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Abstract
This paper investigates the use of bilingual word embeddings for mining Hiligaynon translations of English words. There is very little
research on Hiligaynon, an extremely low-resource language of Malayo-Polynesian origin with over 9 million speakers in the Philippines
(we found just one paper). We use a publicly available Hiligaynon corpus with only 300K words, and match it with a comparable
corpus in English. As there are no bilingual resources available, we manually develop a English-Hiligaynon lexicon and use this to train
bilingual word embeddings. But we fail to mine accurate translations due to the small amount of data. To find out if the same holds true
for a related language pair, we simulate the same low-resource setup on English to German and arrive at similar results. We then vary
the size of the comparable English and German corpora to determine the minimum corpus size necessary to achieve competitive results.
Further, we investigate the role of the seed lexicon. We show that with the same corpus size but with a smaller seed lexicon, performance
can surpass results of previous studies. We release the lexicon of 1,200 English-Hiligaynon word pairs we created to encourage further

investigation.
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1. Introduction

Since the introduction of Skip-gram and Continuous Bag-
of-Words (Mikolov et al., 2013a)) followed by the release
of GloVe (Pennington et al., 2014), the use of word em-
beddings, the continuous vector representations of words,
has become the norm for many natural language process-
ing (NLP) tasks. From sentence classification (Kim, 2014),
part-of-speech tagging (Abka, 2016)), named entity recog-
nition (Melamud et al., 2016)), to sentiment analysis (Ruder
et al., 2016), it is hard to imagine modern NLP without
word embeddings. How this success of monolingual word
embeddings (MWESs) can extend to a bilingual setup —
to represent meaning and transfer knowledge in bilingual
tasks — sparks interests that paved the way for investigating
different models of bilingual word embeddings (BWEs).
When two MWEs share a single vector space in the form
of BWEs, it is likely that, following the concept of MWEs
correlating distance with semantic similarity, the target lan-
guage word closest to the source language word is the trans-
lation equivalent.

To evaluate the quality of BWEs, this paper conducts exper-
iments with the task of bilingual lexicon induction (BLI).
This task aims to mine accurate word translations from a
source language to a target language. The output is a list
of source words with corresponding lists of top-n transla-
tions in the target language based on cosine similarity in
the BWE space. Unlike translations that are learned from
parallel corpora which are sentence-aligned bilingual texts,
BLI utilizes data that are not necessarily parallel. This task
is crucial for many reasons: 1) many of the world’s lan-
guages have either limited or no parallel corpora, 2) re-
liable, freely accessible dictionaries for low-resource lan-
guages are either scarce, highly erroneous or non-existent,
3) modern statistical and neural machine translation sys-
tems often rely on dictionaries and phrase tables, a down-

stream task of BLI, and 4) the tedious process of building
parallel corpora for low-resource languages could poten-
tially be alleviated through BLI (Hangya et al., 2018)).

There are more than 7,000 living languages spoken in the
world today and over 2,500 of them are now considered en-
dangered (Eberhard et al., 2020). Out of these languages,
research has been extensive on only a few major languages,
such as English, Spanish, French, German, Chinese and
Arabic. Linguistic resources in these languages abound;
understandably, statistical and neural machine translation
models that have seen impressive results focus on these
languages, exploiting massive amounts of parallel corpora.
High quality parallel corpora take years to build, backed
by millions of dollars per language. To develop systems
that can automatically generate translations relying only
on monolingual corpora is therefore a huge step in ma-
chine translation, particularly for low-resource languages
(Artetxe et al., 2019;|Conneau and Lample, 2019).

Research on low-resource languages, however, poses many
challenges. Unlike well-researched languages, they are
mainly minority languages that do not have established
grammar, dictionaries and orthographic standards. They
are usually spoken at home, in small communities or
in regions where people primarily learn the language by
speaking, leading to lack of written documents, much less
machine-readable data. There are usually no active com-
munities of researchers that build linguistic resources. With
these challenges, exacerbated by the diminishing number
of speakers, the evaluation of systems for low-resource lan-
guages is a herculean and expensive task.

The suitability of models is also an issue. Models are of-
ten evaluated on languages with similar linguistic charac-
teristics, making performance more consistent. This does
not necessarily trickle down to languages of other fami-
lies where linguistic typology is different. There is a need

2573



to come up with innovative ways to develop systems that
could either perform well even with limited data, or could
achieve some degree of generalization when applied to lan-
guages of other origins.

1.1. The Case of Hiligaynon

To test how the BLI systems from previous papers perform
when applied to an extremely low-resource language, this
paper experiments on Hiligaynon, a Malayo-Polynesian
language spoken in the Philippines. Commonly referred
to as Ilonggo, it is part of the Bisayan language group
that is predominantly spoken in the provinces of Western
Visayas and SOCCSKSARGEN (South Cotabato, Cota-
bato, Sultan Kudarat, Sarangani and General Santos). Hili-
gaynon, which comes in 3 dialects, is the fourth most spo-
ken language among the estimated 186 languages in the
archipelagic country, having an estimated total of over 9
million native speakers. It is written in Latin script that used
to follow Spanish orthographic conventions but is currently
generally written based on the orthographic standards of
Filipino, the Philippine national language.

Similar to Filipino, the country’s colonial past left traces
in Hiligaynon. Many loan words are adjusted to the or-
thography and pronunciation of native Hiligaynon sounds.
Spanish words like abyerto (abierto), timprano (temprano),
gwapo (guapo), munyeka (muiieca), merkado (mercado),
kambyo (cambio), ubra (obrah), to name a few, find fre-
quent use. Code-switching to English, the country’s an-
other official language, is common, a footprint of America’s
post-Spanish occupation.

As is mostly the case with Philippine languages, there is
only little NLP work on Hiligaynon. Since 2008, only one
research paper for statistical machine translation (Oco and
Roxas, 2018)) has been published. Experiments yielded a
BLEU score of 21.74 for Hiligaynon to English, and 24.43
for English to Hiligaynon, using the parallel corpora from
the New Testament (Macabante et al., 2017). The lower
performance of the Hiligaynon to English translation is at-
tributed by Macabante et al. (2017) to the differences in
word order between English and Hiligaynon; unlike the
typical subject-verb-object (SVO) order of English, Hili-
gaynon has a free-word order, i.e., sentences are typically
expressed in VSO, and sometimes, in VOS or SOV form,
depending on emphasis.

For our experiments, we reached out to Macabante et al.
(2017) for a copy of the parallel corpus, but were informed
that the corpus is no longer available due to technical is-
sues. We make do with the available Hiligaynon monolin-
gual corpus consisting of a bit over 300,000 words in liter-
ary and religious texts from the now-defunct Palito website
(Dita et al., 2009), datasets of which are still accessible on-
1ine[ﬂ To produce a comparable dataset, religious and lit-
erary texts in English were also collected. 1,200 most fre-
quent words from the English corpus were then extracted
and translated into Hiligaynon by a native speaker: the first
1,000 pairs serve as the training seed lexicon, and the re-
maining 200 pairs as test set.

"https://www.dropbox.com/sh/
bldp56htdm9qux0/AABsSNv12EzzdJDpQONop3gb5ea?
dl=0

Since results of our experiments show that the small dataset
is not sufficient to accurately mine translation pairs, we
simulate the low-resource scenario for English to German,
varying the size of the dataset and the seed lexicon to find
out how both of these resources impact performance.

2. Related Work

One pioneering approach in creating BWEs for BLI is the
model this paper investigates. Observing a linear relation-
ship between languages, Mikolov et al. (2013b) mapped
the MWE:s of a source language to the MWEs of a target
language by linear transformation. The bilingual signal to
learn the transformation was a small seed lexicon of 5,000
word pairs. The model is simple, inexpensive, and showed
impressive results for Spanish to English, and English to
Czech translations. To test whether the same approach
works for unrelated languages, over a billion Vietnamese
phrases were trained to mine Vietnamese translations for
English words and vice versa, applying previous techniques
in vector representations of phrases (Mikolov et al., 2013c).
Even with the large corpora, the accuracy is only 10 percent
for English to Vietnamese and 24 percent for Vietnamese to
English. In this paper, we attempt a word-word translation
of English to Hiligaynon using a small available Hiligaynon
corpus of a bit over 300,000 tokens.

Braune et al. (2018) further explored the feasibility of
this approach by evaluating the quality of BWEs to mine
rare and domain-specific words, as well as frequent words,
in English to German. For frequent words in the general
domain, the dataset consisted of monolingual corpora of
4,400,309 English and German sentences from parliament
proceedings, news commentaries and web crawls taken
from the WMT 2016 shared task (Bojar et al., 2016), a
bilingual signal of 4,955 frequent word pairs, and 2,000 fre-
quent words as test and validation sets. The baseline model
failed to deliver promising results, but by applying ensem-
bling techniques combined with orthographic cues, state-
of-the-art results were achieved.

We extend the experiments of |Braune et al. (2018)) in min-
ing frequent words for English to German, using their seed
lexicon and test set. We set up datasets with different
amounts of monolingual corpora, as well as different lex-
icon size, to determine the amount of data needed to arrive
at comparable results.

Similar to our work, Adams et al. (2017) investigated word
embeddings in low-resource setups. It was shown that the
monolingual quality, i.e., the correlation of the cosine simi-
larity of the embeddings with human word similarity judge-
ments, drops drastically when only a few thousand sen-
tences are available. To improve the performance, a large
number of sentences from other languages were leveraged.
To bridge the gap between the languages, a joint BWE
model (Duong et al., 2016) and large bilingual dictionar-
ies were used. They showed significant improvements in
monolingual word similarity. However, they do not report
results on bilingual quality, such as BLI, and rely on a large
dictionary which is often not available for low-resource lan-
guages. In contrast, we focus on evaluating the bilingual
quality of the models assuming only a small seed lexicon.
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En-Hil
Language Words
English 345,583
Hiligaynon 319,934

En-De
Language Words
English 300,120
German 300,099

Table 1: Small datasets. The En-Hil set is composed of 70
percent literary and 30 percent religious texts each. The En-
De set is from the Opus website made up of EU proceed-
ings, news commentaries and books in equal distribution.

3. Approach

Following the experiments of |Braune et al. (2018) on fre-
quent words in the general domain, we use the code they
made public on Githu To find out if the model also works
for an actual, low-resource language in the same BLI task,
we conduct experiments in English to Hiligaynon. To see
how the results fare compared to mining frequent words in
related languages, we experiment with English to German,
simulating the same low-resource setup.

We show that the model fails in a low-resource scenario,
both for unrelated and related languages. We then increase
the number of words of monolingual corpora for English
to German. The goal is to determine at which corpora size
does the performance become comparable to that achieved
by Braune et al. (2018). We also look at how the seed
lexicon affects performance by varying its size from 1,000
to 4,955 pairs.

3.1.

We test the model on two sets of data: 1) small datasets of
comparable English to Hiligaynon (En-Hil) and English to
German (En-De) as shown in Table and 2) large datasets
of En-De in varied sizes of monolingual corpora as shown
in Table[2} How the monolingual corpora are gathered and
prepared are detailed below.

Training Data

3.1.1. Small data

The Hiligaynon corpus consists of literary and religious
texts from the Palito corpus (Dita et al., 2009). To make
the data comparable, we collected literary texts in English
from Planet eBook| and religious texts from Sermon On-
line{ﬂ The En-De set, on the other hand, is taken from the
Opus website E] consisting of books, EU proceedings and
news commentaries.

3.1.2. Large Data

To assess the impact of the size of monolingual corpora,
we gathered texts in English and German from the Opus
website consisting of books, EU proceedings, news com-
mentaries, news, UN proceedings, Ted Talks and Wikipedia

https://github.com/braunefe/BWEeval
3www.planetebook.com
4www .sermon-online.de

Shttp://opus.nlpl.eu/

104M
Texts En De
books 1,412,247 1,330,089
europarl 37,808,676 37,631,718
newscomm 6,522,888 6,521,181
globalvoices 1,657,466 1,656,038
multi un 6,897,765 6,856,049
ted talk 2,679,589 2,677,251
wiki 48,090,535 48,014,011
Total 105,069,161 104,686,337
1.5M
Texts En De
books 214,330 214,384
europarl 214,334 214,423
newscomm 214,205 214,393
globalvoies 214,367 214,524
multi un 214,389 214,381
ted talk 214,423 214,516
wiki 214,438 214,394
Total 1,500,486 1,501,015

Table 2: Largest and smallest En-De datasets from the Opus
website. Numbers indicate number of tokens from books,
EU proceedings, news commentaries, news from Global
Voices, UN proceedings, Ted Talks, and Wikipedia pages
from the Opus website.

articles. We start with an En-De dataset of 1.5 million to-
kens, doubling the size per dataset until we reach our largest
dataset of over 105 million tokens. This makes 7 En-De
datasets in total. When possible, so that both languages
have the same distribution of data, the amount of tokens
per type of text from either language is adjusted. Table 2]
shows the largest and smallest datasets.

3.2. Seed Lexicons

To learn BWEs, a seed lexicon is used as bilingual signal.
The En-Hil lexicon consists of translation pairs translated
by a native speaker.

1) For the En-Hil dataset: 1,000 pairs composed of fre-
quent words from the English small corpus paired with
Hiligaynon word translation

2) For the En-De small dataset: first 1,000 pairs from the
frequent general domain seed lexicon of [Braune et al.
(2018)) which are German translations of the most fre-
quent English words in the WMT lff]dataset

3) For the large En-De datasets: all 4,955 pairs from the
frequent general domain seed lexicon of |[Braune et al.
(2018). In experimenting with the seed lexicon size,
the number of pairs was decreased.

3.3. Test Data

These are translation pairs that are not in the seed lexi-
con. As is done with the seed lexicons, the En-Hil test set
was translated by a native speaker while the En-De test sets

Swww.statmt.org/wnt16/
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(small and large) are taken from the test set used by Braune
et al. (2018) for mining frequent words in the general do-
main.

1) For the En-Hil dataset: 200 of the next most frequent
words in the English text (after the 1,000th word)
paired with Hiligaynon translation

2) For En-De small dataset: the first 200 pairs from
Braune et al. (2018).

3) For the large En-De dataset: all 1,000 pairs from
Braune et al. (2018).

The En-De seed lexicon and tests sets are taken from
Braune et al. (2018) which used a standard phrase-based
SMT system trained on WMT 2017 data.

3.4. Training MWEs

The monolingual datasets in Section are first normal-
ized with Moses tools for tokenizing and lower-casinéﬂ
Punctuation marks are not removed. As there are plenty
of digits from the religious texts, i.e., verse numbers, they
are deleted along with the noticeable series of empty lines
observed in the Hiligaynon texts. These are simply done
with Unix commands.

After normalization, Skip-gram and CBOW are trained
on the monolingual corpora using the toolkits word2vecﬁ
(Mikolov et al., 2013a) and fastTextﬂ (Bojanowski et al.,
2017). Training takes longer with fastText as it uses char-
acter n-grams to represent word vectors, but the subword
information it contains has been shown to better represent
morphologically-rich languages like German.

Except for setting the dimensions to 50 and 300, and the
minimum word count to 3 in order to compensate the small
corpus size, all other parameters are set with default values.
It is interesting to note that although the small En-Hil
dataset has more English word tokens than the En-De
dataset has, its number of English word types is lower. This
is due to the domains of texts in the datasets; En-Hil con-
sists only of 2 (literary and religious), while the small En-
De dataset consists of 3 domains (EU proceedings, news
commentaries and books). Having a larger vocabulary size
could have both advantages and disadvantages. It could
lead to a smaller number of out-of-vocabulary words, but
on the other hand, the embeddings could be noisier due to
low frequency.

3.5. Training BWEs

To project the MWE:s into a single vector space, we im-
plement the post-hoc mapping model of Mikolov et al.
(2013b)). This allows projection of the vector space of a
source language s to the vector space of the target language
t by learning a transformation matrix W.

This approach uses a small seed lexicon consisting of
words from the source language wf, ..., w;, and their trans-

lations wt,...,w!. The transformation matrix W is then

7https://github.com/mosesfsmt/
mosesdecoder

Shttps://github.com/dav/word2vec

’https://github.com/facebookresearch/
fastText

learned using stochastic gradient descent by minimizing the
squared Euclidean distance (mean squared error or MSE)
between the previously learned monolingual embeddings
of the source seed word z{ with the use of W and its trans-
lation z! in the seed lexicon:

n

QMSEZZHWZ‘;?—xﬂF M

=1

3.6. Mining Translation Pairs

The process of mining translation pairs to form a bilingual
lexicon is simply done by computing the cosine similarity
between the source word (in this case, English) contained
in the gold standard and a target word (in this case, Hili-
gaynon or German) in the aligned BWEs. The German or
Hiligaynon word closest to the English word is the top 1
translation candidate (highest cosine similarity), while the
top 5 translation denotes that the translation candidate is
taken from one of the 5 closest neighbors of the source
word. That means, if one of these 5 translation candidates
matches the translation from the gold standard, it is induced
into the resulting lexicon. Accuracy is then determined by
computing the total number of matches divided by the total
number of the gold standard (i.e., 50 induced translations
that match the 100 gold standard is 50 percent accuracy).

3.7. Ensembling

As ensembling produced better results in previous work
(Braune et al., 2018)), this technique is also applied in our
experiments. This is done by generating the n-best trans-
lation candidates (n=100) from BWEs taken from different
MWE:s (word2vec Skip, word2Vec CBOW, fastText Skip,
and fastText CBOW). The ensemble weight is computed
by:

M
> wSimi(s, ) @
=1

where Sim;(s,t) is the cosine similarity of a translation
pair. Sim;(s,t) is valued at O if the translation candidate is
not in the n-best list. The weighted sum of these cosine sim-
ilarities then becomes the ensemble similarity score. For
this, a validation set is used to fine-tune the weights ; for
each test with the use of a grid search. The 1,000 validation
set for ensembling is taken from [Braune et al. (2018).

3.8. Ensembling + Edit Distance

By integrating a measure of similarity between word
strings, [Braune et al. (2018) showed that an even higher
BLI performance can be achieved. To do this, the ensem-
ble equation in Section is extended with the ortho-
graphic similarity (one minus the Levenshtein distance) be-
tween the surface-forms of words s (source word i.e. En-
glish word) and ¢ (target word, i.e., Hiligaynon or Ger-
man). The n-best lists of candidate translations from dif-
ferent word similarity models including all BWE and or-
thography (OSim(s,t)) based models, are then generated.
All these lists are then ensembled together.
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4. Results

We present our results in this section starting with the ex-
periments on the small En-Hil and En-De datasets, fol-
lowed by various analyses on the large En-De datasets.

4.1. Small Data

It turned out that the model fails when applied to a very
small dataset, even for related languages (En-De) as shown
in Table 3l

| Dimensions | En-De | En-Hil
50 0.0 (0.0) 0.5(0.5)
300 0.0 (0.0) 0.0 (0.0)

Table 3: Bilingual lexicon induction of small En-De and
En-Hil datasets in Top 1 (Top 5) percent accuracy. Shown
here are MWEs trained with word2vec Skip-gram in 50 and
300 dimensions. MWEs trained with fastText have similar
results.

The only word accurately predicted in Hiligaynon is light
— suga. Words that are even orthographically close to each
other are not accurately predicted, e.g. for En-Hil the words
possible — posible, color — kolor, angel — anghel and for
En-De the words zone — zone, minute — minute. This is, as
also mentioned by Braune et al. (2018]), due to the fact that
there is no cross-lingual learning between two monolingual
corpora since they have been trained separately. Hence,
although fastText’s subword information help better repre-
sent words with similar substrings, it does not prove effec-
tive in the face of very limited data.

4.2. Large Data

In order to have a deeper understanding of the required re-
sources for building useful BWEs, we test various setups
on En-De. Figure|l|shows the impact of the size of mono-
lingual corpora to BLI performance. Performance having
1.5M words yield 0.2 percent accuracy. Between 12M and
25M, a steep learning curve (8 percent increase) can be ob-
served. This reflects the results of previous works (Irvine
and Callison-Burch, 2017; Mikolov et al., 2013b)). Accu-
racy improves as the amount of data increases. We show
results derived from word2vec Skip-gram since it consis-
tently outperformed other MWE models across all sizes of
monolingual corpora. Detailed comparison with fastText
Skip-gram can be seen in Figure 2}

4.2.1. Ensembling + Edit Distance

Validating the work of [Braune et al. (2018), Figure [2]
shows increase in accuracy when the techniques of en-
sembling and ensembling with edit distance are applied.
The poor performance of fastText, probably brought by the
noise in the small corpus making character n-grams worse,
drags down the effect of the technique. If compared with
word2vec’s lone performance, the increase is not as signif-
icant (only around 3 percent).

Due to the very limited data for Hiligaynon, the effect of en-
sembling with orthographic distance cannot be established
in this paper. English and German have many words with
closer orthographic distance and as such, there is a notice-
able positive effect in accuracy. For languages that are not
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Figure 1: Learning curves with different sizes of English
and German monolingual corpora using the Opus datasets.
MWE:s are trained with word2vec Skip-gram.
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Figure 2: Learning curves trained with word2vec and
fastText Skip-gram, including ensemble and ensemble +
edit techniques over varying sizes of English and German
monolingual corpora.

at all related like English and Hiligaynon, the effect could
be insignificant.

4.2.2. Impact of Lexicon Size

When considering resources, we must consider not only the
monolingual corpora, but also the seed lexicon. It is there-
fore worth taking a look at how the size of the seed lexicon
impacts the BLI learning curve. Figure [3| shows that un-
like the impact of the size of monolingual corpora, the size
of the seed lexicon is not proportionate to increase in accu-
racy. More seed lexicon pairs do not mean higher accuracy;
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Figure 3: Learning curves over varying En-De lexicon
sizes. MWE:s are learned by word2vec Skip-gram.
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they can even be detrimental.

With the different sizes of the seed lexicon shown in Figure
following the standard 80-20 ratio (80 train-20 test), the
test data for the large En-De data in Section [3.3]is ignored
from the 4,000 down to 1,000 lexicon size. For the 4,000
lexicon size, for example, the first 4,000 pairs from the lex-
icon are used as seed lexicon, and the next 800 are used as
test set. The excess pairs are ignored.

As shown in Figure [3] learning peaked at 3K lexicon size
and dropped thereafter, with at least 11 percent loss in ac-
curacy in datasets 6M to 104M. Between 4K and 5K lexi-
con size, accuracy stays almost the same. The same phe-
nomenon was observed by |Vuli¢ and Korhonen (2016).
This, they reckon, is probably due to highly frequent words
receiving more accurate representations (seed lexicon con-
sists of 5,000 most frequent words with translation). The
2,000 additional less frequent words, therefore, could just
be additional noise. From our dataset, it is hard to deter-
mine if and how much of the seed lexicon consists of fre-
quent words since the seed lexicon is taken from a different
dataset used by|Braune et al. (2018)). We refer the interested
reader to (Lubin et al., 2019), who proposed a joint model
for detecting noise in the seed lexicon while learning the
mapping and showed improved BLI performance.

4.2.3. Translation Examples

Many induced top-1 German translations, as shown in Ta-
ble[d} are semantically similar or synonymous to the words
in the gold standard set. Since these are not counted as
matches, the actual accuracy of the model can be higher
than the calculated performance.

4.2.4. Impact of Dimensionality

Although not as significant as the impact of the seed lexicon
size, it can also be noted that the effect of dimensionality in
the performance of word2vec and fastText Skip-gram is the
opposite (Figure ). As has been shown by previous work
(Mikolov et al., 2013b), word2vec’s accuracy decreases as
the dimensions get smaller. In this paper’s experiment, fast-
Text, though still at least 10 percent behind word2vec, per-
forms better with the decrease in dimensionality. The im-
provement is only 2 percent (at best) though. From 200 to
100 dimensions, word2vec loses around 4 percent accuracy.

5. Error Analysis
5.1. Pre-processing

The experiments of Mikolov et al. (2013b) involved more
pre-processing steps (e.g., removal of duplicate sentences,
named entities and special characters, rewriting of numeric
values, treating collocations like ice cream as one unit).
Braune et al. (2018) and this paper simply normalized the
monolingual corpora with the Moses tokenizer. As a re-
sult, for example, digits (like years) indeed induce numbers
as translation candidates (which means semantic similarity
is captured) — but they are mostly the wrong numbers, and
therefore are not counted as matches, decreasing accuracy.

5.2. Lexicon Entries

Upon closer inspection of the seed lexicon, some of the
translation pairs in the En-De lexicon are erroneous, e.g.

—8— w2vec P M
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L
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Figure 4: A comparison of learning curves in varying di-
mensons, trained with fastText Skip-gram and word2vec
Skip-gram. Trained data consists of 51 million tokens of
English and German monolingual corpora.

moon — fliegen (to fly) or colonial — guatemala. Spelling
errors and tokenization errors (like doesn instead of does n
" t) were also retained. Stopwords were also observed in the
En-De lexicon, contributing to the noise in the embeddings.

5.3. Hiligaynon Linguistic Attributes

In creating the English-Hiligaynon lexicon, one difficulty
is the word-word translation. Plurality in Hiligaynon is
formed through particles, e.g. from banana — saging to
bananas — mga saging, from Juan (si Juan) to Juan and
those with him — sanday Juan. Although some nouns still
retain the Spanish convention of ending male or female
nouns with ’0’ or ’a’, e.g. male teacher — maestro or fe-
male teacher — maestra, some nouns are of neuter gender.
To indicate noun in masculine or feminine form, the word
for male or female is added, linked with nga, e.g. son — bata
nga lalaki (literal translation: child that is male), daughter
— bata nga babayi (literal translation: child that is female).
Comparatives are expressed in two words, preceded by the
Spanish mas, e.g. smaller — mas gamay. Reduplication is
applied to intensify, e.g. from many — damo to too many
— damo-damo, or to diminish meaning, e.g. from house —
balay to playhouse — balay-balay. Comparatives, plural and
gender-specific nouns are replaced with their lemma in the
lexicon, e.g. big instead of bigger, child instead of children,
child instead of son or daughter.

Affixes come in different forms: prefix, infix (usually in-
serted after the first consonant of the stem), and suffix. A
stem can be a root or a root with affixation, which means af-
fixed forms can go through further affixation. Hence, some
words consist only of a root while others are complex forms
of a root with affixes (Wolfenden, 1971)).

Variations in orthography also add to the noise. The ’i’
is interchangeable with ’e’ (babaye is the same as babayi),
likewise in the case of 0’ to "u’ (damo is the same as damu),
such that different authors observe different spelling con-
ventions. Further, code-switching between Hiligaynon and
English or between Hiligaynon and Filipino is also preva-
lent in the Hiligaynon corpus, adding more noise to the
data.
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English Word | Induced German Translations Gold Standard Entry
abuses menschenrechtsverletzungen (human rights violations) | missbrauch
recognition akzeptanz (acceptance) annerkennung
spiritual religiosen (religious) geistige

duration laufzeit (runtime) dauer

warning meldung (announcement) warnung

usd euro usd

amounts mengen (quantities) betrige

fears befiirchtungen (apprehensions) dngste

Table 4: Example top-1 translations of English words to German, manually chosen from the results of MWE:s trained with
w2vec Skip-gram. Data consists of 25M tokens and seed lexicon of 3,000 En-De pairs.

6. Conclusion and Future Work

We encourage further research on Hiligaynon by releasing
the English-Hiligaynon lexicon we created for this paper.
Many other languages are still considered low-resource,
and with the growing diversity of languages in digital de-
vices and in the Internet, more research focusing on other
language families with limited data should gain more atten-
tion.

With this work, we provide additional proof that data
scarcity is still a hindrance to training quality MWEs and
consequently, quality BWEs. Because of the data-driven
nature of existing models where the learning curve is
strongly influenced by the number of words of monolin-
gual corpora, there is still a lot to be explored as to what
models, both for monolingual and bilingual word embed-
dings, can overcome the challenge of limited data. There is
of course no one-size-fits-all model for all languages, as ev-
ery language or language family has its own unique syntax
and word concepts.

This paper also reveals that the frequency of the seed lexi-
con does not play a significant role in mining accurate trans-
lations with BLI. Moreover, in searching for ways to reduce
resources while keeping performance on par with previous
work, this paper shows that the seed lexicon, considered in-
expensive as it is in comparison with other BWE models,
can further be minimized — with even better results. With
25 million words of monolingual corpora using only 3,000
seed lexicon, performance of the word2vec Skipgram (29.8
percent) even surpasses results released by previous study
(Braune et al., 2018)) which trained 100-million-word cor-
pora using 5,000 seed lexicon (27.1 percent).

There is still a lot of room for improvement. For instance,
the problem of polysemy should be addressed in MWE
models so that the two or more polysemous senses of a sin-
gle word type are not represented using the same vector.
Another future work is training BWEs with max margin
ranking loss (Lazaridou et al., 2015). As also shown by
Braune et al. (2018), this technique generates better results
than the post-hoc mapping model applied in our experi-
ments. Additionally, Hiligaynon could also benefit from
cross-lingual transfer learning, exploiting high-resource re-
lated languages like Cebuano, Filipino or even Spanish.
Using a simple, inexpensive model, the experiments and
analysis in this paper provide various insights into different
factors affecting performance for mining translation pairs

— from the size of the monolingual corpora, the frequency
and size of the seed lexicon, down to the impact of dimen-
sionality in the performance of word2vec and fastText.
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