
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 2424–2430
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

2424

GM-RKB WikiText Error Correction Task and Baselines

Gabor Melli, Abdelrhman Eldallal, Bassim Lazem, Olga Moreira
gmelli@acm.org, abdelrhman.d@aucegypt.edu, lazem@live.com, olga.moreira@gmail.com

Abstract
We introduce the GM-RKB WikiText Error Correction Task for the automatic detection and correction of typographical errors in
WikiText annotated pages. The included corpus is based on a snapshot of the GM-RKB domain-specific semantic wiki consisting of
a large collection of concepts, personages, and publications primary centered on data mining and machine learning research topics.
Numerous Wikipedia pages were also included as additional training data in the task’s evaluation process. The corpus was then
automatically updated to synthetically include realistic errors to produce a training and evaluation ground truth comparison. We designed
and evaluated two supervised baseline WikiFixer error correction methods: (1) a naive approach based on a maximum likelihood
character-level language model; (2) and an advanced model based on a sequence-to-sequence (seq2seq) neural network architecture.
Both error correction models operated at a character level. When compared against an off-the-shelf word-level spell checker these
methods showed a significant improvement in the task’s performance – with the seq2seq-based model correcting a higher number of
errors than it introduced. Finally, we published our data and code at https://github.com/GM-RKB/LREC-2020.

Keywords: Wiki Text, Typographical Error Correction, Character-level Language Models, seq2seq-based Error Correction

1. Introduction
Wikis are one of the most popular resources for online col-
laboration and knowledge exchange on which users can
write and edit content directly through a web browser. Be-
cause wiki software engines are easy to use and deploy, they
have become the natural choice for creating and growing
a large number of modern knowledge bases, dictionaries,
academic libraries, and encyclopedias. Mediawiki, the wiki
engine that runs the well-known Wikipedia (Junghans et al.,
2008; Krötzsch et al., 2006), for instance, currently powers
a multitude of interactive websites including the online se-
mantic wiki that this paper is focused on, the GM-RKB 1.
Similar to the creation of websites in the early days of the
Web; when websites content was crafted with HTML code
by hand than transformed by a browser rendering engine
into web pages, wikis content is created using WikiText
(Dohrn and Riehle, 2011) written and edited predominantly
by humans then parsed and rendered by a wiki engine
(Dohrn and Riehle, 2011; Junghans et al., 2008). WikiText
is a simplified markup language that facilitates annotation
of text documents. To create an internal link between anno-
tated words (concept mentions) and a target wiki pages in
Mediawiki markup, the editor simply needs to use double
square brackets (“[[” and “]]”). For instance, the following
wikitext:

“A [[Character-Level Seq2Seq Training
Algorithm|character-level seq2seq
algorithm]] is a [[seq2seq algorithm]]
that is a [[character-level NNet
algorithm]].”

will be displayed as “A character-level seq2seq algorithm
is a seq2seq algorithm that is a character-level NNet algo-
rithm” and link the concept mentions to the corresponding
wiki entries.

1http://GM-RKB.com

GM-RKB is a semi-structured, domain-specific, and
linguistically-rich online semantic wiki primarily focused
on describing concepts, researchers, and methodologies re-
ported in scientific literature on machine learning, data min-
ing, statistics, mathematics, and physics. It systematically
describes concepts related to computing tasks, systems and
algorithms, along with their input/output data type and re-
quirements. GM-RKB concept pages are designed to im-
prove human and machine readability using a controlled
English vocabulary and the structure proposed in (Melli and
McQuinn, 2008).
The text of scientific publications included in the GM-RKB
corpus have been semantically annotated and concept men-
tions linked to their respective wiki entries using Mediawiki
markup language. Up to recently, the GM-RKB text anno-
tation task was performed by 2 main agents:

1. a SDOI system’s mention recognizer that automati-
cally pre-annotated a text input by applying a trained
conditional random field (CRF)-based chunker that
(Melli, 2012);

2. a human editor who reviewed each wiki page to re-
move any WikiText errors and add domain-specific re-
pairs.

Despite WikiText’s intended simplicity, human editors are
prone to introduce typographical mistakes in their annota-
tions resulting in misspelled words and markup language
errors. Since first introduced by Melli (2010), GM-RKB
has grown to a semantic wiki that interlinks over 10,000
domain-specific concepts to a corpus containing over 1,000
publications. Correcting wikitext errors manually without
the aid of automatic procedures was destined to be a labori-
ous and time-consuming task. Developing a wikifixer tool
promised to be not only time-saving but crucial for GM-
RKB’s continuous growth.
We designed and implemented the GM-RKB WikiText Error
Correction (WEC) Task to benchmark systems that attempt
to automatically recognize and repair simple typographi-

https://github.com/GM-RKB/LREC-2020
https://www.gabormelli.com/RKB/Character-Level_Seq2Seq_Training_Algorithm
https://www.gabormelli.com/RKB/seq2seq_algorithm
https://www.gabormelli.com/RKB/character-level_NNet_algorithm
https://www.gabormelli.com/RKB/character-level_NNet_algorithm
http://GM-RKB.com


2425

cal errors in WikiText based on frequent patterns observed
in the corpus. The task consisted in conducting a series
of experiments on benchmark datasets to find the best per-
forming WEC system. We adopted a precision-based per-
formance metric because we were interested in measuring
of the balance between the welcome benefit a WEC system
succeeding in repairing an error correctly against the signif-
icant cost of it introducing an error which requires to be re-
paired manually. We compared the relative performance of
a character MLE Language Model-based and a sequence-
to-sequence (seq2seq) neural network-based WEC, as well
as two spelling error correction systems trained on GM-
RKB and Wikipedia corpora datasets. Because of the dif-
ficulty in logging real wikitext errors introduced by human
editors, we developed a sub-system that artificially can add
human-like editing errors to the original text and convert it
to training data.
The paper is structured as follow as:

• Section 2 provides a brief review of previous related
research and lays down the foundations for the work
presented in this paper;

• Section 3 describes the different stages of our task, as
well as datasets and the precision-based performance
metric used in our evaluation of the selected WEC sys-
tems;

• Section 4 describes the speller checkers, character-
level MLE Language Model-based and seq2seq neural
network-based models;

• Section 5 reports the series of experiments we con-
ducted for evaluation of these WEC systems and re-
spective results;

• Section 6 analyses and discusses our results;

• Section 7 draws conclusions about our findings and
how they contribute to the recent and future develop-
ment of WEC systems.

Our data and code can be found at https://github.com/GM-
RKB/LREC-2020.

2. Related Work
Numerous research studies have been done on typographi-
cal spelling error correction (Mays et al., 1991). The most
classical approach is the manual design of grammar rules
as shown in Mozgovoy (2011). These hand-crafted rules
are created by linguistic experts and used to match text to
spot and correct any error. More advanced techniques are
introduced through the use of machine learning for tack-
ling this task. Mays et al. (1991) presented one of the ear-
liest approaches using language models and by performing
statistical analysis such as maximum likelihood techniques.
These models use an annotated corpus which in turn is used
on the text to automatically detect and correct spelling er-
rors (Soni and Thakur, 2018).
Recently, many studies formulated the task of spelling cor-
rection as machine translation task, where erroneous text is
considered as the source language and the correct text as

the target language. This opens the gate to utilizing more
advanced techniques such as neural networks. Notably
the sequence to sequence encoder-decoder model which is
mainly used for machine translation (Sutskever et al., 2014)
is successfully utilized in several grammatical error correc-
tion tasks (Chollampatt and Ng, 2018). While effective,
this supervised approach requires a large amount of clean
annotated parallel training corpus to yield an adequate per-
formance. That is why the method of augmenting the data
by incorporating synthetic noise has been widely studied
(Etoori et al., 2018).
Although the GM-RKB WEC Task is influenced by the task
of spelling correction, the wiki markup is different from
plain natural language text. The work done in (Junghans
et al., 2008) shows the challenges dealing with such corpus
from processing natural text. Moreover, the semi-structured
nature of the WikiText markup is a fertile ground to uti-
lize natural language processing (NLP) techniques for other
similar tasks. For example, Dang and Ignat (2016) used
deep neural networks for assessing the quality of Wikipedia
articles, whereas Chisholm et al. (2017) used the generative
ability of language modeling combined with the sequence-
to-sequence architecture to generate one-sentence biogra-
phies from Wikipedia text.

3. Task Description

Precision-based Performance Metric

 GM-RKB WEC System's Evaluation

Figure 1: GM-RKB WikiText Error Correction Task

The GM-RKB WEC Task can be divided in 3 main sub-
tasks: (1) the creation and preparation of the training
dataset; (2) the training of WEC models on the datasets;
and (3) the analysis of the relative performance of WEC
systems. Fig. 1 shows a schematic view of our benchmark-
ing process.

3.1. Datasets
The GM-RKB WikiText Error Correction Task focuses on
fixing errors in Wiki pages. In order to help with such task,
we created multiple datasets for both training error-fixing
systems and for evaluating these systems. There are two
main types of datasets. One type is based on snapshot of
GM-RKB and the other type is based on Wikipedia pages.

https://github.com/GM-RKB/LREC-2020
https://github.com/GM-RKB/LREC-2020


2426

Pre-processing and Error Generation
The process of creating a new dataset for the task starts by
parsing the XML file containing Wiki pages. These XML
snapshots contains WikiText source (language markup) and
the metadata of each page. After parsing the original con-
tent of each Wiki page, we start adding noise to the text of
each page which is written in WikiText markup language.
Given the absence of manually corrected examples, we
have created a tool to synthetically introduce errors. Four
types of character-level errors are introduced: “Changed
Character”, “Deleted Character”, “Inserted Character”, and
“Swapped Characters”. When a new character is inserted as
noise, it is selected at random from an ASCII non-numeric
alphabet. Over time this random selection will be adjusted
to better simulate naturally occurring errors.
We created a Python library to automatically parse the
XML Wiki snapshot, extract the needed information and
the original content, as well as add noise to the original
content and store all the data in a ”Parquet” file. These
files became our main data repository. The ”Parquet” file
contains the original content of each page, the version with
noise added, a unique ID number, the size of the page in
number of characters, and a ’k’ value from 0 to 10 to be
used with 10-fold cross validation. The noise can be con-
trolled by multiple variables by indicating the level of total
noise and the ratio of each type of noise added.

GM-RKB Datasets
The main dataset of the task is the GM-RKB Wiki dataset.
It is created using a snapshot of GM-RKB wiki pages in
MediaWiki XML format. The snapshot was extracted in
October 2019. These pages contain predominantly English-
written text in Mediawiki annotation format. The current
version of corpus consists of 106,111 MediaWiki-formatted
pages from the GM-RKB site. It has an average page size
of 976 characters.

Wikipedia Datasets
We used MediaWiki API, a web service that allows us to
download Wikipedia pages as XML files. It provides mul-
tiple actions and filters to allow users to control the con-
tent downloaded. We have created two Wikipedia datasets.
The first dataset is the Wikipedia training dataset contain-
ing a total of 35,000 wiki pages. We run the API to cre-
ate a list of random pages using a special query. We did
not specify any other filters or constraints. The dataset has
an average page size of 7,252 characters and a total size
of 253,835,323 characters. The second Wikipedia dataset
was downloaded for testing purposes. We extracted a list of
5000 random page titles from Wikipedia using the API and
extracted the content of the pages as well. The data set has
an average page size of 6,164 characters, and the total size
of 34,700,225 characters. The two Wikipedia datasets are
different as both were created using two different random
lists of pages.

Datasets Features
GM-RKB and Wikipedia datasets both have English Wiki
pages written in Wiki markup language. They both have
similar annotation syntax, which can mean they have the
same notion of corrected text. On the other hand, they

have different average page size. The Wikipedia dataset has
an average page size of 7,252 characters, while, GM-RKB
dataset has an average page size of 976 characters. Out
of the 10,000 most frequent space-separated texts (words),
only 3,700 are common between the two datasets. These
words are often ordered completely different in the files.

3.2. Evaluation
We considered a special evaluation metric that measures
the changes in text repairs performed on the Wiki pages
by rewarding correctly fixed errors and penalizing system
added errors. Ultimately, the metric should be well-suited
at quantifying the detection of orthographic errors rather
than grammatical errors. It should be able to operate at
the character-level (rather than at a token or word-level)
because errors sometimes include space ’ ’ characters and
newline ’ \n’ characters (”H ere is tw\no errors.”). The
adopted evaluation metric treats the task as a (near-binary)
classification problem. Each character in the WEC system’s
output text is grouped into one of the following five out-
comes:

• True Positive (TP): the source character was an error;
the model correctly fixed it.

• False Positive (FP): although the source character
was not an error; however, the model tried to fix it
introducing a new error instead.

• True Negative (TN): the source character was not an
error; the model correctly disregarded it as an error
and did not try to fix it.

• False Negative (FN): the source character was an er-
ror; however, the model failed to detect it and pro-
cessed the error as the correct character.

• Detected Not-Fixed (DN): the source character was
an error; the model successfully detected the error but
failed to correct it, or used the wrong character to fix
it. (e.g. the correct repair was changing ’a’ to ’b’ but
the model changed ’b’ to ’c’ instead of ’a’).

We focused on only two of the five classes of TPs and FPs.
That is, we focused on the two classes that can help us mea-
sure the model’s precision. The evaluation score is calcu-
lated as follows.

Evaluation Score = 1×TP count−5×FP count (1)

In principle, when training a new model using a labeled
dataset, this metric should reward correctly fixed errors and
penalize incorrectly introduced errors.
We have developed a system to help with the evaluation
process by comparing any two texts and creating logs
representing the differences between the two texts. For
evaluation, we compare the logs representing the differ-
ences between the original and noise text, to the logs
between fixed and noise text . For example, to com-
pare the sentences A Character-Level Seq2Seq
Training Algorithm and A Character-Leel
Seq2Seq Trianing Algorithm where we deleted
one character from the word Level and swapped two



2427

characters in the word Training, the system outputs
following log: [{’type’: delete, ’pos’:
14, ’chars’: [’v’]}, {’type’: swap,
’pos’: 28, ’chars’: [’a’, ’i’]}]. The
type attribute represents the specific of difference in text
files, for example, delete means a character was deleted.
The attribute pos is the new position of a character or
the first character changed in case of swap difference.
The attribute chars is the list of the characters changed,
swapped, deleted, or inserted. We use this model to create
logs between the original text and the noisy text, then
compare these logs to the ones created from comparing text
with noise to fixed ones. These logs allow us to accurately
evaluate and analyze the WEC models.

4. WikiText Repairing Tools
4.1. Spelling Checkers
Although the task of correcting natural language human-
written text is different from that of correcting Wiki pages,
we tested and compared spelling correction tools for per-
formance evaluation purposes. We tested JamSpell, a
Python library that checks and corrects spelling in text, and
Pypyenchant similar spelling tool. JamSepll library has the
full sentence as input and considers the context.

4.2. A Character-level MLE Language
Model-based WikiFixer

WikiFixer is a tool that automatically repairs simple typos
in WikiText based on patterns found in a related corpus.
Currently, this system is focused on solving the GM-RKB
WikiText Error Correction Task. The Character-level MLE
Language Model-based WikiFixer is a data-driven imple-
mentation of this tool that is based on a simple function
based on a character-level language model (in the form of
a lookup table) that predicts the likelihood score for short
sub-strings of characters. Currently, the function is trained
on using the GM-RKB dataset. This statistical approach
assumes that N-gram is a sequence of N characters. The
trained language model can both predict the probability of
certain N-gram appearing in the text or the probability of
certain character appearing after certain N-gram (Norvig,
2007). The MLE WikiFixer uses number of similarity prob-
abilities to detect noise and selects the error correction can-
didates with the highest probability. The model is con-
trolled by setting thresholds for detecting noise and accept-
ing an error correction action. This system is being used
as a baseline for more sophisticated approaches such as the
use of Neural Networks methods. Additional information
of this baseline method can be found in an online document
2.

4.3. A Seq2Seq NNet-based WikiFixer
The final baseline WikiFixer included in this task was
based on the sequence-to-sequence (seq2seq) neural net-
works model which ’translates’ partially noisy sequences
to corrected ones. Our seq2seq model can map a fixed-
length input sequence with a fixed-length output. Input
and output text lengths may differ. We were motivated by

2https://tinyurl.com/mle-wikifixer

the approach proposed by Chollampatt and Ng (2018) for
grammatical error correction, but at the character-level as
described in Weiss (2016). The model consists of 3 main
components: Encoder, Encoder Vector, and Decoder as il-
lustrated in Fig. 2. Encoder is a stack of several recurrent
layers where each accepts a single element of the input se-
quence, collects information for that element, and propa-
gates it forward. In the WikiFixer problem, the input se-
quence is a collection of all characters from the noisy Wiki-
Text. The final hidden state produced from the encoder
component is called Encoder Vector. This vector is con-
structed to represent the information for all input elements
in order to help the decoder make accurate predictions. It
acts as the initial hidden state of the decoder component of
the model. Decoder is a stack of several recurrent layers
where each predicts an output element at a time step. Each
recurrent unit accepts a hidden state from the previous unit,
produces an output as well as its own hidden state. In the
WikiFixer problem, the output sequence is a collection of
all characters of the fixed text. The recurrent units used
are LSTMs. It’s an extension for recurrent neural networks
built to enhance their memory capacity.

5. Experiments
5.1. Description
We conducted several experiments to benchmark the per-
formance of all WikiText repairing tools described in Sec.4.
We trained the MLE Language Model-based WikiFixer on
the GM-RKB dataset and 4 different versions of Seq2Seq
NNet-based WikiFixer. WikiFixer NNet-GM-RKB is a
version trained from scratch using GM-RKB dataset only.
WikiFixer NNet-Wikipedia was trained using Wikipedia
Dataset in similar manner. We adopted a transfer learn-
ing technique to train one of the NNet based WikiFixer
versions. Transfer learning have been used mainly with
Convolutional Neural Networks, where a pre-trained model
with a large dataset is used as initialization for a different
model (Singh and Garzon, 2015). We used the Wikipedia
model as the largest dataset to create a pre-trained model.
We used this model as initialization and retrained the same
network using the GM-RKB dataset. Data Augmentation is
another method that can improve NNet models when there
is insufficient training data available (Singh and Garzon,
2015). We augmented the GM-RKB dataset with 7,000
random wiki pages from Wikipedia. The final WikiFixer
NNet model was trained from scratch using this augmented
dataset. We tested each model using the part of the GM-
RKB dataset that was not included in the training process
of any of the models. We also tested the models using a
large dataset created with 5,000 random Wikipedia pages.
The wiki pages of Wikipedia test set are different from the
pages used in our training process.

5.2. Results
Tab 1 and 2 summarizes the task results. It shows the num-
ber of TPs, FPs and the Eq.1 performances score for all
the WikiText repairing tools described in Sec. 3.1 trained
and tested on GM-RKB and Wikipedia datasets described
in Sec.4

https://tinyurl.com/mle-wikifixer


2428

Y1=X'(t=1) Y2=X'(t=1)X(t=-3) X(t=-2) X(t=-1) X(t=0)

DENSE
units=d_hu

h(t=-3) h(t=-2) h(t=-1) h(t=0)

DENSE
units=1

FLATTEN

at_h (?,e_hu x time_seps)

(?,e_hu) (?,e_hu) (?,e_hu) (?,e_hu)

c(t=-1)
(?,e_hu)

e_hu=num.hidden d_hu=num.hidden

Observed To Predicte

ENCODER DECODER

Figure 2: A Seq2Seq NNet-based WikiFixer Architecture.

Model TP FP Score
JamSpell 18, 324 460, 916 −2, 286, 256
Pyenchant 18, 630 4, 717, 170 −23, 567, 220
WikiFixer MLE 9, 838 449 7, 593
WikiFixer NNet GM-RKB 16, 061 696 12, 581
WikiFixer NNet Wikipedia 8, 678 524 6, 058
Wikifixer NNet Wikipedia pre-trained + GM-RKB 13, 841 490 11, 391
Wikifixer NNet Wikipedia 7,000 pages+GM-RKB 16, 003 652 12, 743

Table 1: GM-RKB Testing Dataset Results

Model TP FP Score
JamSpell 11, 479 312, 809 −1, 552, 566
Pyenchant 9, 656 8, 351, 825 −41, 749, 469
WikiFixer MLE 252 166 −578
WikiFixer NNet GM-RKB 3, 954 287 2, 519
WikiFixer NNet Wikipedia 6, 385 211 5, 330
Wikifixer NNet Wikipedia pre-trained + GM-RKB 3, 284 160 2, 484
Wikifixer NNet Wikipedia 7,000 pages+GM-RKB 6, 056 277 4, 671

Table 2: Wikipedia Testing Dataset Results

6. Discussion and Analysis
A straightforward application of the spell checkers to wiki
markup text introduced a significant number of errors be-
cause these checkers rely on know-words dictionaries as
well as on whitespace-based tokenization. The absence or
addition of whitespaces produced additional nuanced errors
as we demonstrate in the following example:

“<BExample(s):</B>”
⇓

“<B>Example:</B>”

Since the word ”Example” is not separated with white
spaces, the normal spelling checkers cannot correctly tok-
enize and process such text.This is an example of the prob-
lem that would be created in case of the absence of white
spaces. All the errors that were introduced to the wiki text
in the training and testing datasets were created randomly,
in terms of error type and position in the text, and they were

also labeled automatically. We did not control the errors
created to ensure the generality of the model.
Tables 1 and 2 show that spelling correction tools Jamspell,
and Enchant failed to achieve acceptable results for the task.
Although spelling tools had on average the highest rates
of True Positives, they also had the highest rates for False
Positives. This means that they added considerably more
errors than the ones they fixed. They were good at fixing
space-separated text (words), but this was not the goal of
the task. That is why they failed to attain the same perfor-
mance as the baseline WikiFixer MLE model. The score
of both spelling correction tools, when tested with the two
datasets, was negatively large which suggests these intro-
duced more noise to the WikiText data. This result demon-
strates how distinct the task of spelling correction is from
that of fixing noise in Wiki pages.
The following example illustrates the limitation of these
spelling correction tools when dealing with WikiText er-
rors:



2429

Original WikiText:

A [[semantic wiki]]

WikiText After Adding Noise:

A [s[emantic wiki]]

Spelling Tools Correction:

A [s[semantic wiki]]

They often fail to correct the error in the WikiText by swap-
ping ’s’ and ’[’.
The Wikifixer MLE model scored positive when tested on
the GM-RKB datasets, but it dropped to negative values
when tested on the Wikipedia datasets. Nevertheless, it
performed significantly better than spelling correction tools
overall. The MLE model fixed errors more than it added
noise, but not sufficiently high enough to score positive in
case of Wikipedia data. Since MLE is a statistical model,
this proves that GM-RKB pages, although having some sta-
tistical similarities and other similar features, are different
from Wikipedia pages. This means each dataset would
have some unique features as described in Section 3.1.
This means each dataset described in Section 3.1 has some
unique features that need to be captured to develop a good
predictive model.
WikiFixer NNet models performed exceptionally well over-
all, scoring remarkably higher TP than FP instances. The
model trained on GM-RKB performed considerably better
but also produced a higher number of FPs than the Wik-
iFixer MLE model. This was mainly due to overfitting
on the training data. For this same reason, the model’s
performance dropped when tested on Wikipedia datasets
scoring the highest FP number among all the WikiFixer
models. The NNet model trained on Wikipedia datasets
achieved the highest performance score but lower score
on GM-RKB datasets. As in the previous case, the Wik-
iFixer was overfitted on the Wikipedia dataset. When pre-
trained on Wikipedia and retrained on GM-RKB datasets,
the WikiFixer NNet model achieved higher scores than
MLE tested on these two datasets. However, these scores
are still slightly lower compared to the other NNet-based
models. The NNet model trained on GM-RKB datasets
along with 7,000 pages from Wikipedia, scored the highest
when tested on GM-RKB datasets and the second-highest
when tested on the Wikipedia dataset. The 7,000 Wikipedia
pages inclusion solved the overfitting problem during train-
ing. Moreover, the model became more versatile as GM-
RKB and Wikipedia pages have distinct features.

7. Conclusions and Future Work
We benchmarked two baseline models for the detection
and correction of typographical errors in WikiText anno-
tated pages: Seq2Seq NNet-based; and Character-level
MLE Language Model-based WikiFixers, along with Jam-
Spell and Pyenchant spelling checker training on datasets
from Wikipedia and domain-specific GM-RKB corpora.
We artificially added character-level noise to data to sim-
ulated WikiText human-editing errors (Changed Character,

Deleted Character, Inserted Character, and Swapped Char-
acters). To compare the relative performance of each sys-
tem, we adopted a precision-based performance metric that
is essentially a measure of the balance between correctly
detected error repairs (True Positive) and the errors intro-
duced by the system (False Positives).
JamSpell and Pyenchant spelling checkers are inadequate
for correcting text errors at character-level, these performed
equally poorly, introducing significantly more errors than
they fixed. On the contrary, the seq2seq-based neural model
was our best performing WEC system, it proved to be very
effective, correcting significantly more errors than it intro-
duced. As future work, we plan to enhance the realism of
our artificial noise addition method by considering a more
natural distribution based on the input corpus; to explore
other Neural Network-based WEC systems, moving be-
yond character-level to subwords.
Neural network-based models have gained a considerable
amount of attention within the Natural Language Process-
ing (NLP) community recently as they can be trained to
be excellent at detecting and correcting grammatical errors
in written (plain) text documents. We showed in this pa-
per that a Seq2Seq encoder-decoder neural network is able
to efficiently detect and character-level errors in Wikitext,
demonstrating it is possible to translate and extended neu-
ral network-based Grammatical Error Correction systems
to WEC systems.
Wikis creation is becoming the norm for collaborating ex-
change knowledge. We have developed an automatic Wiki-
Text repairing tools that can easily be implemented into a
wiki software engine, the GM-RKB Wikifixer.

8. References
Chisholm, A., Radford, W., and Hachey, B. (2017). Learn-

ing to generate one-sentence biographies from wikidata.
arXiv preprint arXiv:1702.06235.

Chollampatt, S. and Ng, H. T. (2018). A multilayer convo-
lutional encoder-decoder neural network for grammati-
cal error correction. In Thirty-Second AAAI Conference
on Artificial Intelligence.

Dang, Q. V. and Ignat, C.-L. (2016). Quality assessment of
wikipedia articles without feature engineering. In Pro-
ceedings of the 16th ACM/IEEE-CS on Joint Conference
on Digital Libraries, pages 27–30. ACM.

Dohrn, H. and Riehle, D. (2011). Design and implementa-
tion of the sweble wikitext parser: unlocking the struc-
tured data of wikipedia. In Proceedings of the 7th Inter-
national Symposium on Wikis and Open Collaboration,
pages 72–81. ACM.

Etoori, P., Chinnakotla, M., and Mamidi, R. (2018). Auto-
matic spelling correction for resource-scarce languages
using deep learning. In Proceedings of ACL 2018, Stu-
dent Research Workshop, pages 146–152.

Junghans, M., Riehle, D., Gurram, R., Kaiser, M., Lopes,
M., and Yalcinalp, U. (2008). A grammar for standard-
ized wiki markup. In Proceedings of the 4th Interna-
tional Symposium on Wikis, page 21. ACM.

Krötzsch, M., Vrandečić, D., and Völkel, M. (2006). Se-
mantic mediawiki. In International semantic web con-
ference, pages 935–942. Springer.



2430

Mays, E., Damerau, F. J., and Mercer, R. L. (1991). Con-
text based spelling correction. Information Processing &
Management, 27(5):517–522.

Melli, G. and McQuinn, J. (2008). Requirements specifica-
tion using fact-oriented modeling: A case study and gen-
eralization. In OTM Confederated International Confer-
ences” On the Move to Meaningful Internet Systems”,
pages 738–749. Springer.

Melli, G. (2010). Concept mentions within kdd-2009 ab-
stracts (kdd09cma1) linked to a kdd ontology (kddo1).
In LREC.

Melli, G. (2012). Identifying untyped relation mentions in
a corpus given an ontology. In Workshop Proceedings of
TextGraphs-7 on Graph-based Methods for Natural Lan-
guage Processing, pages 30–38. Association for Compu-
tational Linguistics.

Mozgovoy, M. (2011). Dependency-based rules for gram-
mar checking with languagetool. In 2011 Federated
Conference on Computer Science and Information Sys-
tems (FedCSIS), pages 209–212. IEEE.

Norvig, P. (2007). How to write a spelling corrector.
Singh, D. and Garzon, P. (2015). Using convolutional neu-

ral networks and transfer learning to perform yelp restau-
rant photo classification.

Soni, M. and Thakur, J. S. (2018). A systematic review of
automated grammar checking in english language. arXiv
preprint arXiv:1804.00540.

Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence
to sequence learning with neural networks. Advances in
NIPS.

Weiss, T. (2016). Deep spelling - rethinking spelling cor-
rection in the 21st century. In machinelearnings.co post.


	Introduction
	Related Work
	Task Description
	Datasets
	Evaluation

	WikiText Repairing Tools
	Spelling Checkers
	A Character-level MLE Language Model-based WikiFixer
	A Seq2Seq NNet-based WikiFixer

	Experiments
	Description
	Results

	Discussion and Analysis
	Conclusions and Future Work
	References

