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Abstract
The past decade has witnessed the happy marriage between natural language processing (NLP) and the cognitive science of language.
Moreover, given the historical relationship between biological and artificial neural networks, the advent of deep learning has re-sparked
strong interests in the fusion of NLP and the neuroscience of language. Importantly, this inter-fertilization between NLP, on one
hand, and the cognitive (neuro)science of language, on the other, has been driven by the language resources annotated with human
language processing data. However, there remain several limitations with those language resources on annotations, genres, languages,
etc. In this paper, we describe the design of a novel language resource called BCCWJ-EEG, the Balanced Corpus of Contemporary
Written Japanese (BCCWJ) experimentally annotated with human electroencephalography (EEG). Specifically, after extensively
reviewing the language resources currently available in the literature with special focus on eye-tracking and EEG, we summarize
the details concerning (i) participants, (ii) stimuli, (iii) procedure, (iv) data preprocessing, (v) corpus evaluation, (vi) resource re-
lease, and (vii) compilation schedule. In addition, potential applications of BCCWJ-EEG to neuroscience and NLP will also be discussed.
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1. Introduction
The past decade has witnessed the happy marriage between
natural language processing (NLP) and the cognitive sci-
ence of language. For the NLP→ cognitive science direc-
tion, engineering models originally proposed in NLP have
been employed as computational models of human lan-
guage processing and evaluated against human behavioral
data such as self-paced reading (Roark et al., 2009; Frank
et al., 2013) and eye-tracking (Frank and Bod, 2011; Fos-
sum and Levy, 2012). In contrast, for the cognitive science
→ NLP direction, human behavioral data, especially eye-
tracking, have been used to train engineering models and
improve performance in part-of-speech tagging (Barrett et
al., 2016), sentiment analysis (Mishra et al., 2016), named
entity recognition (Hollenstein and Zhang, 2019), and at-
tention in artificial neural networks (Barrett et al., 2018).
Moreover, given the historical relationship between bi-
ological and artificial neural networks (Amari, 1967;
Fukushima, 1980), the advent of deep learning has re-
sparked strong interests in the fusion of NLP and the neu-
roscience of language. For example, neuro-computational
models of human language processing have been con-
structed based on symbolic automata and neural networks
and evaluated against human neural data such as elec-
troencephalography (EEG) (Frank et al., 2015; Brennan
and Hale, 2019), functional resonance magnetic imaging
(fMRI) (Brennan et al., 2016; Henderson et al., 2016),
magnetoencephalography (MEG) (Brennan and Pylkkänen,
2017), and also electrocorticography (ECoG) (Nelson et al.,
2017). In addition, human MEG and ECoG data have been
employed to fine-tune state-of-the-art engineering models
on benchmark tasks (Toneva and Wehbe, 2019) and also
decoded to synthesize intelligible speech potentially appli-
cable to brain-computer interface (BCI) (Anumanchipalli et
al., 2019).

Importantly, this inter-fertilization between NLP and the
cognitive (neuro)science of language has been driven by the
language resources experimentally annotated with human
language processing data and publicly released for cog-
nitive modeling and NLP. However, there remain several
limitations with those language resources currently avail-
able in the literature: (i) annotations, (ii) genres, and (iii)
languages. First, human behavioral and neural data have
been aggregated on unannotated texts, which made it harder
to evaluate higher-order linguistic capacities of computa-
tional models such as syntactic parsing and semantic inter-
pretation beyond lower-order perceptual features. Second,
the currently available language resources have been lim-
ited to one text genre, hence no cross-domain adaptation
to linguistically different text genres. Finally, and relat-
edly, the currently available language resources have been
restricted to European languages (e.g. English), hence no
cross-lingual generalization to typologically different lan-
guages, especially Asian languages (e.g. Japanese).

In this paper, we describe the design of a novel lan-
guage resource called BCCWJ-EEG, the Balanced Corpus
of Contemporary Written Japanese (BCCWJ) experimen-
tally annotated with human electroencephalography (EEG).
BCCWJ-EEG is not only annotated with rich linguistic in-
formation, but also balanced across domains and languages,
bridging the gap in the previous language resources.

This paper is organized as follows. Section 2 extensively
reviews language resources experimentally annotated with
human language processing data and publicly released for
cognitive modeling and NLP. Section 3 describes the design
of BCCWJ-EEG concerning (i) participants, (ii) stimuli,
(iii) procedure, (iv) data preprocessing, (v) corpus evalu-
ation, (vi) resource release, and (vii) compilation schedule.
Section 4 discusses potential applications of BCCWJ-EEG
to neuroscience and NLP, and concludes the paper.
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Language Resource Language Self-Paced Eye-Track EEG fMRI Reference

Dundee Corpus English/ X(10) Kennedy and Pynte (2005)French X(10)
Potsdam Sentence Corpus German X(144) Kliegl et al. (2006)

Natural Stories Corpus English X(19) Futrell et al. (2018)
X(78) Shain et al. (2019)

Ghent Eye-Tracking Corpus English/ X(14) Cop et al. (2017)(GECO) Dutch X(19)

UCL Corpus English X(117) X(43) Frank et al. (2013)
X(24) Frank et al. (2015)

Alice Corpus English X(52) Brennan and Hale (2019)
X(29) Brennan et al. (2016)

Zurich Cognitive Language English X(12) X(12) Hollenstein et al. (2018)Processing Corpus (ZuCo)
BCCWJ-EyeTrack Japanese X(24) X(24) Asahara et al. (2016)
BCCWJ-EEG Japanese X(40) This work

Table 1: Related work. Language resources experimentally annotated with human language processing data and publicly
released for cognitive modeling and NLP. Those language resources are summarized with resource names, target languages,
experimental measures, and bibliographical references, where numbers in parentheses under the experimental measures
(e.g. “(10)”) indicate the numbers of experimental participants.

2. Related Work
This section extensively reviews language resources exper-
imentally annotated with human language processing data
and publicly released for cognitive modeling and NLP.1

Specifically, after surveying the language resources with
special focus on eye-tracking and electroencephalography
(EEG), the Balanced Corpus of Contemporary Written
Japanese (BCCWJ) is introduced in combination with rich
linguistic information already annotated on BCCWJ. Those
language resources are summarized in Table 1.

2.1. Eye-tracking
Dundee Corpus: The Dundee Corpus (Kennedy and
Pynte, 2005) is the famous eye-tracking corpus composed
of 20 English newspaper articles experimentally annotated
with eye-tracking data collected from 10 English and 10
French participants. This corpus has been widely used in
the literature to evaluate computational models of human
language processing (Demberg and Keller, 2008; Mitchell
et al., 2010; Frank and Bod, 2011; Fossum and Levy, 2012).
Potsdam Sentence Corpus: The Potsdam Sentence Cor-
pus (Kliegl et al., 2006) is another famous eye-tracking cor-
pus composed of 144 German independent sentences man-
ually edited to contain low-frequency syntactic construc-
tions and experimentally annotated with eye-tracking data
collected from 222 participants. This corpus was used to
investigate human language processing with dependency
parsing (Boston et al., 2008; Boston et al., 2011).
Natural Stories Corpus: The Natural Stories Corpus
(Futrell et al., 2018) is not the eye-tracking corpus per se
but, like the Potsdam Sentence Corpus (Kliegl et al., 2006),
comprised of 10 English stories manually edited to con-

1See also the comprehensive collection compiled by Nora
Hollenstein at ETH Zurich: https://github.com/
norahollenstein/cognitiveNLP-dataCollection.

tain low-frequency syntactic constructions and experimen-
tally annotated with self-paced reading data collected from
19 participants. This corpus was also annotated with fMRI
data collected from 78 participants (Shain et al., 2019).
Ghent Eye-Tracking Corpus (GECO): The Ghent Eye-
Tracking Corpus (GECO) (Cop et al., 2017) consists of the
English novel The Mysterious Affair at Styles by Agatha
Christie experimentally annotated with eye-tracking data
collected from 14 English native speakers and 19 Dutch-
English bilingual speakers (the half of the novel). This cor-
pus also includes the Dutch counterpart (the other half).

2.2. EEG
UCL Corpus: The UCL Corpus (Frank et al., 2015) is the
EEG corpus composed of 205 English independent sen-
tences experimentally annotated with EEG data collected
from 24 participants. This corpus was also annotated with
eye-tracking data on the same set of 205 sentences col-
lected from 43 participants and self-paced reading data on
the superset of 361 sentences collected from 117 partici-
pants (Frank et al., 2013).
Alice Corpus: The Alice Corpus (Brennan and Hale, 2019)
consists of the first chapter of the English story Alice’s Ad-
ventures in Wonderland read by Kristen McQuillan experi-
mentally annotated with EEG data collected from 52 partic-
ipants. This corpus was also annotated with fMRI data on
the same chapter of the story collected from 29 participants
(Brennan et al., 2016).
Zurich Cognitive Language Processing Corpus (ZuCo):
The Zurich Cognitive Language Processing Corpus (ZuCo)
(Hollenstein et al., 2018) consists of about 1000 English
independent sentences from the Stanford Sentiment Tree-
bank (Socher et al., 2013) and Wikipedia relation extrac-
tion corpus (Culotta et al., 2006) experimentally annotated
with simultaneously recorded EEG and eye-tracking data
collected from 12 participants.

https://github.com/norahollenstein/cognitiveNLP-dataCollection
https://github.com/norahollenstein/cognitiveNLP-dataCollection
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2.3. BCCWJ
BCCWJ: The Balanced Corpus of Contemporary Written
Japanese (BCCWJ) (Maekawa et al., 2014) is the balanced
corpus composed of 100 million Japanese words randomly
sampled from various text genres including books, text-
books, magazines, newspapers, blogs, minutes, newslet-
ters, laws, posts, etc. Importantly, BCCWJ is originally
annotated with rich linguistic information including part-
of-speech, document structure, meta-information, and sub-
sequently expanded with dependency tree structure (Asa-
hara and Matsumoto, 2016), predicate argument structure
(Takeuchi et al., 2015), temporal and event information
(Asahara et al., 2013), syntactic and semantic categories
(Kato et al., 2018), information structure (Miyauchi et al.,
2018), clause classification (Matsumoto et al., 2018), uni-
versal dependencies (Omura and Asahara, 2018), etc.
BCCWJ-EyeTrack: The BCCWJ-EyeTrack (Asahara et
al., 2016) is the eye-tracking corpus, like the Dundee Cor-
pus (Kennedy and Pynte, 2005), composed of 20 Japanese
newspaper articles selected from BCCWJ (Maekawa et al.,
2014) experimentally annotated with eye-tracking and self-
paced reading data collected from 24 participants.
BCCWJ-EEG: The BCCWJ-EEG is the EEG corpus de-
signed in this paper and composed of the same set of 20
Japanese newspaper articles experimentally annotated with
EEG data collected from 40 participants.

3. Design of BCCWJ-EEG

As extensively reviewed in the previous section, the lan-
guage resources annotated with rich linguistic information
and balanced across languages and domains do not exist
in the literature. In order to bridge this gap, this section
describes the design of a novel language resource called
BCCWJ-EEG, the Balanced Corpus of Contemporary Writ-
ten Japanese (BCCWJ) experimentally annotated with hu-
man electroencephalography (EEG). Specifically, the de-
tails concerning (i) participants, (ii) stimuli, (iii) procedure,
(iv) data preprocessing, (v) corpus evaluation, (vi) resource
release, and (vii) compilation schedule will be explained.
The design of BCCWJ-EEG is summarized in Figure 1.

3.1. Participants

The experimental participants are 40 Japanese native speak-
ers recruited from Waseda University and Tsuda University.
All participants are right-handed according to the Edin-
burgh Handedness Inventory (Oldfield, 1971) and with nor-
mal or corrected-to-normal vision. They are asked to pro-
vide written informed consents and paid U5,000 for their
participation. Those participants whose behavioral accu-
racy on comprehension questions is lower than 75% and/or
EEG data is too noisy to be preprocessed offline are ex-
cluded from this language resource.

稼働率は 
“occupancy 

rate is”

当初目標を 
“the original 

goal”

上回り、 

“surpass” 

開業一年間の 
“of the first 
one year”

500 ms 500 ms 500 ms 500 ms 500 ms 500 ms 500 ms

Electroencephalography 
(EEG)

…

Balanced Corpus of 
Contemporary Written 

Japanese (BCCWJ)

40 Japanese native speakers

20 Japanese newspaper articles (selected from BCCWJ) presented segment by segment in RSVP with PsychoPy

EEG data recorded from 32 electrodes with BrainAmp and preprocessed through filtering, epoching, etc. with MNE-Python

Figure 1: Design of BCCWJ-EEG. The experimental participants (i.e. 40 Japanese native speakers) read the experimental
stimuli (i.e. 20 Japanese newspaper articles selected from BCCWJ) presented segment by segment in Rapid Serial Visual
Presentation (RSVP) with PsychoPy (Peirce, 2007; Peirce, 2009), where each segment stays for 500 ms followed by a
blank screen for 500 ms. During stimulus presentation, the EEG data are recorded continuously from 32 electrodes at the
sampling rate of 1000 Hz with BrainAmp Standard (Brain Products GmbH), and preprocessed through filtering, epoching,
averaging, baseline correction, artifact rejection, Independent Component Analysis (ICA), and Fourier transformation with
MNE-Python (Gramfort et al., 2013; Gramfort et al., 2014).
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3.2. Stimuli
As a first approximation, the experimental stimuli are
directly adopted from BCCWJ-EyeTrack (Asahara et
al., 2016), namely 20 Japanese newspaper articles se-
lected from the Balanced Corpus of Contemporary Writ-
ten Japanese (BCCWJ) (Maekawa et al., 2014). Un-
like BCCWJ-EyeTrack where both segmented and unseg-
mented conditions were investigated, those newspaper arti-
cles are all segmented into phrasal units defined as a con-
tent word + functional morphemes (e.g. “the first one year”
+ Genitive, “occupancy rate” + Topic, “the original goal” +
Accusative, as in Figure 1) prescribed by the National Insti-
tute for Japanese Language and Linguistics, and presented
to the participants with mixed orthographies.

3.3. Procedure
The stimuli (20 Japanese newspaper articles) are presented
segment by segment in Rapid Serial Visual Presentation
(RSVP) with PsychoPy (Peirce, 2007; Peirce, 2009), where
each segment stays for 500 ms followed by a blank screen
for 500 ms, and each newspaper article is accompanied by
one comprehension question. During stimulus presenta-
tion, the EEG data is recorded continuously from 32 elec-
trodes at the sampling rate of 1000 Hz with the desig-
nated ground and reference electrodes and the online band-
pass filter at 10-1000 Hz with BrainAmp Standard and
BrainVision Recorder (Brain Products GmbH), where the
impedance of electrodes is kept lower than 20 kΩ. The ex-
periment was conducted in the Center for Corpus Develop-
ment at the National Institute for Japanese Language and
Linguistics, and lasted for approximately 30-40 minutes.

3.4. Data Preprocessing
The recorded EEG data is preprocessed with MNE-Python
(Gramfort et al., 2013; Gramfort et al., 2014). After ex-
cluding bad (flat and random) channels, the EEG data is
low-pass filtered at 40 Hz. Independent component analy-
sis (ICA) is then applied to exclude noise components like
eye blinks. Epochs are defined from -100 to 1000 ms, and
baseline-corrected from -100 to 0 ms, where the epochs be-
yond the absolute threshold (to be determined empirically)
are rejected. The epochs are averaged across the partici-
pants to compute event-related potential (ERP) components
such as left anterior negativity (LAN), N400, and P600. In
addition, the preprocessed EEG data is decomposed into
different frequency bands (Hollenstein et al., 2018): theta
(4-8 Hz), alpha (8.5-13 Hz), beta (13.5-30 Hz), and gamma
(30.5-50 Hz). Therefore, each segment is annotated with
EEG data averaged across participants, electrodes, time
points, and frequency bands, corresponding to designated
ERP components.

3.5. Corpus Evaluation
BCCWJ-EEG will be evaluated through replications of
the previous literature on cognitive modeling. Specifi-
cally, neuro-computational models such as N-gram models,
context-free grammars (CFGs), and recurrent neural net-
works (RNNs) are constructed and evaluated against ERP
components such as ELAN, LAN and N400 (Frank et al.,
2015; Brennan and Hale, 2019).

3.6. Resource Release
Both raw and preprocessed data of BCCWJ-EEG, ex-
cluding 20 Japanese newspaper articles themselves,
will be released in the Brain Imaging Data Structure
(BIDS) format (Pernet et al., 2019) under Creative
Commons Attribution 4.0 International License (CC
BY-NC 4.0: https://creativecommons.org/
licenses/by-nc/4.0/). BCCWJ, including those
20 Japanese newspaper articles, can be purchased through
https://pj.ninjal.ac.jp/corpus_center/
bccwj/en/subscription.html.

3.7. Compilation Schedule
As of March 2020, the EEG data were collected from 12 pi-
lot participants. BCCWJ-EEG is scheduled to be compiled
across three years, following the four milestones below:

• September 2020: Main experiments

• March 2021: Data preprocessing

• September 2021: Corpus evaluation

• March 2022: Resource release

4. Conclusion
In this paper, we have described the design of a novel lan-
guage resource called BCCWJ-EEG, the Balanced Corpus
of Contemporary Written Japanese (BCCWJ) experimen-
tally annotated with human electroencephalography (EEG).
Specifically, we summarized the design issues of BCCWJ-
EEG concerning (i) participants, (ii) stimuli, (iii) proce-
dure, (iv) data preprocessing, (v) corpus evaluation, (vi) re-
source release, and (vii) compilation schedule.
Once BCCWJ-EEG was constructed and released, this
language resource can potentially be applied to both
scientific and engineering purposes. First, BCCWJ-
EEG should have scientific implications for neuroscience,
where neuro-computational models of human language
processing can be evaluated against rich linguistic anno-
tations already available to BCCWJ in order to eluci-
date neuro-computational bases of natural language, as re-
cently initiated in the cognitive computational neuroscience
(Kriegeskorte and Douglas, 2018; Naselaris et al., 2018).
Second, BCCWJ-EEG must also have engineering impli-
cations for NLP, where downstream models of natural lan-
guage processing can be trained robustly across languages
and domains in order to achieve state-of-the-art perfor-
mance on benchmark tasks, as recently practiced in brain-
inspired NLP (Toneva and Wehbe, 2019; Anumanchipalli et
al., 2019). In conclusion, we welcome any suggestions on
BCCWJ-EEG at this design stage and hope this language
resource to be useful for the NLP community in the future.
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