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Abstract
Summarizing data samples by quantitative measures has a long history, with descriptive statistics being a case in point. However, as
natural language processing methods flourish, there are still insufficient characteristic metrics to describe a collection of texts in terms
of the words, sentences, or paragraphs they comprise. In this work, we propose metrics of diversity, density, and homogeneity that
quantitatively measure the dispersion, sparsity, and uniformity of a text collection. We conduct a series of simulations to verify that each
metric holds desired properties and resonates with human intuitions. Experiments on real-world datasets demonstrate that the proposed
characteristic metrics are highly correlated with text classification performance of a renowned model, BERT, which could inspire future

applications.
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1. Introduction

Characteristic metrics are a set of unsupervised measures
that quantitatively describe or summarize the properties of a
data collection. These metrics generally do not use ground-
truth labels and only measure the intrinsic characteristics
of data. The most prominent example is descriptive statis-
tics that summarizes a data collection by a group of un-
supervised measures such as mean or median for central
tendency, variance or minimum-maximum for dispersion,
skewness for symmetry, and kurtosis for heavy-tailed anal-
ysis.

In recent years, text classification, a category of Natural
Language Processing (NLP) tasks, has drawn much at-
tention (Zhang et al., 2015 Joulin et al., 2016; Howard
and Ruder, 2018) for its wide-ranging real-world applica-
tions such as fake news detection (Shu et al., 2017), doc-
ument classification (Yang et al., 2016)), and spoken lan-
guage understanding (SLU) (Gupta et al., 2019a}; |Gupta et
al., 2019b; Zhang et al., 2018)), a core task of conversational
assistants like Amazon Alexa or Google Assistant.
Howeyver, there are still insufficient characteristic metrics to
describe a collection of texts. Unlike numeric or categorical
data, simple descriptive statistics alone such as word counts
and vocabulary size are difficult to capture the syntactic and
semantic properties of a text collection.

In this work, we propose a set of characteristic metrics: di-
versity, density, and homogeneity to quantitatively summa-
rize a collection of texts where the unit of texts could be a
phrase, sentence, or paragraph. A text collection is first
mapped into a high-dimensional embedding space. Our
characteristic metrics are then computed to measure the dis-
persion, sparsity, and uniformity of the distribution. Based
on the choice of embedding methods, these characteristic
metrics can help understand the properties of a text col-
lection from different linguistic perspectives, for example,
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lexical diversity, syntactic variation, and semantic homo-
geneity. Our proposed diversity, density, and homogeneity
metrics extract hard-to-visualize quantitative insight for a
better understanding and comparison between text collec-
tions.

To verify the effectiveness of proposed characteristic met-
rics, we first conduct a series of simulation experiments that
cover various scenarios in two-dimensional as well as high-
dimensional vector spaces. The results show that our pro-
posed quantitative characteristic metrics exhibit several de-
sirable and intuitive properties such as robustness and linear
sensitivity of the diversity metric with respect to random
down-sampling. Besides, we investigate the relationship
between the characteristic metrics and the performance of
a renowned model, BERT (Devlin et al., 2018)), on the text
classification task using two public benchmark datasets.
Our results demonstrate that there are high correlations be-
tween text classification model performance and the char-
acteristic metrics, which shows the efficacy of our proposed
metrics.

2. Related Work

A building block of characteristic metrics for text collec-
tions is the language representation method. A classic way
to represent a sentence or a paragraph is n-gram, with di-
mension equals to the size of vocabulary. More advanced
methods learn a relatively low dimensional latent space
that represents each word or token as a continuous se-
mantic vector such as word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), and fastText (Mikolov et
al., 2017). These methods have been widely adopted with
consistent performance improvements on many NLP tasks.
Also, there has been extensive research on representing a
whole sentence as a vector such as a plain or weighted av-
erage of word vectors (Arora et al., 2016)), skip-thought
vectors (Kiros et al., 2015), and self-attentive sentence en-
coders (Lin et al., 2017)).
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More recently, there is a paradigm shift from non-
contextualized word embeddings to self-supervised lan-
guage model (LM) pretraining. Language encoders are pre-
trained on a large text corpus using a LM-based objective
and then re-used for other NLP tasks in a transfer learn-
ing manner. These methods can produce contextualized
word representations, which have proven to be effective
for significantly improving many NLP tasks. Among the
most popular approaches are ULMFIT (Howard and Ruder,
2018), ELMo (Peters et al., 2018), OpenAl GPT (Radford
et al., 2018), and BERT (Devlin et al., 2018)). In this work,
we adopt BERT, a transformer-based technique for NLP
pretraining, as the backbone to embed a sentence or a para-
graph into a representation vector.

Another stream of related works is the evaluation met-
rics for cluster analysis. = As measuring property or
quality of outputs from a clustering algorithm is dif-
ficult, human judgment with cluster visualization tools
(Kwon et al., 2017; |Kessler, 2017) are often used.
There are unsupervised metrics to measure the quality of
a clustering result such as the Calinski-Harabasz score
(Calinski and Harabasz, 1974)), the Davies-Bouldin index
(Davies and Bouldin, 1979)), and the Silhouette coefficients
(Rousseeuw, 1987). Complementary to these works that
model cross-cluster similarities or relationships, our pro-
posed diversity, density and homogeneity metrics focus on
the characteristics of each single cluster, i.e., intra cluster
rather than inter cluster relationships.

3. Proposed Characteristic Metrics

We introduce our proposed diversity, density, and homo-
geneity metrics with their detailed formulations and key in-
tuitions.

Our first assumption is, for classification, high-quality
training data entail that examples of one class are as differ-
entiable and distinct as possible from another class. From a
fine-grained and intra-class perspective, a robust text cluster
should be diverse in syntax, which is captured by diversity.
And each example should reflect a sufficient signature of
the class to which it belongs, that is, each example is repre-
sentative and contains certain salient features of the class.
We define a density metric to account for this aspect. On
top of that, examples should also be semantically similar
and coherent among each other within a cluster, where ho-
mogeneity comes in play.

The more subtle intuition emerges from the inter-class
viewpoint. When there are two or more class labels in a text
collection, in an ideal scenario, we would expect the ho-
mogeneity to be monotonically decreasing. Potentially, the
diversity is increasing with respect to the number of classes
since text clusters should be as distinct and separate as pos-
sible from one another. If there is a significant ambiguity
between classes, the behavior of the proposed metrics and a
possible new metric as a inter-class confusability measure-
ment remain for future work.

In practice, the input is a collection of texts
{z1,22,...,2m}, where x; is a sequence of tokens
Zi1, T2, ..., Xy denoting a phrase, a sentence, or a para-
graph. An embedding method £ then transforms x; into

a vector £(z;) = e; and the characteristic metrics are
computed with the embedding vectors. For example,

Mdiversity = fdiversity({ela €2, ..y em}) (])

Note that these embedding vectors often lie in a high-
dimensional space, e.g. commonly over 300 dimensions.
This motivates our design of characteristic metrics to be
sensitive to text collections of different properties while be-
ing robust to the curse of dimensionality.

We then assume a set of clusters created over the generated
embedding vectors. In classification tasks, the embeddings
pertaining to members of a class form a cluster, i.e., in a su-
pervised setting. In an unsupervised setting, we may apply
a clustering algorithm to the embeddings. It is worth noting
that, in general, the metrics are independent of the assumed
underlying grouping method.

3.1. Diversity

Embedding vectors of a given group of texts {e1,...,€m}
can be treated as a cluster in the high-dimensional embed-
ding space. We propose a diversity metric to estimate the
cluster’s dispersion or spreadness via a generalized sense of
the radius.

Specifically, if a cluster is distributed as a multi-variate
Gaussian with a diagonal covariance matrix 3, the shape
of an isocontour will be an axis-aligned ellipsoid in R¥.
Such isocontours can be described as:

(x-S (2 —p) = fj @=ml _ 2
- Uj

j=1

where  are all possible points in R on an isocontour, c is
a constant, p is a given mean vector with yi; being the value
along j-th axis, and CTJQ- is the variance of the j-th axis.

We leverage the geometric interpretation of this formula-
tion and treat the square root of variance, i.e., standard de-

viation, , /O'JQ» as the radius r; of the ellipsoid along the j-th

axis. The diversity metric is then defined as the geometric
mean of radii across all axes:

1
Mdiversity = (Tl T2 TH)H
=(/oi ...-\/o%)

where o; is the standard deviation or square root of the vari-
ance along the i-th axis.

In practice, to compute a diversity metric, we first calculate
the standard deviation of embedding vectors along each di-
mension and take the geometric mean of all calculated val-
ues. Note that as the geometric mean acts as a dimension-
ality normalization, it makes the diversity metric work well
in high-dimensional embedding spaces such as BERT.

3

S

H

__ H

- O,
=1
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3.2. Density

Another interesting characteristic is the sparsity of the text
embedding cluster. The density metric is proposed to esti-
mate the number of samples that falls within a unit of vol-
ume in an embedding space.

Following the assumption mentioned above, a straight-
forward definition of the volume can be written as:

(rl....-rH)(\/:%....-\/%)ﬁai, @

up to a constant factor. However, when the dimension goes
higher, this formulation easily produces exploding or van-
ishing density values, i.e., goes to infinity or zero.

To accommodate the impact of high-dimensionality, we im-
pose a dimension normalization. Specifically, we introduce
a notion of effective axes, which assumes most variance
can be explained or captured in a sub-space of a dimension
V'H. We group all the axes in this sub-space together and
compute the geometric mean of their radii as the effective
radius. The dimension-normalized volume is then formu-
lated as:

()
Given a set of embedding vectors {eq, ..., €., }, we define
the density metric as:

m
T
(ILiz; o) VA
In practice, the computed density metric values often follow

a heavy-tailed distribution, thus sometimes its log value is
reported and denoted as density(logscale).

(6)

Mdensity =

3.3. Homogeneity

The homogeneity metric is proposed to summarize the uni-
formity of a cluster distribution. That is, how uniformly
the embedding vectors of the samples in a group of texts
are distributed in the embedding space. We propose to
quantitatively describe homogeneity by building a fully-
connected, edge-weighted network, which can be modeled
by a Markov chain model. A Markov chain’s entropy rate is
calculated and normalized to be in [0, 1] range by dividing
by the entropy’s theoretical upper bound. This output value
is defined as the homogeneity metric detailed as follows:

To construct a fully-connected network from the embed-
ding vectors {ej, ..., e, }, we compute their pairwise dis-
tances as edge weights, an idea similar to AttriRank (Hsu et
al., 2017ﬂ As the Euclidean distance is not a good metric
in high-dimensions, we normalize the distance by adding a

"https://github.com/ntumslab/AttriRank/
blob/master/attrirank.pdf

power log(n_dim). We then define a Markov chain model
with the weight of edge(i, j) being

weight(i,j) = <\/(ei —ej) - (ei — ej)>1og(H) -

and the conditional probability of transition from ¢ to j can
be written as

o weight(i, j)
) = S 8
= 7) > weight (i, k) ®)
All the transition probabilities p(¢ — j) are from the tran-
sition matrix of a Markov chain. An entropy of this Markov

chain can be calculatecﬂ as

entropy = — Y vi - p(i — j)logp(i = j), (9
ij
where v; is the stationary distribution of the Markov chain.
As self-transition probability p(i — ) is always zero be-
cause of zero distance, there are (m — 1) possible destina-
tions and the entropy’s theoretical upper bound becomes

1 1 1
— Z <> . log —— =log(m —1). (10)
—~ \m) m-—1 m—1
1j,i7#]
Our proposed homogeneity metric is then normalized into
[0, 1] as a uniformity measure:

_Zij 143 p(Z _>.7) Ing(Z _>])
log(m — 1)

. (1D

Mhomogeneity =

The intuition is that if some samples are close to each other
but far from all the others, the calculated entropy decreases
to reflect the unbalanced distribution. In contrast, if each
sample can reach other samples within more-or-less the
same distances, the calculated entropy as well as the ho-
mogeneity measure would be high as it implies the samples
could be more uniformly distributed.

4. Simulations

To verify that each proposed characteristic metric holds its
desirable and intuitive properties, we conduct a series of
simulation experiments in 2-dimensional as well as 768-
dimensional spaces. The latter has the same dimensionality
as the output of our chosen embedding method-BERT, in
the following Experiments section.

4.1. Simulation Setup

The base simulation setup is a randomly generated isotropic
Gaussian blob that contains 10,000 data points with the
standard deviation along each axis to be 1.0 and is centered
around the origin. All Gaussian blobs are created using
make_blobs function in the scikit-learn packag
Four simulation scenarios are used to investigate the behav-
ior of our proposed quantitative characteristic metrics:

https://en.wikipedia.org/wiki/Entropy_
rate
Jhttps://scikit-learn.org/stable
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Figure 1: Visualization of the simulations including base setting, down-sampling, varying spreads, adding outliers, and
multiple sub-clusters in 2-dimensional and 768-dimensional spaces.

e Down-sampling: Down-sample the base cluster to be
{90%, 80%, ..., 10%} of its original size. That is, cre-
ate Gaussian blobs with {9000, ..., 1000} data points;

e Varying Spread: Generate Gaussian blobs with stan-
dard deviations of each axis to be {2.0, 3.0, ...,10.0};

e Outliers: Add {50,100, ...,500} outlier data points,
ie., {0.5%,...,5%} of the original cluster size, ran-
domly on the surface with a fixed norm or radius;

e Multiple Sub-clusters: Along the 1th-axis, with
10,000 data points in total, create {1,2,...,10} clus-
ters with equal sample sizes but at increasing distance.

For each scenario, we simulate a cluster and compute
the characteristic metrics in both 2-dimensional and 768-
dimensional spaces. Figure [T] visualizes each scenario
by t-distributed Stochastic Neighbor Embedding (t-SNE)
(Maaten and Hinton, 2008). The 768-dimensional simula-
tions are visualized by down-projecting to 50 dimensions
via Principal Component Analysis (PCA) followed by t-
SNE.

4.2. Simulation Results

Figure2]summarizes calculated diversity metrics in the first
row, density metrics in the second row, and homogeneity
metrics in the third row, for all simulation scenarios.

The diversity metric is robust as its values remain almost
the same to the down-sampling of an input cluster. This
implies the diversity metric has a desirable property that it
is insensitive to the size of inputs. On the other hand, it
shows a linear relationship to varying spreads. It is another
intuitive property for a diversity metric that it grows linearly
with increasing dispersion or variance of input data. With
more outliers or more sub-clusters, the diversity metric can
also reflect the increasing dispersion of cluster distributions
but is less sensitive in high-dimensional spaces.

For the density metrics, it exhibits a linear relationship
to the size of inputs when down-sampling, which is de-
sired. When increasing spreads, the trend of density met-
rics corresponds well with human intuition. Note that the

density metrics decrease at a much faster rate in higher-
dimensional space as log-scale is used in the figure. The
density metrics also drop when adding outliers or having
multiple distant sub-clusters. This makes sense since both
scenarios should increase the dispersion of data and thus
increase our notion of volume as well. In multiple sub-
cluster scenario, the density metric becomes less sensitive
in the higher-dimensional space. The reason could be that
the sub-clusters are distributed only along one axis and thus
have a smaller impact on volume in higher-dimensional
spaces.

As random down-sampling or increasing variance of each
axis should not affect the uniformity of a cluster distribu-
tion, we expect the homogeneity metric remains approxi-
mately the same values. And the proposed homogeneity
metric indeed demonstrates these ideal properties. Inter-
estingly, for outliers, we first saw huge drops of the ho-
mogeneity metric but the values go up again slowly when
more outliers are added. This corresponds well with our
intuitions that a small number of outliers break the unifor-
mity but more outliers should mean an increase of unifor-
mity because the distribution of added outliers themselves
has a high uniformity.

For multiple sub-clusters, as more sub-clusters are pre-
sented, the homogeneity should and does decrease as the
data are less and less uniformly distributed in the space.
To sum up, from all simulations, our proposed diver-
sity, density, and homogeneity metrics indeed capture the
essence or intuition of dispersion, sparsity, and uniformity
in a cluster distribution.

5. Experiments

The two real-world text classification tasks we used for ex-
periments are sentiment analysis and Spoken Language Un-
derstanding (SLU).

5.1. Chosen Embedding Method

BERT is a self-supervised language model pretraining ap-
proach based on the Transformer (Vaswani et al., 2017),
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Figure 2: Diversity, density, and homogeneity metric values in each simulation scenario.

a multi-headed self-attention architecture that can produce
different representation vectors for the same token in vari-
ous sequences, i.e., contextual embeddings.

When pretraining, BERT concatenates two sequences as
input, with special tokens [C'LS], [SEP],[EOS] denot-
ing the start, separation, and end, respectively. BERT is
then pretrained on a large unlabeled corpus with objective-
masked language model (MLM), which randomly masks
out tokens, and the model predicts the masked tokens. The
other classification task is next sentence prediction (NSP).
NSP is to predict whether two sequences follow each other
in the original text or not.

In this work, we use the pretrained BERTgasg which has
12 layers (L), 12 self-attention heads (A), and 768 hid-
den dimension (H) as the language embedding to com-
pute the proposed data metrics. The off-the-shelf pre-
trained BERT is obtained from GluonNLF For each se-
quence z; = (x;1,...,x;) with length [, BERT takes
[CLS), %1, ...z, [FOS] as input and generates embed-
dings {ecrs, €1, ---, €il, epos} at the token level. To ob-
tain the sequence representation, we use a mean pooling
over token embeddings:

(61‘1 + + eil)

l 3
where e; € R, A text collection {1, ...,z }, i.€., a set
of token sequences, is then transformed into a group of H-
dimensional vectors {e1, ..., ey, }.

(12)

€; =

Yhttps://gluon-nlp.mxnet.io/model_zoo/
bert/index.html

We compute each metric as described previously, using
three BERT layers L1, L6, and L12 as the embedding
space, respectively. The calculated metric values are av-
eraged over layers for each class and averaged over classes
weighted by class size as the final value for a dataset.

5.2. Experimental Setup

In the first task, we use the SST-2 (Stanford Sentiment Tree-
bank, version 2) dataset (Socher et al., 2013) to conduct
sentiment analysis experiments. SST-2 is a sentence binary
classification dataset with train/dev/test splits provided and
two types of sentence labels, i.e., positive and negative.
The second task involves two essential problems in SLU,
which are intent classification (IC) and slot labeling (SL).
In IC, the model needs to detect the intention of a text in-
put (i.e., utterance, conveys). For example, for an input of
I want to book a flight to Seattle, the intention is to book
a flight ticket, hence the intent class is bookFlight. In SL,
the model needs to extract the semantic entities that are re-
lated to the intent. From the same example, Seattle is a
slot value related to booking the flight, i.e., the destination.
Here we experiment with the Snips dataset (Coucke et al.,
2018)), which is widely used in SLU research. This dataset
contains test spoken utterances (text) classified into one of
7 intents.

In both tasks, we used the open-sourced GluonNLP BERT
model to perform text classification. For evaluation, senti-
ment analysis is measured in accuracy, whereas IC and SL
are measured in accuracy and F1 score, respectively. BERT
is fine-tuned on train/dev sets and evaluated on test sets.
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Down-Sampling to \ Training Set Size \ Accuracy \ Diversity \ Density \ Homogeneity

100% 67,350 0.9266 0.292 44.487 | 0.928
90% 60,615 0.9323 0.292 44.367 | 0.927
80% 53,880 0.9260 0.292 44224 | 0.927
70% 47,146 0.9266 0.292 44.071 | 0.925
60% 40,411 0.9312 0.292 43.928 | 0.924
50% 33,676 0.9300 0.292 43.672 | 0.922
40% 26,941 0.9243 0.292 43.384 | 0.919
30% 20,206 0.9300 0.292 43.148 | 0917
20% 13,471 0.9174 0.293 42.733 | 0.914
10% 6,736 0.9071 0.294 41.972 | 0.908

Table 1: The experimental results of diversity, density, and homogeneity metrics with classification accuracy on the SST-2

dataset.

Down-Sampling to | Training Set Size | IC Accuracy (%) | SLFI (%) | Diversity [ Density | Homogeneity |

100% 13,084 98.71
90% 11,773 98.57
80% 10,465 99.00
70% 9,157 99.14
60% 7,848 98.71
50% 6,541 98.86
40% 5,231 99.00
30% 3,922 98.57
20% 2,614 96.42
10% 1,306 87.20

96.06 0.215 48.291 | 0.950
95.79 0.215 48.199 | 0.949
95.55 0.215 48.109 | 0.949
95.13 0.215 47.996 | 0.948
95.02 0.215 47.751 | 0.948
94.38 0.215 47.660 | 0.945
94.74 0.214 47.449 | 0.944
93.74 0.215 47.090 | 0.941
92.63 0.214 46.877 | 0.939
89.12 0.214 46.158 | 0.929

Table 2: The experimental results of diversity, density, and homogeneity metrics with intent classification (IC) accuracy
and slot labeling (SL) F1 scores on the Snips dataset. Experimental setup is the same as that in Table[T]

We down-sampled SST-2 and Snips training sets from
100% to 10% with intervals being 10%. BERT’s perfor-
mance is reported for each down-sampled setting in Table
[[and Table 2l We used entire test sets for all model evalu-
ations.

To compare, we compute the proposed data metrics, i.e.,
diversity, density, and homogeneity, on the original and the
down-sampled training sets.

5.3. Experimental Results

We will discuss the three proposed characteristic metrics,
i.e., diversity, density, and homogeneity, and model perfor-
mance scores from down-sampling experiments on the two
public benchmark datasets, in the following subsections:

5.3.1. SST-2

In Table |1} the sentiment classification accuracy is 92.66%
without down-sampling, which is consistent with the re-
ported GluonNLP BERT model performance on SST-2.
It also indicates SST-2 training data are differentiable be-
tween label classes, i.e., from the positive class to the nega-
tive class, which satisfies our assumption for the character-
istic metrics.

Decreasing the training set size does not reduce perfor-
mance until it is randomly down-sampled to only 20% of
the original size. Meanwhile, density and homogeneity

metrics also decrease significantly (highlighted in bold in
Table [T), implying a clear relationship between these met-
rics and model performance.

5.3.2. Snips

In Table 2] the Snips dataset seems to be distinct between
IC/SL classes since the IC accurcy and SL F1 are as high
as 98.71% and 96.06% without down-sampling, respec-
tively. Similar to SST-2, this implies that Snips training
data should also support the inter-class differentiability as-
sumption for our proposed characteristic metrics.

IC accuracy on Snips remains higher than 98% until we
down-sample the training set to 20% of the original size.
In contrast, SL F1 score is more sensitive to the down-
sampling of the training set, as it starts decreasing when
down-sampling. When the training set is only 10% left, SL
F1 score drops to 87.20%.

The diversity metric does not decrease immediately until
the training set equals to or is less than 40% of the origi-
nal set. This implies that random sampling does not impact
the diversity, if the sampling rate is greater than 40%. The
training set is very likely to contain redundant information
in terms of text diversity. This is supported by what we ob-
served as model has consistently high IC/SL performances
between 40%-100% down-sampling ratios.

Moreover, the biggest drop of density and homogeneity
(highlighted in bold in Table [2)) highly correlates with the
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biggest IC/SL drop, at the point the training set size is re-
duced from 20% to 10%. This suggests that our proposed
metrics can be used as a good indicator of model perfor-
mance and for characterizing text datasets.

6. Analysis

We calculate and show in Table[3lthe Pearson’s correlations
between the three proposed characteristic metrics, i.e., di-
versity, density, and homogeneity, and model performance
scores from down-sampling experiments in Table[I|and Ta-
ble[2] Correlations higher than 0.5 are highlighted in bold.
As mentioned before, model performance is highly corre-
lated with density and homogeneity, both are computed on
the train set. Diversity is only correlated with Snips SL F1
score at a moderate level.

Dataset SST-2 | Snips Snips

Task Evaluation Metrics | Acc. IC SL F1
Acc.

Corr. to Diversity 0.196 0.196 0.555

Corr. to Density 0.637 0.637 0.716

Corr. to Homogenity 0.716 0.958 0.983

Table 3: The Pearson’s correlation (Corr) between pro-
posed characteristic metrics (diversity, density, and homo-
geneity) and model accuracy (Acc.) or F1 scores from
down-sampling experiments in Table[T|and Table

These are consistent with our simulation results, which
shows that random sampling of a dataset does not nec-
essarily affect the diversity but can reduce the density
and marginally homogeneity due to the decreasing of data
points in the embedding space. However, the simultaneous
huge drops of model performance, density, and homogene-
ity imply that there is only limited redundancy and more
informative data points are being thrown away when down-
sampling. Moreover, results also suggest that model per-
formance on text classification tasks corresponds not only
with data diversity but also with training data density and
homogeneity as well.

7. Conclusions

In this work, we proposed several characteristic metrics to
describe the diversity, density, and homogeneity of text col-
lections without using any labels. Pre-trained language em-
beddings are used to efficiently characterize text datasets.
Simulation and experiments showed that our intrinsic met-
rics are robust and highly correlated with model perfor-
mance on different text classification tasks. We would like
to apply the diversity, density, and homogeneity metrics for
text data augmentation and selection in a semi-supervised
manner as our future work.
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