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Abstract
We introduce the first attempt at automatic speech recognition (ASR) in Inuktitut, as a representative for polysynthetic, low-resource
languages, like many of the 900 Indigenous languages spoken in the Americas. As most previous work on Inuktitut, we use texts
from parliament proceedings, but in addition we have access to 23 hours of transcribed oral stories. With this corpus, we show that
Inuktitut displays a much higher degree of polysynthesis than other agglutinative languages usually considered in ASR, such as Finnish
or Turkish. Even with a vocabulary of 1.3 million words derived from proceedings and stories, held-out stories have more than 60%
of words out-of-vocabulary. We train bi-directional LSTM acoustic models, then investigate word and subword units, morphemes and
syllables, and a deep neural network that finds word boundaries in subword sequences. We show that acoustic decoding using syllables
marked with word boundary markers results in the lowest word error rate.
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1. Introduction
Inuktitut is one of the 60 Indigenous languages from 12
distinct language families currently spoken in Canada,
and approximately 36,000 people declare Inuktitut as their
mother tongue1. There is a growing interest shown by In-
digenous communities, and federal and provincial govern-
ments, in the development of language technology (Littell
et al., 2018), as it could help revitalize historical recorded
archives, provide language course materials, and create
apps to promote language dissemination among the young.
Inuktitut is described as a highly polysynthetic language:
its words are composed of many morphemes, such that
single words can express what usually requires a whole
sentence in other languages. Polysynthetic languages are
often termed agglutinative when their morphemes have
clear boundaries and thus are easily segmentable (Kla-
vans, 2018). It is not entirely the case in Inuktitut, where
morphemes combine in rich and complex ways that af-
fect their pronunciation, giving rise to a complicated map-
ping between surface segmentation and underlying mor-
phemes (Micher, 2017).
Previous work in speech recognition have investigated sev-
eral polysynthetic agglutinative, resource-rich languages
such as Finnish, Estonian, Turkish, Korean, or Hungar-
ian (Mihajlik et al., 2007) (Kurimo et al., 2007) (Erdoǧan
et al., 2005) (Kwon and Hwang, 1999). Speech recogni-
tion systems usually rely on a large enough word lexicon to
cover most words in an unseen text, as each occurrence of
an out-of-vocabulary word will cause at least one recogni-
tion error. Polysynthetic languages challenge this approach
since they easily generate very large number of distinct
words through combination of morphemes.
Many studies resort to subword units in order to increase
the coverage with a reasonable size subword lexicon. Sev-
eral possible subword units have been studied, includ-
ing syllables (He et al., 2016)(Enarvi et al., 2017)(Smit
et al., 2017), byte-pair encoding (Smit et al., 2017), or

1Statistics Canada, 2016 Census of Population.

graphemes (Mihajlik et al., 2007). Most studies focus on
morphological subword units, using Morfessor (Virpioja et
al., 2013) to automatically generate a morpheme dictionary
that yields a high word coverage, while keeping the total
number of morphemes to a reasonable level. For exam-
ple in (Kurimo et al., 2007), the authors get significant re-
duction in word error rates (WER) for Finnish, Estonian
and Turkish using these morphemes compared to using a
word dictionary. Even in a low-resource situation, simu-
lated using Finnish and Estonian, subword units are advan-
tageous (Kurimo et al., 2017).
Our contributions in this paper are fourfold. First, we use
transcribed oral stories, not just parliament proceedings.
Stories are more diverse than parliament proceedings that
contain lots of repetitive and stereotyped content. Morpho-
logical analysis of oral stories turns out to be more dif-
ficult both for rule-based and automatically trained ana-
lyzers. Second, we show that a highly polysynthetic lan-
guage like Inuktitut is much more challenging for conven-
tional ASR than agglutinative languages usually studied,
with OOV rates at least 4 times larger than Finnish, Esto-
nian and Turkish, for comparable vocabulary sizes. Third,
we set the first published baselines for speech recognition
in Inuktitut, to our knowledge. Fourth, we reformulate the
problem of segmenting subword sequences into words as a
classification problem, and train a deep neural network to
this end.
In the following sections we provide more details about the
data we used, and describe our acoustic model training. We
have also tried Morfessor with Inuktitut to generate mor-
phemes and compared these morphemes with words and
syllables as units for recognition. In syllable recognition,
we tried two different variants to convert decoded syllable
sequences to word sequences. In one variation, we distin-
guish between syllables at the start of word, within word
and at the end of the word in the dictionary. The resulting
language model contains word boundary information. The
decoded sequence of syllables are then converted into word
sequence with the help of the syllables marked with begin



2522

or end of word. Another variation for converting syllable
sequences to word sequences is to train a DNN that takes
syllable sequences as input and generates word boundary
markers (whether the current syllable is at the end of the
word or not). These word boundary markers are then used
to generate word sequences from syllable sequences. We
show that syllables result in the lowest perplexity and also
the lowest word error rate.

2. Acoustic and language model training
data

Inuktitut recordings and transcriptions were provided by
the Pirurvik Centre2. Recordings are stories told by
renowned elders, and they sometimes include singing with-
out instrumental accompaniment. There were 64 tran-
scribed wave files for a total of 25.92 hours of audio and
63419 transcribed words. The recordings contain a total of
15 male and 8 female speakers. One male and one female
speaker (7 files and 7673 words) were used for develop-
ment, and the 57 remaining audio files (with 53299 words)
were used for training. Because the available dataset is so
modest, and has few speakers, we opted for a small devel-
opment set, and no separate test set; this should be taken
into account when interpreting the results presented here.
The Inuktitut text is in syllabics, a writing system where
each consonant-vowel pair is represented by single symbol.
Mappings from syllabics to International Phonetic Alpha-
bet were taken from the Wikipedia Inuktitut pronunciation
key3 with some minor hand corrections.
Possible syllables in Inuktitut are: V, CV and CV+final
consonant, V+final consonant. Total number of syllables
is 2,304. We had to provide special handling for:

• Characters that can be present in borrowed words (b
and H) are mapped to a matching IPA symbol.

• Isolated diacritics, which are not allowed but are found
in practice, are assigned to preceding vowel.

• For syllabics-to-roman conversion, post-processing is
applied to convert roman sequence ’qk’ to ’qq’ (and
the reverse in roman-to-syllabic conversion).

We convert text in syllabics to roman in order to make it
easier to visualize.
For language modeling, we have Nunavut Parliament
Hansards4 for the years 2006–2016, containing 6.7 M
words of text (1.34 M distinct words). We added 53 k words
in our acoustic training set to this data. For a 300 k word
lexicon generated from this combined data, the weighted
out-of-vocabulary (OOV) rate is 61.5% for the text in the
development set, so the coverage is very low. One of the
reasons could be that the contents of parliament proceed-
ings are very different from those of the development set
oral stories. The total breakdown for the total number of
word tokens (words), number of distinct words (vocab),
number of syllable tokens (syll), and number of distinct
syllables (syll voc) for various data partitions is shown in
Table 1.

2https://www.pirurvik.ca/
3https://en.wikipedia.org/wiki/Help:IPA/Inuktitut
4Kindly provided by Marc Tessier from NRC.

Source Words Vocab Syll Syll voc
Hansards, 6.5 M 1.32 M 28.1 M 3633

train

Hansards, 148 k 47.0 k 775 k 2075
dev

Acoust. train 53.3 k 31.9 k 301 k 2009

Acoust. dev 7.6 k 4.90 k 42.7 k 1185

Table 1: Training and development text sources.

3. Experiments with transcribed data
In order to get the lowest possible word error rate (WER),
we tried four different strategies: recognition using a
large word-based dictionary, morpheme-based subword
units generated using Morfessor (Virpioja et al., 2013) and
syllable-based subword units with/without word boundary
markers. For syllables without word boundary marker, we
trained a DNN that provided word markers for syllable se-
quences.

3.1. Training acoustic models
All the above recognition experiments do not affect the
training, since all the above multiple recognition scenarios
use the same set of phonemes. For acoustic training, the
dictionary contains all the words in the acoustic training set
and they are transcribed using an X-SAMPA5 phoneme set.
The acoustic models are trained with roughly 23 hours of
audio in Inuktitut (14 male and 7 female speakers).
Since the Inuktitut training dataset is small, we trained it
together with about 4,000 hours of English audio from Lib-
riSpeech and LDC datasets, including Hub4, RT03, RT04,
Market, WSJ, switchboard and Fisher. The following steps
outline the complete training:

1. Train bi-directional long-short-term-memory deep
neural network (BLSTM) acoustic models using En-
glish + Inuktitut audio. Using Inuktitut audio is impor-
tant as some phones in the Inuktitut dictionary are not
found in the English dictionary. Both the English and
Inuktitut dictionaries use X-SAMPA phones. We use
40-dim MFCC features together with 100 dimensional
i-vectors (Gupta et al., 2014) (Saon et al., 2013) (Se-
nior and Lopez-Moreno, 2014) as input features to the
BLSTM acoustic models. We use the Kaldi toolkit
(Povey et al., 2011) for training the BLSTM acoustic
models.

2. Speed perturb Inuktitut data with speeds of 0.9 and
1.1 (Ko et al., 2015) to generate additional acoustic
data for Inuktitut.

3. Starting with models trained in the previous step, train
new BLSTM models with just the Inuktitut speed per-
turbed data for 6 epochs (adapt to Inuktitut data).

4. Create a new alignment with models trained in the pre-
vious step, then train new BLSTM models with just

5https://fr.wikipedia.org/wiki/X-SAMPA
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the Inuktitut speed perturbed data for 6 more epochs
(2nd adaptation).

5. There were two files in the Inuktitut training set that
did not align, so we assumed that there was something
wrong in the transcript. So we purified the two tran-
scripts (Manohar et al., 2017) by generating another
transcript through recognition, then comparing the two
transcripts, and only using segments of the transcripts
that match well. Using these two audio files with the
purified transcripts and doing another adaptation iter-
ation (6 epochs) with speed perturbed Inuktitut data
reduced the WER by a small margin. The resulting
models are the final BLSTM models we used for all
the recognition experiments.

We also tried TDNN-F models, but we got significantly
worse results (20% relative degradation of WER), which
is consistent with what we observed on another Indigenous
language Cree.

3.2. Word-based lexicon
The language model and the lexicon were created from 6.7
million words of Nunavut Hansards and from 51.2 k words
of acoustic training text. The 6.7 M words of Nunavut
Hansards text was divided into 6.5M for training and 148 k
for validation (lm dev). The Nunavut Hansards training text
together with the acoustic training text have a total of 1.3 M
distinct words.
Figure 1 shows the out-of-vocabulary rate (weighted by
word frequency) on held-out development text from the
acoustic (ac dev) and Hansards (lm dev) sources. Al-
though the Hansards rate goes below 20% for vocabulary
size greater than 300 k words, the acoustic development
set rate stays above 60% even when all words found in
Hansards and acoustic training sets are combined in a 1.3
M word vocabulary. Not surprisingly, a 4-gram language
model trained on the Hansards has a perplexity of 252 on
the Hansards development set but 32,000 on the oral stories
development set.
In contrast a 69 k word lexicon in Finnish has an OOV (out-
of-vocabulary) rate of 15%, a 60 k word lexicon in Estonian
has an OOV rate of 10% and a 50 k word lexicon in Turkish
has an OOV rate of 9% (Kurimo et al., 2007). So at more
than 60% OOV, a lexicon of 70 k words in Inuktitut has
more than 4 times the OOV rate of these languages.
The selected vocabulary for Inuktitut contains the most fre-
quent 100 k words from language model training set (or
equivalently all words that appear at least 3 times) plus all
the words in acoustic training, for a total of 129,330 dis-
tinct words. This vocabulary has a weighted OOV rate of
62.6% on acoustic development set and 26.3% on LM de-
velopment set.
Since the OOV rate is very high, perplexity depends very
much on how you treat the OOV words. With a single
placeholder word for all OOV words, the acoustic dev set
perplexity is around 99. But this figure is misleading, since
it only tells how easy it is to predict that a word is out-of-
vocabulary. During recognition only in-vocabulary words
can be considered, so a more realistic perplexity measure is

Figure 1: Inuktitut words out-of-vocabulary rate as a func-
tion of vocabulary size.

obtained by ignoring OOV words, and that value is around
11,000.
We interpolate between a language model trained on the
LM training set and a language model trained on the acous-
tic training set, optimizing the weight of the language
model trained on acoustic training set for best perplexity
(of the interpolated language model) on the acoustic devel-
opment set. The best interpolated model (with a weight of
0.25 on the LM trained on the acoustic training set) has a
perplexity of 1251, ignoring OOV words. Both 3-gram and
4-gram LM have very similar perplexities (1250.86 for 3-
grams, 1250.9 for 4-grams).
Despite the low coverage of words in the acoustic devel-
opment set, we did speech recognition using the lexicon
of 129 k words in order to compare with alternative strate-
gies. With our best acoustic models, the word error rate
(WER) we achieve on the dev set is 108.7%. There are
a total of 7,673 words in the dev set and the error break-
down is as follows: 2,470 insertions, 108 deletions, and
5,762 substitutions. Since 4,803 words are OOV, at best the
recognizer could have recognized 2,870 words. So the per-
centage correct for these words is (7673-5762-108)/2870 or
62.8%. The large insertion rate is due to many long words
broken down into shorter words. It is probably easier to
match the sequence of syllables using shorter words than
longer words.

3.3. Morpheme subword units
Most previous work on agglutinative languages have shown
that morpheme-based subword units can provide significant
reduction in word error rate (Kurimo et al., 2017)(Mihaj-
lik et al., 2007)(Erdoǧan et al., 2005). We used Morfes-
sor (Virpioja et al., 2013) to derive a set of morpheme-like
units that provide good coverage of Inuktitut text. A Mor-
fessor model can be trained in an unsupervised way, from
unannotated raw text, or semi-supervised if reference mor-
phemes are available for part of the words in the training
set.
To provide reference morphemes for supervision and for
measuring Morfessor model accuracy, we use the rule-
based morphological analyzer Uqailaut6, a well-known

6Freely available on www.inuktitutcomputing.ca/Uqailaut
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computational model of the rich morphology of Inukti-
tut, developed at the National Research Council of Canada
by Benoı̂t Farley using Nunavut Hansards available prior
to 2014. It finds at least one decomposition for around
65% (Nicholson et al., 2012) to 70% (Micher, 2017) of
the vocabulary in the Nunavut Hansards. Recent work uses
recurrent neural networks to extend the coverage (Micher,
2018).
In our case, Uqailaut was able to successfully decompose
only 46% of the word vocabulary found in the Hansards
training set of 6.5 M words from Table 1, possibly be-
cause it contains text posterior to Uqailaut development.
However, Uqailaut found a decomposition for only 23% of
the vocabulary from the acoustic training set, showing how
much words in oral stories differ from words in parliament
proceedings.
We used Uqailaut surface form decompositions of the
acoustic development set as the reference analysis. For
each word, we check if the Morfessor decomposition
is amongst one of the possible Uqailaut decompositions
(when a decomposition exists), and express the accuracy as
the number of words with a correct decomposition, relative
to number of reference words that have a decomposition.
We tried combining the acoustic training text with various
amounts of Hansards text for training Morfessor models.
The best unsupervised model was obtained with 53 k words
from acoustic training and 515 k words from Hansards,
and its accuracy was 41% on the held-out acoustic devel-
opment set. Semi-supervised training of Morfessor models
improves the accuracy to 61%, using a mix of 53 k words
from acoustic training and 109 k words from Hansards.
We use the surface segmentation provided by the trained
Morfessor model, and add word begin and end markers B
and E to morphemes to get morpheme subword units with
word boundary markers.
The vocabulary is selected to contain morpheme units from
LM training set that appear at least 3 times, plus all the
morphemes in the acoustic training set, for a total of 35,057
distinct morphemes in the unsupervised training case, and
23,159 in the semisupervised case, as shown in Table 2.
This vocabulary has a weighted OOV rate of 0.83% on
acoustic development set for unsupervised morphemes, and
0.40% for the semisupervised ones.
LMs were trained on the LM training set which contains
14.7 M morpheme tokens, and the acoustic training set
which contains 127 K morpheme tokens. They were in-
terpolated with a weight of 0.25 for the acoustic training
set (which provided the best development set perplexity).
The morpheme units LM models selected for recognition
are the interpolated 4-grams, with probabilities renormal-
ized after removing the OOV placeholder. Their perplexi-
ties on the acoustic development set are shown in Table 2.
Perplexity is usually reported as word perplexity, and con-
sidering each subword unit (morphemes here) as a word
yields a unit-based perplexity (U-ppl) shown in Table 2.
However, this measure is not comparable across different
subword units, with varying vocabulary sizes and token
lengths. Here we also use character-based perplexity (C-
ppl), based on counting roman characters rather than words
or units. It is directly related to the bits-per-character mea-

Model Voc U-ppl C-ppl OOV
Unsupervised 35,057 2212 4.312 0.83%

Semisupervised 23,159 778 4.312 0.40%

Table 2: Morpheme unit language models evaluated on
acoust dev set. U-ppl is unit-based perplexity (morphemes
here), C-ppl is character-based perplexity.

sure (Narasimhan et al., 2015), and is less dependent on the
subword inventory.
We used morpheme units and 4-gram LMs to recognize
the Inuktitut development set. Note that the morphemes
are augmented with word markers so that the sequence
of decoded morphemes can be combined into a sequence
of words. Unsupervised morphemes result in a WER
of 80.7%, and semisupervised morphemes in a WER of
79.4%.

3.4. Syllable subword units
Although perplexity (U-ppl) figures for morphemes cannot
be directly compared with perplexity for words, they still
look large for an inventory of a few tens of thousand units.
As an alternative, we tried syllables as units. Syllable units
are based on actual syllables and are different from syllabic
characters. The following is an example of 3 sentences de-
composed into syllable units (sentence breaks are not real-
istic but were added for illustration). Note that B and E
are added to syllable begin or end to represent start or end
of word:

taanna maligaksaq kiinaujait atuqtuksat
akitujuqturutiksait
maligaq pingajuannik uqalimaaqtauqullugu

<s> B_taan na_E B_ma li gak saq_E
B_kii na u ja it_E B_a tuq tuk sat_E </s>
<s> B_a ki tu juq tu ru tik sa it_E </s>
<s> B_ma li gaq_E B_pi nga ju an nik_E
B_u qa li maaq ta u qul lu gu_E </s>

The number of such units in the Hansards and acoustic data
is shown in Table 1, 4th and 5th columns. The follow-
ing Table 3 gives perplexities on the acoustic development
set of various syllable unit language models. OOV rate is
0.1%. All the LMs are interpolation of an LM trained on
the Hansards and one trained on the acoustic training set
text. For reference, we also give perplexities for byte-pair
encodings (BPE) (Sennrich et al., 2015) and SentencePiece
units (Kudo and Richardson, 2018), trained on same texts
as syllables units, and both with a vocabulary of 3,000 units.
So it turns out that we can get lower perplexity with sylla-
bles than with words or morphemes. Also, the number of
syllables are much smaller than the number of morphemes
or words. So the real question is how well can we per-
form with syllable recognition, and how well the syllable
sequences translate into word sequences.

3.5. Subword sequence segmentation
There are two ways we can do word recognition for Inuk-
titut using syllables. One is to use word boundary markers
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Model Order U-ppl C-ppl
Syll. B E marks 4-gram 31.0 4.093
Syll. no marks 4-gram 31.6 4.132
BPE 4-gram 72.5 4.083
SentencePiece 4-gram 37.1 4.038

Syll. B E marks 5-gram 30.8 4.085
Syll. no marks 5-gram 31.4 4.120
BPE 5-gram 72.1 4.075
SentencePiece 5-gram 36.6 4.018

Table 3: Interpolated language model perplexities for vari-
ous subword units.

(B and E) to represent begin and end of syllables, and just
as in the case of morphemes, these markers will mark the
word boundaries during decoding. We generated the syl-
labic dictionary from the LM training and acoustic training
set to represent the most frequent syllables. The dictionary
has a total of 3,158 syllables, and the syllable OOV rate
for the dev set is only 0.1%. With our best acoustic mod-
els, the word error rate (note that syllables have word end
markers) is 74.3%. The corresponding syllable error rate is
34.9%. Out of 44,747 syllables, there are 481 insertions,
5,109 deletions and 9,737 substitutions. So percent correct
syllables is (44747-5109-9737)/44747 or 66.8%.
Another way of converting syllable sequences to word se-
quences is to recognize syllables without word boundary
markers, and then use a DNN to mark the word bound-
aries based on syllable sequences input to the DNN. In
other words, we train a DNN that outputs word boundary
markers. In an oracle experiment using the reference sylla-
ble labels, we found that if the DNN was able to perfectly
identify word boundaries, word error rate would drop to
70.4%. The input to the DNN are syllables and the output
is a marker that tells whether the input syllable corresponds
to last syllable in the word or not. We trained two different
DNNs: one DNN is bidirectional LSTM (BLSTM), and the
other one is a simple feedforward neural net.
The BLSTM has only one syllable as input and two soft-
max outputs (0 = no word boundary, 1 = word boundary).
The BLSTM has two layers with cell dimension of 512
and recurrent projection dimension of 128. The BLSTM
is trained with the syllable sequences from the Nunavut
Hansards training text and from the acoustic training text.
The input to the BLSTM is a one hot vector corresponding
to the syllable. The best result we obtained with BLSTM
model is a WER of 80.16% after training for 6 epochs.
We also experimented with simple feed forward neural net
with 5 hidden layers. Each hidden layer has 250 out-
puts that go into a p-norm component (Zhang et al., 2014)
(p = 2). Each p-norm component has 50 outputs. The final
layer is a sigmoid with 2 outputs. We varied the number of
syllables input to this DNN from +/- 4 syllables to +/- 10
syllables. Each syllable is input as a one hot vector. Re-
sults are shown in Table 4. The best results are with +/- 5
syllables as input, but all the results are quite close.
The above results are comparable since we used the same
syllable sequence to transform to word sequence. Since the

Model size Input syllables % WER
100/20 +/- 4 76.5
250/50 +/- 5 76.3
250/50 +/- 6 76.6
250/50 +/- 7 76.5
100/20 +/- 5 76.6
250/50 +/- 10 77.0

Table 4: % WER with varying number of syllables as input
to the feed forward DNN.

input is the same, we added the posterior log likelihoods to
see if we can reduce WER by averaging the log likelihoods.
When we add the posterior log likelihoods of many DNNs
including the LSTM, the best result we get is 75.6% WER,
so the WER does go down by 0.9% absolute.
In the above scenario, we are training the DNN with correct
syllable sequences to label syllables with word boundary.
So the DNN only sees the correct syllable sequences dur-
ing training. However, when we label decoded syllable se-
quences, the sequences have many insertions and deletions
which were not seen in training. In order to compensate
for that, we recognized the acoustic training set, aligned
the resulting syllable sequences with the reference syllable
sequences, and marked the recognized syllable as a word
boundary or not based on the reference syllable marker. We
then used this recognized and marked syllable sequence to
train the DNN further for a few iterations with small learn-
ing rate. The resulting DNN reduced WER from 76.3% to
76.1%. The effect is small because the acoustic training set
is small.
Marking word boundaries by using syllables with word
boundary markers during decoding gives lower WER than
marking word boundary by using a DNN as in the previous
two paragraphs. Another thing we can try is to input the
word boundary marker information from decoded syllable
sequence that uses syllables with word boundary marks, to
the DNN trained without any syllable markers. So the ad-
ditional input is 0 or 1 based on whether the central syllable
is a word boundary or not. This should give additional in-
formation to the DNN whether the syllable is a likely word
boundary or not. However, the training set is significantly
reduced since the number of syllables in the LM training set
(from Hansards) is much larger than in the acoustic train-
ing set. Probably due to this reason, the WER gets worse
(79.5%). The problem with using acoustic cues for word
boundary detection is that the acoustic cues have to be de-
rived from the acoustic training set, and we have a severly
limited acoustic training set currently.
Table 5 summarizes our WER results for the various sub-
word units. The 4-gram syllable language model obtains
an actual WER of 74.3%, compared to 70.3% with ora-
cle word boundaries, while using word boundaries from the
DNN yield a 75.6% WER (last line). So why does 4-gram
syllable language model work so well (there is only 3.9%
absolute difference between oracle and actual WER), and
why doesn’t the DNN give better word boundary detection
than the 4-gram LM? The syllable unit dictionary and the
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Units N. of units OOV rate WER
Words 129 k 62.6% 108.7%

Unsup. morph. 35.1 k 0.8% 80.7%
Semisup. morph. 23.2 k 0.4% 79.4%

Syll. + B , E 3.2 k 0.1% 74.3%
Syll. + DNN bound. 3.2 k 0.1% 75.6%

Table 5: Summary of weighted OOV rate and WER on the
development set, for various subword units.

4-gram language model are created from 6.5 million words
from Hansard and 53k words from acoustic training set. Ta-
ble 6 shows part of this syllable dictionary. The syllables
are shown in roman characters. Note that syllable aaj can
only be in the beginning or middle of the word, syllable
kaal can be in begin, middle or end of the word, while syl-
lable aak can even be a single word. The limited set of
possible syllable positions, together with the 4-gram lan-
guage model, impose strong syllabic constraints and yield
correct word boundary markers after decoding. The low
development set perplexity and OOV means that these syl-
labic constraints are equally valid for the development set.
They may also be independent of the context, for example
parliament proceedings versus stories. So syllables seem to
be good subword units for language modeling and decod-
ing for Inuktitut, since a strong LM would provide fairly
accurate word boundary markers.

Syllable Pronunciation
B aaj a: j

aaj a: j

B kaal k a: l
kaal k a: l

kaal E k a: l

B aak a: k
aak a: k

aak E a: k
B aak E a: k

Table 6: Some dictionary entries for syllables.

So why word markers using DNNs do not give better re-
sults than the 4-gram LM? The reason seems quite simple.
The 4-gram LM is used jointly with acoustic model for de-
coding, whereas the DNN takes the best syllable sequence
from 4-gram LM decoding and looks for word boundary
marks. We need to jointly decode a DNN-based LM with
the acoustic model in order to take advantage of the bet-
ter prediction capability of DNN models. Usually what is
done is to generate multiple choices from an N-gram LM
and then to rescore with a recursive DNN-based LM. This
modification should give us better results.

4. Conclusion
In this work, we used transcribed Inuktitut oral stories in
addition to parliament proceedings, in contrast to most pre-
vious work. We found that the existing rule-based analyzer

can decompose only a small fraction of the words in these
stories, and that a trained Morfessor model can predict mor-
phemes with at most 60% accuracy.
We also found that Inuktitut’s highly polysynthetic mor-
phology is a tough challenge for conventional word-based
approaches. The out-of-vocabulary (OOV) rate is more
than four times higher than that of other, previously stud-
ied agglutinative languages, for a similar large vocabulary
size. For that reason, the word error rate (WER) with a
word-based dictionary is over 100%. On the development
set, over 62% words were OOV, and out of the remaining
words, the correct recognition rate was 63%. Long OOV
words were transcribed as a sequence of short words result-
ing in significant insertion rate.
We tried two sub-word units in order to reduce WER. One
subword unit is morphemes. We used Morfessor to gen-
erate an optimized list of morphemes. Using these mor-
phemes we were able to reduce the WER to 79.4%.
Another sub-word unit we tried are syllables. Compared to
morphemes, the syllables significantly reduced the size of
the dictionary from 23.2 k morphemes to less than 3,600
syllables. Also the perplexity went down from 778 to less
than 40. The WER goes down from 79.4% to 74.3%.
We also tried different ways of associating word bound-
aries with a sequence of syllables. In one case the begin or
end of word is associated with the syllable itself, so the de-
coded syllable sequence contains word boundary markers.
This method gave 74.3% WER, while training a DNN to
find word boundaries in a sequence of syllables gave 75.6%
WER. We tried to associate acoustic cues with syllables to
improve word boundary detection, but the results are poor
because the acoustic data is much smaller than the language
modeling data.
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