identify several is-
sues related to the domain of their corpus (transcribed spo-
ken narratives) and how the tones are structured in Yongn-
ing Na that could have contributed to their findings.
Maheshwari et al. (2018) carried out the first work in
NLP focused specifically on Mi’kmaq. They constructed a
Mi’kmaq web corpus of roughly 76k tokens. They then per-
formed Mi’kmaq language modelling experiments in which
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Corpus Sentences Tokens Types
Training 5080 60k 18k
Dev 633 7.6k 1.6k
Test 633 8.1k 1.7k
Total 6346 76k 22k

Table 1: The number of sentences, tokens, and types in the
Mi’kmaq corpora.

they considered n-gram models using KenLM (Heafield et
al., 2013), a character-level RNN, and a word-level RNN
that uses a CNN to incorporate character-level information
(Kim et al., 2016). They found that the KenLM model
performed the best out of the three. In this work we fo-
cus on Mi’kmaq language modelling, and further examine
language models that incorporate sub-word information,
and in addition consider language models that incorporate
CLWEs.

3. Resources
In this section we describe the corpora and bilingual lexicon
used in our experiments.

3.1. Corpora
We used the Mi’kmaq corpus built by Maheshwari et al.
(2018). The corpus was already tokenized, and the only
additional cleaning steps taken were normalizing various
quote characters to ASCII single or double quotes, and
swapping long hyphen characters with ASCII dashes. We
randomly split the corpus into a training set of 5080 sen-
tences, a dev set of 633 sentences, and a test set of 633 sen-
tences. Table 1 shows the number of sentences, tokens, and
types in the corpora. The training set is used for training
language models. All preliminary experiments to select hy-
perparameters were performed on the dev data, and results
are reported over the test data.
A corpus for a source language was needed to apply the
CLWE approach suggested by Duong et al. (2016). We
used English as the source language because it has the most
entries in the bilingual lexicon we used (specifically Panlex,
discussed in Section 3.2.). We used the latest Wikipedia
dump as of 2018-12-02 as our English data.3 We took a
random sample of 5M sentences, and a random sample of
200k sentences, to use as source language corpora. Adams
et al. (2017) used a source corpus of 5M sentences with
a target corpus of 128k sentences. Our sample sizes were
chosen so that we could consider the same source corpus
size as they did, as well as the same ratio of source-to-target
sentences.

3.2. Bilingual Lexicon
PanLex (Kamholz et al., 2014) was used by both Duong
et al. (2016) and Adams et al. (2017) as the source of
bilingual lexicons, so we used the same resource. Pan-
Lex is built by combining many translation resources,
and includes entries for thousands of languages, includ-
ing Mi’kmaq. Table 2 shows the number of single word

3https://dumps.wikimedia.org/

Source Language Number of Entries
English 4303
German 449
Italian 410
French 403
Japanese 377

Table 2: The number of single word translations from a
source language into Mi’kmaq, for the top-5 languages with
the most translations into Mi’kmaq in Panlex.

translations from a source language into Mi’kmaq, for the
top-5 languages with the most translations into Mi’kmaq
in Panlex. We observe that English has many more en-
tries than other languages, so we only performed experi-
ments with English as the source language. Adams et al.
(2017) showed that small lexicons negatively impacted per-
formance, so it is important to try to get the largest possible
lexicon.
Out of the 4303 entries in the bilingual lexicon, 324 of the
Mi’kmaq translations occur in the Mi’kmaq corpus. These
324 types correspond to 8301 tokens in the Mi’kmaq cor-
pus.

4. Language Models
Since there has been little prior work done on Mi’kmaq
language modelling, we first took steps to attempt to build
a strong baseline model to compare other models against.
Maheshwari et al. (2018) compared several approaches
to Mi’kmaq language modelling, and showed that n-gram
models performed the best of those considered, so we start
by considering n-gram language models, and then proceed
to consider word-level RNN models. We also consider
different initialization schemes for the neural networks in-
cluding the use of pre-trained monolingual fastText embed-
dings. Finally we consider models initialized with CLWEs.

4.1. N -gram Language Models
N -gram models were built with approximate Kneser-Ney
smoothing using KenLM (Heafield et al., 2013). We con-
sidered n-gram orders from 2–6. We used the default set-
tings for other parameters since they showed the best per-
formance in preliminary experiments on the dev data.

4.2. RNNs
We considered two RNN model architectures: LSTM net-
works (Hochreiter and Schmidhuber, 1997) and GRU net-
works (Cho et al., 2014). We used PyTorch (Paszke et al.,
2017), and its word-level RNN language model example as
a base for implementing these models.4 We tuned hyperpa-
rameters for these models including the number of layers,
the amount of dropout, and the embedding size. We set
the size of the hidden layer(s) to be the same size as the
embeddings. We further considered the use of weight ty-
ing for the input and output layers (Inan et al., 2017; Press
and Wolf, 2017), which has been shown to make language
models much easier to learn.

4https://github.com/pytorch/examples/
tree/master/word_language_model

https://dumps.wikimedia.org/
https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model
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Since using pre-trained monolingual embeddings, and
CLWEs, is essentially a sophisticated way to initialize our
language model, we additionally explored different initial-
ization methods. By default, the weights of the layers were
initialized using the uniform distribution with a range of
[−0.1, 0.1]. We considered using the normal distribution

with a mean of 0 and standard deviation of
√

2
emb , where

emb is the size of word embeddings used (He et al., 2015).
We additionally tested the uniform distribution scheme
used by Mikolov et al. (2013a), and the Xavier initializa-
tion scheme proposed by Glorot and Bengio (2010). The
ranges of these distributions are defined as [− 1

2emb ,
1

2emb ]

and [−
√
6√

emb
,
√
6√

emb
] respectively. In all experiments we use

the same initialization method for the input/output layers
and hidden layers, unless otherwise noted.5

4.3. Monolingual Word Embeddings
FastText takes into account sub-word information in learn-
ing embeddings, and is able to form embeddings for out-of-
vocabulary words. This could be well-suited for learning
embeddings for a polysynthetic language such as Mi’kmaq
where words have complex structure and many out-of-
vocabulary words are expected to be encountered due to
the rich morphology.
Mi’kmaq word embeddings were trained on the training
data using both the skip-gram and CBOW models with 300
dimensions. We used a character n-gram size of 3–6 char-
acters, and we used a minimum frequency of 5 occurrences.
Both these parameters are default and showed the best per-
formance in preliminary experiments. Training the embed-
dings on the training data resulted in embeddings for 1198
words. This fastText embedding model was used to initial-
ize the first layer of our RNN models. For these models, the
hidden layers were initialized using the normal distribution.

4.4. Cross-Lingual Word Embeddings
We considered two approaches to forming CLWEs, a direct
approach, and the method of Duong et al. (2016).
For the direct approach, we use English word embeddings
to initialize the first layer of the RNN. For every word in
our Mi’kmaq vocabulary that has a match in the bilingual
lexicon, we use the corresponding English word embed-
ding as the embedding for the Mi’kmaq word. We use 300
dimensional fastText embeddings pre-trained over English
Wikipedia as our English word embeddings.6 We refer to
this method as Direct CLWE.
In order to explore the impact of having the correct English
embedding, as opposed to just having an English embed-
ding, on the Direct CLWE approach, we considered several
other approaches. The first method, referred to as Direct
RAND TRANS, randomly selects an English embedding
for every Mi’kmaq word that has a translation in the bilin-
gual lexicon. The second method, Direct RAND, randomly

5In preliminary experiments we considered using different ini-
tialization methods for the input/output layers and hidden layers,
but found this did not lead to improvements.

6https://fasttext.cc/docs/en/
english-vectors.html

selects an English embedding for every Mi’kmaq word in
the vocabulary.
Duong et al. (2016) provide an implementation to build
CLWEs.7 We built embeddings using this approach with
both English corpora (5M sentences and 200k sentences)
as the source language, using the default window size of
48, which Adams et al. (2017) argue mitigates word re-
ordering effects. We refer to these approaches as Duong
5M and Duong 200k.
For all methods described in this subsection, if the embed-
ding for a Mi’kmaq word is not initialized using the cross-
lingual approach, the weights for those words are initial-
ized using the normal distribution. For Direct CLWE and
Direct RAND TRANS, this occurs in the case of words
that are not in the bilingual dictionary. For the Duong 5M
and 200k approaches, this occurs for words that are out-
of-vocabulary with respect to the learned cross-lingual em-
beddings. The hidden layers are also initialized using the
normal distribution.

5. Results
In this section we first present results using n-gram and
RNN language models, considering a range of parameter
settings, to establish a strong baseline. We then consider
initializing the input layer of the RNN language models
with pre-trained monolingual embeddings. Finally we con-
sider approaches that incorporate cross-lingual word em-
beddings.

5.1. Baseline Language Models
In Table 3, we compare KenLM and RNN language models,
for a range of parameter settings.8 We treat these models as
baselines for subsequent experiments.
We observe that the best KenLM model (n = 4) has an
adjusted perplexity of 2410.53. This performance is much
worse than even the worst RNN model. This difference
appears to be due to the large amount of probability mass
assigned to UNK by KenLM.
The best GRU model, and the best LSTM model, on both
dev and test, use 1 hidden layer, a dropout rate of 0.5, and
an embedding layer of size 300. We therefore choose these
two models for further experiments. The GRU model with
these parameter settings achieves the lowest adjusted per-
plexity overall on both datasets.
For the results in Table 3, weights were initialized using the
uniform distribution with a range of [−0.1, 0.1]. In Table
4 we consider alternative approaches to initializing these
weights, specifically the approach used by Mikolov et al.
(2013a), the Xavier scheme of Glorot and Bengio (2010),
and the normal distribution (He et al., 2015) (discussed in
Section 4.2.). We see a noticeable improvement with the
use of the normal distribution to initialize the weights for

7https://github.com/longdt219/XlingualEmb
8For the RNN models, we first tuned the number of hidden lay-

ers, then the number of dimensions in the input and output layer,
and then the dropout rate. We did not explore all combinations of
parameter settings. In preliminary experiments we considered the
use of weight tying for the RNN language models, and found this
to give lower perplexity. We therefore only report results for RNN
language models that use weight tying.

https://fasttext.cc/docs/en/english-vectors.html
https://fasttext.cc/docs/en/english-vectors.html
https://github.com/longdt219/XlingualEmb
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Model Hyperparameters Adjusted Perplexity
Dev Test

KenLM

n = 2 2501.18 3094.59
n = 3 1962.85 2489.9
n = 4 1900.67 2410.53
n = 5 1902.43 2413.81
n = 6 1910.58 2421.89

GRU

l = 2, r = 0.2, d = 200 933.63 1031.85
l = 1, r = 0.2, d = 200 810.32 896.44
l = 1, r = 0.2, d = 100 830.44 913.51
l = 1, r = 0.2, d = 300 771.08 862.81
l = 1, r = 0.5, d = 300 700.42 768.68

LSTM

l = 2, r = 0.2, d = 200 974.41 1100.65
l = 1, r = 0.2, d = 200 833.56 913.91
l = 1, r = 0.2, d = 100 861.09 960.86
l = 1, r = 0.2, d = 300 816.33 890.79
l = 1, r = 0.5, d = 300 755.70 827.68

Table 3: Adjusted perplexity for baseline language models. n represents the n-gram order for n-gram models, l represents
the number of hidden layers in the model, r represents the dropout rate used, and d represents the number of dimensions in
the input and output layer. The best adjusted perplexity, for each model type, on each dataset, is shown in boldface.

Model Initialization Adjusted Perplexity
Dev Test

GRU

Uniform 700.42 768.68
Mikolov 857.61 954.50
Xavier 778.49 870.28
Normal 619.98 674.67

LSTM

Uniform 755.70 827.68
Mikolov 884.55 974.50
Xavier 812.75 878.60
Normal 672.09 726.49

Table 4: Performance of the RNN models with different ini-
tialization methods. The best adjusted perplexity, for each
model type, on each dataset, is shown in boldface.

Model Initialization Adjusted Perplexity
Dev Test

GRU
CBOW 548.09 602.57
Skip-gram 486.49 535.73
Word-level skip-gram 578.98 638.67

LSTM
CBOW 569.65 623.84
Skip-gram 483.13 537.00
Word-level skip-gram 560.07 616.07

Table 5: Performance of RNN models with monolingual
FastText embeddings used to initialize the embedding layer.
The best adjusted perplexity, for each model type, on each
dataset, is shown in boldface.

both the GRU and LSTM models. We consider both the
GRU and LSTM models with weights initialized using the
normal distribution as baselines for further experiments.

5.2. Monolingual Word Embeddings
In Table 5 we consider the use of pre-trained monolin-
gual word embeddings to initialize the embedding layer
of Mi’kmaq language models. Using fastText embeddings

trained with either CBOW or skip-gram gives substantial
improvements over the baseline approaches. For both the
GRU and LSTM, on each dataset, skip-gram gives the best
performance. Interestingly, although the GRU models gen-
erally performed better than the LSTM models when using
random initialization schemes (Table 4), here the perfor-
mance of the GRU and LSTM initialized with skip-gram
embeddings is quite similar.
As a point of comparison we also consider word-level skip-
gram embeddings that do not incorporate sub-word infor-
mation (“Word-level skip-gram” in Table 5). These models
perform worse than the corresponding skip-gram models
that incorporate sub-word information. These findings sug-
gest that sub-word information is important for Mi’kmaq
language modelling.

5.3. Cross-Lingual Word Embeddings
Table 6 compares the CLWE approaches with previous
models using the uniform and normal distributions for ini-
tialization, and initialization using skip-gram embeddings.9

We first note that all of the direct approaches outperform
those using the Duong methods. Moreover, the Duong
methods performed much worse than the models using uni-
form initialization. The experiments performed by Adams
et al. (2017) showed that this CLWE approach was not
useful for simulated low-resource language modelling for
a target corpus smaller than 32k sentences. We only have
5k training sentences, so there are likely not enough ex-
amples for the model to learn good embeddings using this
technique. Adams et al. (2017) simulated different lexicon
sizes, and showed that a lexicon size of about 10k entries
was the critical point for achieving good performance. Our

9All experiments in this paper used the same random seed to
initialize the models. To consider the impact of random seeding,
we re-trained each model in this sub-section 5 times with different
random seeds, and calculated the average perplexity across the 5
runs. The findings were overall consistent with those reported in
this sub-section.
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Model Initialization Adjusted Perplexity
Dev Test

GRU

Direct CLWE 621.44 673.01
Direct RAND TRANS 626.14 681.28
Direct RAND 682.01 743.83
Duong 5M 1148.54 1244.43
Duong 200k 876.30 980.25
Uniform 700.42 768.68
Normal 619.98 674.67
Skip-gram 486.49 535.73

LSTM

Direct CLWE 689.64 743.37
Direct RAND TRANS 659.23 713.81
Direct RAND 660.33 701.62
Duong 5M 819.59 933.03
Duong 200k 786.21 889.21
Uniform 755.70 827.68
Normal 672.09 726.49
Skip-gram 483.13 537.00

Table 6: Adjusted perplexity of RNN models with various
CLWE methods, as well as select results from previous sub-
sections for comparison. The best adjusted perplexity, for
each model type, on each dataset, is shown in boldface.

lexicon has only 4303 entries, and so the poor performance
in this case is likely due to the small lexicon size. Further-
more, only 324 of the Mi’kmaq words in these entries occur
in our corpus, and only 126 of these words have a frequency
of 5 or greater, which is the cutoff for learning cross-lingual
embeddings in this approach.10 These findings indicate that
there is a lack of cross-lingual examples to produce useful
embeddings.
Turning to the direct approaches, we see that the best
CLWE approach is the GRU with Direct CLWE, which
achieves an adjusted perplexity on the test data of 673.01.
In the case of Direct RAND TRANS, the results are worse
than Direct CLWE for the GRU, but not for the LSTM. This
inconsistency suggests that the Direct CLWE approach is
unable to effectively make use of information transferred
from the source language. Moreover, these approaches are,
at best, roughly on par with using the normal distribution
for initialization. This is perhaps unsurprising because, for
these CLWE approaches, words that don’t get an embed-
ding via translation are initialized with the normal distribu-
tion, and the bilingual lexicon is relatively small, as noted
above.
Direct RAND performs better than initialization using the
uniform distribution for the GRU, and better than initializa-
tion using either the uniform or normal distribution for the
LSTM. This result seems to indicate that a direct transfer
approach might be useful because of the vector structure of
the English embeddings, as opposed to the information that
was transferred from the source language via the bilingual
dictionary.
The best models in our experiments are the GRU and LSTM
models initialized with fastText skip-gram embeddings that

10We performed additional experiments with a cut-off of 1, but
this modification showed no improvement.

use sub-word information. The performance difference
compared to simpler models was large (the skip-gram ini-
tialized GRU had an adjusted perplexity of 535.73 on the
test data, while the GRU initialized with the normal dis-
tribution had an adjusted perplexity of 674.67). We sug-
gest two main reasons for this difference. First, Mi’kmaq
is a polysynthetic language, and this means that a model
that considers sub-word information, as an approximation
to morphology, might be critical. Second, this method can
be used to build embeddings for out-of-vocabulary words,
which is important because there is a large number of out-
of-vocabulary words in the test data.

6. Edit Distance and Mi’kmaq
Orthographies

In an attempt to improve the Direct CLWE method we ex-
plored a few ideas to try to increase the number of matches
between words in the corpus and entries in the lexicon by
making this matching less strict.
We first built a model where the matching was based on
Levenshtein distance (Jurafsky et al., 2018). If we con-
sider the Direct CLWE approach in terms of Levenshtein
distance, the distance between a word in the corpus, and a
word in the lexicon, must be 0 for them to match. How-
ever, there are variations in Mi’kmaq orthographies (Bat-
tiste, 1985), and the corpus is potentially noisy because it
is a web corpus. Allowing for less strict matching could
therefore potentially lead to improvements. Allowing for
matches with a Levenshtein distance of 0 or 1, 1268 types
in our corpus match a lexicon entry, as opposed to 324 when
using exact match (i.e., a Levenshtein distance of 0). How-
ever, the adjusted perplexity of this approach using a GRU
was 676.29 on the test data, which was worse than the orig-
inal Direct CLWE approach (673.01, result shown in Table
6).
We further considered an approach that incorporates knowl-
edge of differences in Mi’kmaq orthographies. Two con-
temporary Mi’kmaq orthographies are Francis/Smith and
Listuguj. One difference between these orthographies is
their representation of a velar stop, where Francis/Smith
uses k while Listuguj uses g.11 In this approach we applied
a normalization step to treat these characters as equivalent,
and then applied the Direct CLWE approach (i.e., with a
Levenshtein distance of 0 for matching words in the lexi-
con and corpus). This resulted in 675 types in our corpus
matching a lexicon entry, and gave an adjusted perplexity of
674.95 on the test data, which is also worse than the orig-
inal Direct CLWE method. Nevertheless, because a single
Mi’kmaq orthography uses only one of k or g, such a nor-
malizing step might still be important to consider in future
work on Mi’kmaq

7. Keystroke Savings Evaluation
The experiments so far have been based on intrinsic evalu-
ation using adjusted perplexity. In this section we consider
an evaluation motivated by the task of next word sugges-
tion, for example as is common with smartphone soft key-

11These orthographies also vary with respect to their represen-
tation of vowel length.
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boards. In the following subsections we describe the mod-
els considered and the evaluation methodology, and then
present results.

7.1. Models
In these experiments we consider the GRU language model
in two settings: 1.) with weights initialized using the nor-
mal distribution, and 2.) with the input layer initialized
using monolingual fastText embeddings. The former we
consider as a baseline, and the latter is the model found to
perform best so far.
In addition, because of the finding that subword informa-
tion appears to be important in Mi’kmaq language mod-
elling, we consider language models that operate at the sub-
word level. We use SentencePiece12 to tokenize our cor-
pora using a fixed size vocabulary. Under this tokenization
scheme tokens can correspond to subword units. We apply
the same GRU language model (i.e., with the same param-
eter settings) as for the models that are based on word-level
tokenization. When using SentencePiece, we also consider
the two approaches to initializing the weights that we con-
sider for the word-level language models, i.e., initializing
weights using the normal distribution, and using fastText
embeddings to initialize the input layer. In the case of the
fastText embeddings, we consider training fastText using
both word-level tokenization (i.e., the same as for previous
fastText models), and using tokenization based on Senten-
cePiece. In both cases we use the same fastText settings as
in our previous experiments.

7.2. Evaluation
Smartphone soft keyboards often provide suggestions for
the next word or word being typed, that the user can select
instead of typing the word in its entirety. In these experi-
ments we evaluate language models using a measure moti-
vated by this scenario, referred to as keystroke saving rate
(KSR), defined as follows (Trnka and McCoy, 2008):

KSR =
keysnormal − keysprediction

keysnormal
× 100 (5)

where keysnormal is the number of keystrokes required to
type the text without the use of any word suggestions, i.e., it
is the number of characters in the text, and keysprediction is
the number of keystrokes required to type the text assuming
that the user always selects a word suggestion if the correct
one is available among the n suggestions provided, and that
making this selection has a cost of one keystroke. The word
suggestions are determined by a language model. In partic-
ular, they are the top-n words with highest probability that
begin with the prefix of the word that has been typed so far.
We consider this evaluation measure for n = 1, 3, 5 bearing
in mind that n = 3 is particularly common for smartphone
keyboards. An ideal language model would provide high
quality word suggestions, allowing a user to type the text
with fewer keystrokes. A higher KSR therefore indicates a
better language model.13

12https://github.com/google/sentencepiece
13We use KSR to compare approaches to language modelling

relative to each other. We therefore do not compare against theo-

Although we have described KSR in terms of word sugges-
tions, these can in fact be arbitrary segments of text, as is
the case for the language models using SentencePiece. To-
kens in SentencePiece incorporate whitespace, whereas this
is not part of the tokenization for the word-level language
models. For a fair comparison between the two approaches,
we include the keystrokes required to enter whitespace
when computing keysnormal and keysprediction.
In addition to potentially indicating the usefulness of a lan-
guage model in a word suggestion task, KSR also avoids
the challenges of using perplexity to compare word-level
language models with those based on open-vocabulary seg-
mentations of the input, such as those produced by Senten-
cePiece.14

7.3. Results
In these experiments we use the same training, dev, and test
data as in previous experiments. We train SentencePiece
models on the training data.
We tuned parameter settings for SentencePiece through
preliminary experiments on dev data. We considered byte-
pair-encoding (BPE) (Sennrich et al., 2016) and unigram
language model (Kudo, 2018) for segmentation. We fur-
ther explored vocabulary sizes of 1k, 2k, 4k, and 8k. We
found BPE segmentation with a vocabulary size of 2k to
perform best, and report findings for these settings.
Results are shown in Table 7. Considering first the previous
models using word-level tokenization, we see that, for all
numbers of suggestions, on both the dev and test data, the
model using skip-gram embeddings outperforms that using
initialization via the normal distribution, with the excep-
tion of n = 1 on the dev data. These findings are, overall,
consistent with those of the previous evaluations using ad-
justed perplexity. Moreover, the results for n = 3 are per-
haps most relevant since smartphone keyboards often pro-
vide three suggestions for the next word.
Turning to the results using BPE tokenization, when the
normal distribution is used to initialize weights, we see an
improvement for both dev and test sets, for each number of
suggestions, over both word-level approaches, again with
the exception of n = 1 on the dev data (although the differ-
ence in this case is very small). This finding again indicates
the importance of incorporating sub-word information into
Mi’kmaq language modelling, in this case through the use
of sub-word aware tokenization.
In all but one case, one of the BPE approaches that uses
skip-gram to initialize the input layer — either using em-
beddings trained over a corpus with word-level tokeniza-
tion or BPE tokenization — gives the best performance.
This indicates that there is potential to further improve
Mi’kmaq language modelling by initializing embeddings
with pre-trained fastText embeddings, even when the lan-
guage model is trained over BPE segmentation instead of
words.

retical upper bounds for KSR as suggested by (Trnka and McCoy,
2008), but intend to do so in future work.

14http://sjmielke.com/
comparing-perplexities.htm

https://github.com/google/sentencepiece
http://sjmielke.com/comparing-perplexities.htm
http://sjmielke.com/comparing-perplexities.htm
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Tokenization Initialization
Number of Suggestions (n)

n = 1 n = 3 n = 5
Dev Test Dev Test Dev Test

Word Normal 1.24 1.09 2.18 2.05 2.89 2.79
Word Skip-gram 1.06 1.10 2.45 2.44 3.35 3.29
BPE Normal 1.23 1.17 2.79 2.50 3.36 3.44
BPE Skip-gram (word-level tokenization) 1.19 1.20 2.52 2.53 3.65 3.60
BPE Skip-gram (BPE tokenization) 1.32 1.32 2.62 2.40 3.81 3.42

Table 7: Keystroke saving rate for language models trained for both tokenization strategies, with differing approaches to
initialization, for varying numbers of suggestions, on both the dev and test sets. The best result on each dataset, for each
number of suggestions, is shown in boldface.

8. Conclusions
In this paper we explored a variety of approaches to lan-
guage modelling for Mi’kmaq, which is particularly chal-
lenging due to its rich morphology, and because it is a low-
resource language.
We considered n-gram and RNN language models, with
a variety of parameter settings in an effort to establish
a strong baseline. We then considered the use of pre-
trained fastText embeddings to initialize the input layer
of the RNN language models. This gave substantial im-
provements over the baseline, highlighting the importance
of sub-word information, and approaches that can repre-
sent out-of-vocabulary words, for Mi’kmaq language mod-
elling. We then considered two approaches to language
modelling that incorporate cross-lingual word embeddings,
but found these to perform relatively poorly. These experi-
ments used adjusted perplexity for evaluation. We then con-
sidered an evaluation focused on potential keystroke sav-
ings when typing on a smartphone keyboard that offers next
word suggestions. In this case we again saw improvements
using a language model that incorporated fastText embed-
dings. Furthermore, we considered language models based
on segmentations produced by SentencePiece, specifically
using BPE, which include subword units as tokens. We saw
further improvements for these models, again highlighting
the importance of considering subword units for Mi’kmaq
language modelling.
We showed that pre-trained fastText embeddings provided
a substantial performance increase for Mi’kmaq language
models, and we argued that this is because of the use of sub-
word information. The CLWE approaches we considered
do not incorporate sub-word information. In future work
we intend to explore approaches to learning cross-lingual
embeddings at the sub-word level in an attempt to lever-
age the benefits of sub-word information along with cross-
lingual signal from a source language. In our experiments
with cross-lingual embeddings, we only considered English
as the source language. In future work it would also be
interesting to consider morphologically-richer source lan-
guages.
Based on the encouraging results for language modelling
with SentencePiece segmentation, in future work we intend
to further consider language models that operate over sub-
word unit tokens, and incorporate morphological analysis
(Smit et al., 2014).
Finally, given the small size of the Mi’kmaq corpus, we

intend to revisit Mi’kmaq corpus construction, in an effort
to build a larger corpus.

9. Bibliographical References
Adams, O., Makarucha, A., Neubig, G., Bird, S., and

Cohn, T. (2017). Cross-lingual word embeddings for
low-resource language modeling. In Proceedings of the
15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Volume 1, Long
Papers, pages 937–947, Valencia, Spain, April. Associa-
tion for Computational Linguistics.

Battiste, M. (1985). Micmac literacy and cognitive as-
similation. In Barbara Burnaby, editor, Promoting Na-
tive Writing Systems in Canada, pages 7–16. OISE
Press/Ontario Institute for Studies in Education, Toronto,
Canada.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C.
(2003). A neural probabilistic language model. Journal
of Machine Learning Research, 3(Feb):1137–1155.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword informa-
tion. Transactions of the Association for Computational
Linguistics, 5:135–146.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants,
T., Koehn, P., and Robinson, T. (2014). One billion
word benchmark for measuring progress in statistical
language modeling. In 15th Annual Conference of the In-
ternational Speech Communication Association (INTER-
SPEECH 2014), pages 2635–2639, Singapore, Septem-
ber.

Chen, S. F. and Goodman, J. (1999). An empirical study of
smoothing techniques for language modeling. Computer
Speech & Language, 13(4):359–394.
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