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Abstract
A major challenge in modern neural networks is the utilization of previous knowledge for new tasks in an effective manner, otherwise
known as transfer learning. Fine-tuning, the most widely used method for achieving this, suffers from catastrophic forgetting. The
problem is often exacerbated in natural language processing (NLP). In this work, we assess progressive neural networks (PNNs) as an
alternative to fine-tuning. The evaluation is based on common NLP tasks such as sequence labeling and text classification. By gauging
PNNs across a range of architectures, datasets, and tasks, we observe improvements over the baselines throughout all experiments.
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1. Introduction
Transfer learning is the ability of a model to generalize
over previously unseen domains and/or tasks in a compe-
tent manner. The intuition is to re-use previously learned
knowledge effectively when learning new tasks. The
most common approaches to transfer learning include fine-
tuning and multi-task learning (MTL). The former, where
the weights of the already pre-trained layers are re-trained
for a new task, performs well for similar tasks (Min et al.,
2017) but fails to transfer over unrelated tasks (Mou et al.,
2016). The latter adds terms to the objective function for
each new task (Rei, 2017), which means re-training the
whole model from scratch each time a new task is added
(Chen et al., 2017).
A major problem faced by traditional transfer learning ap-
proaches is catastrophic forgetting (French, 1999) – a phe-
nomenon where the model loses performance on previously
learned tasks when trained on a new task. Catastrophic for-
getting is thoroughly documented in artificial neural net-
work literature and a few solutions have been proposed
(Kirkpatrick et al., 2016; Awasthi and Sarawagi, 2019).
The problem is more prevalent in NLP compared to com-
puter vision; the shallow nature of networks used for NLP
has been cited as a possible explanation for this discrepancy
(Howard and Ruder, 2018).
Transfer learning approaches other than fine-tuning and
MTL have also been explored for neural architectures (Ho-
das et al., 2017; Riemer et al., 2017). One such example
- progressive neural networks (PNNs) (Rusu et al., 2016) -
offers a novel solution to catastrophic forgetting. The idea
is to train multiple networks - one for each new domain/task
- that share information learned from previous tasks with
each other through lateral connections. PNNs have gained
popularity and have already been used for transfer learn-
ing in video summarization (Choi et al., 2018) and emotion
recognition (Gideon et al., 2017).
The aim of this work is to evaluate PNNs for transfer learn-
ing in the context of various NLP tasks related to sequence
labeling and text classification (Aggarwal and Zhai, 2012).

Specifically, three tasks are targeted: named entity recogni-
tion (NER), sentiment analysis (SA) and aspect-based sen-
timent analysis (ABSA). We perform a cross-task, cross-
architecture comparison of PNNs with traditional transfer
learning methods. The architectures differ significantly be-
tween these tasks; NER uses bi-directional LSTMs (BiL-
STMs) with no convolutional or attention layers, SA uses
convolutional layers and ABSA uses BiLSTMs with atten-
tion.

2. Background
2.1. Sequence labeling
NER falls under sequence labeling - the task of labeling
each word in a sentence as a category (part of speech, en-
tity etc.) Classically, solutions to NER have taken the form
of Hidden Markov Models (Luo et al., 2015) and Condi-
tional Random Fields (Lafferty et al., 2001; Passos et al.,
2014). More recently, end-to-end neural techniques have
been deployed that do not require task-specific knowledge
(Ma and Hovy, 2016).

2.2. Text classification
Sentiment analysis is the task of classifying text accord-
ing to the sentiment it exhibits. The sentiment labels are
usually positive, negative and neutral. While sentiment
analysis is well-studied in the NLP literature (Dave et al.,
2003; Mäntylä et al., 2016) deep networks have nonethe-
less proved beneficial lately (Dos Santos and Gatti, 2014;
Kim, 2014).
Closely related to sentiment analysis is aspect-based senti-
ment analysis (ABSA), which is more fine-grained. Here,
the task is to find relevant aspects (e.g. product) in the text
and detect their corresponding sentiments. Traditionally,
aspect extraction has been treated as a secondary task for
ABSA and the focus has been to classify the sentiment po-
larities of the aspects
(Schouten and Frasincar, 2015; Lakkaraju et al., 2014).
Recent work, including that of this paper, departs from



1377

output2 output3output1

input

h(2)2 h(3)2h(1)2

h(1)1 h(2)1 h(3)1

a a

a a

Figure 1: A three column progressive network. The first
two columns each are trained on different tasks. The grey
box represents the adapter layers. The third column is
trained on the target task. Taken from (Rusu et al., 2016).

this formulation and treats aspect extraction as part of the
ABSA task (Wojatzki et al., 2017; Schmitt et al., 2018).

2.3. Progressive Neural Networks
(Rusu et al., 2016) proposed progressive neural networks
(PNNs) as a transfer learning technique for both cross-
domain and multi-task purposes – see also (Gupta, 2019).
The authors showed the effectiveness of PNNs on rein-
forcement learning tasks, with the technique demonstrating
superior performance to pre-training and fine-tuning. The
technique consists of adding lateral connections - coming
from networks trained for source tasks - to the network
being trained for the target task. Only the parameters of
the target network are learned while the source weights are
frozen. This ensures the immunity of PNNs to catastrophic
forgetting.
The first part of a PNN is a neural network which is trained
on the source task containingL hidden layers. This is called
the first column with activations denoted as h1i of layer i.
After the training of the first column is finished, a second
so called target column after being initialized randomly is
trained on the target task. The activations h2i of the second
column are calculated based on the activations from the pre-
vious layer of the same column h2i−1 and from the previous
layer of the source column h1i−1. Therefore lateral connec-
tions between the layers of the source and target column
are created. These connections are trained, too, whereas
the weights of the source column are not updated.
The generalized mathematical formulation for multiple
columns is

hki = σ(Uk:j
i σ(V k:j

i α<k
i h<k

i−1) +W k
i h

k
i−1) (1)

where σ is the activation function, K is the number of
columns, U j:k

i is the weight matrix representing the lateral
connections from column j to k, and W k

i is the weight ma-
trix of the ith layer in column kth.
In place of connecting the previous column directly by
multiplying its activations h1i−1 with Uk:j

i , a non-linear
downprojection using matrix V k:j

i is added. This concept,

Figure 2: Model architecture for sentiment analysis (Gupta,
2019). The convolutional layer from the source column is
passed to the first fully-connected layer (FCL) of the target
column. The first FCL is then passed to the second FCL.

termed adapter, enhances the lateral connections and re-
duces the model complexity. The learnable scalar param-
eter αi scales the activations of the source task such that
their order of magnitude fits to the target task.

3. Experiments
3.1. Transfer Learning
For each task mentioned in the paragraphs below, we eval-
uate transfer learning using progressive neural networks as
they have been introduced above. As a baseline to show im-
provements using that technique, an appropriate neural net-
work model is trained on that task. For each task there are
at least two or more domains or sub-datasets given. Trans-
fer learning is evaluated by training on a source domain
and fine-tuning on the respective target domain of the same
task. Therefore we apply normal fine-tuning of all layers
(FT) and progressive neural networks with one (1PNN) and
two (2PNN) source columns.
The latter is only done for the task of named entity recog-
nition (NER), since, as shown in the results section, the
increase in performance is small while the increase of the
model complexity is big. For NER with 1PNN the best per-
forming source column is chosen to be connected laterally
to the target network.
For NER we further investigate the effect of catastrophic
forgetting, i.e., the degradation of the prediction perfor-
mance of a model which is firstly trained on the source
task, then fine-tuned to a target task, and then again eval-
uated on the source task. Due to the fine-tuning on the tar-
get domain, a decrease of prediction accuracies is expected
to happen due to the modification of the network weights.
This is done to shed light upon what happens to the source
networks during training on NLP tasks.

3.2. Named Entity Recognition
Modeling For all evaluations on named entity recogni-
tion (NER), micro F1 score is used as the metric. GloVe
100-D (Pennington et al., 2014) is used for word embed-
dings. We make a slight modification to (Ma and Hovy,
2016)’s architecture, having two LSTM layers instead of
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Figure 3: Model architecture for ABSA (Dugar, 2019).
Green and blue rectangles denote lateral connections of
BiLSTM layers on word and sentence representations. Red
squares represent BiLSTM cells, yellow represent learnable
scalar, purple represent the adapter layers.

the original’s one (Gupta, 2019). The architecture is illus-
trated in illustration 4.
Regarding the data, the experiments for named entity
recognitions are executed on three different publicly avail-
able biomedical datasets as they are provided by (Crichton
et al., 2017).

BC5CDR Dataset The BioCreative V Chemical-Disease
Relation dataset (BC5CDR) is released along with the CDR
task of the BioCreativ V challenge in 2015 (Li et al., 2016).
The overall goal of the challenge is to find relations be-
tween chemicals and their associated diseases. Thus, the
entity classes chemical and disease have been annotated
manually which is the ground truth for NER in our experi-
ments.

NCBI Dataset The NCBI Disease Corpus from 2014
aims at evaluating the task of disease name recognition.
It comes with manual annotations for all mentioned dis-
eases and according classifications based on 793 PubMed
abstracts (Doğan et al., 2014). In our experiments, only the
target entity disease is classified for each word.

JNLPBA Dataset This dataset was published for the
JNLPBA challenge of bio-entity recognition in 2004. The
data is based on the GENIA v3 named entity corpus of
MEDLINE abstracts (Kim et al., 2004). The target classes
in this dataset are DNA, RNA, cell line, cell type, and pro-
tein.

Figure 4: Model architecture for the NER experiments
(Gupta, 2019). For the PNN, the first BiLSTM layer of
the source column is passed to the second RNN layer of
the target column, and the second RNN layer to the fully-
connected layer analogously.

3.3. Sentiment Analysis
Modeling For all the evaluations of sentiment analysis,
accuracy score is used as the evaluation metric. Similar
to NER, the model is based on pre-trained GloVe 100-D
embeddings. The model architecture is inspired by (Kim,
2014) which uses three one dimensional convolutional ker-
nels with varying sizes in the first layer to capture local
features as can be observed in figure 2.

Amazon Dataset As data the Amazon product review
dataset as provided by (Blitzer et al., 2007) is used in the
experiments. For transfer learning, the categories ’kitchen
houseware’ and ’personal healthcare’ are considered. The
annotated sentiment target classes are positive and negative.

3.4. Aspect-Based Sentiment Analysis
Modeling We also consider aspect-based sentiment anal-
ysis (ABSA) as a task for our experiments (Dugar, 2019).
The utilized architecture is a hierarchical neural network as
shown in figure 3 which is inspired by (Yang et al., 2016).
It also uses GloVe word vectors BiLSTMs and attention
(Wang et al., 2016), with a joint end-to-end formulation of
ABSA similar to (Schmitt et al., 2018).

SemEval Dataset The dataset for ABSA is taken from
the SemEval 2016 challenge task 5 subtask 1 (Pontiki et
al., 2016). The subtask is defined as aspect extraction and
sentiment polarity classification with regard to that aspect.
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Category % Summary Label

sentiment
39% neutral/ambiguous
32% positive
29% negative

entity
83% organic
11% conventional

5% genetic engineering

attribute

33% general
28% healthiness
12% trustworthiness
11% quality
10% environment

6% price

Table 1: Annotation distribution on the organic of all
sentences to which at least one opinion triplet (en-
tity+attribute+sentiment) was assigned, i.e., 53% of all
10,000 sentences. 668 of the annotated sentences contain
two or more opinion triplets.

Task-Dataset Train Val Test
NER-JNLPBA 16691 1853 3856
NER-BC5DR 5423 922 939
NER-NCBI 4559 4580 4796
SA-Amazon 2880 320 800
ABSA-SemEval-R 5654 106 106
ABSA-SemEval-L 55136 6892 6892
ABSA-Organic 8824 712 908

Table 2: Data splits of the named entity recognition (NER),
sentiment analysis (SA) and aspect-based sentiment analy-
sis (ABSA) tasks. SemEval-R and SemEval-L refer to the
restaurant and laptop datasets respectively.

For our experiments, we solve the subtask as a whole by
jointly classifying the aspect and its related sentiment. For
the evaluation of transfer learning, we utilize both given
domains, i.e., laptops and restaurants.

Organic Dataset One important goal of transfer learning
is to improve performance on custom datasets of the respec-
tive target domain of interest. In that regard it is not always
possible to provide many expert annotations of high relia-
bility on noisy real world data. In that regard aspect-based
sentiment analysis can be considered as an interesting use
case due to reasons such as high number of classes, multi-
labeling classification, and small number of annotated sam-
ples.

Therefore, we collected 10, 000 social media comments
from the well-known question-and-answer website Quora
which contain opinions about organic food and related con-
sumer issues. After being thoroughly instructed, each of
10 labelers annotated relevance, entity, attribute, and senti-
ment for 1000 sentences. Relevance is merely a binary flag
to indicate if the sentence contains a relevant opinion. The
other classes and their respective distributions are enlisted
in table 1.

Transfer learning is evaluated by first training on the lap-
top and restaurant dataset jointly and then fine-tuning and
evaluating on the organic dataset.

Tasks-Dataset Baseline FT 1PNN 2PNN
NER-JNLPBA 73.8 73.1 74.0 74.3
NER-BC5DR 81.7 83.7 84.8 84.0
NER-NCBI 84.9 85.0 85.6 85.7
SA-Kitchen 79.0 79.0 82.5 -
SA-Healthcare 80.5 81.1 82.9 -
ABSA-SemEval-R 39.4 32.4 47.1 -
ABSA-SemEval-L 24.6 22.9 27.6 -
ABSA-Organic 12.9 6.2 17.0 -

Table 3: Summary of the results across different tasks and
datasets. NER and ABSA results are reported using micro
F1 scores, while SA results use model accuracy. SemEval-
R and SemEval-L correspond to the restaurant and lap-
top datasets of SemEval respectively. PNN outperforms
both the baseline and fine-tuned models across all tasks and
datasets. Bold entries indicate the best performing architec-
ture for that row.
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Figure 5: Graph showing catastrophic forgetting on the
CoNLL03 domain after fine-tuning on JNLPBA.

4. Results
As a general overview, table 3 provides a summary of the
results. It can clearly be seen that PNNs exceed the baseline
and the standard fine-tuning approach for transfer learning
throughout all tasks, domains, and architectures. This is
denoted as bold number in table table 3.

4.1. Named Entity Recognition
For JNLPBA as the target domain, 2PNN fares marginally
better than 1PNN. We train the source columns on the
NCBI and BC5CDR datasets. Using NCBI as the target
domain, 1PNN and 2PNN are comparable. Finally, 1PNN
outpeforms all other transfer techniques for BC5CDR
as target domain. Varying the source datasets between
JNLPBA and NCBI does not change performance in any
significant manner (Gupta, 2019).

4.2. Sentiment Analysis
Similar to the results of NER, PNNs outperform fine-tuning
the model. Fine-tuning yields results not too dissimilar to
the baseline (Gupta, 2019).

4.3. Aspect-based Sentiment Analysis
Results for ABSA are no different; PNN surpasses fine-
tuning notably in terms of performance. The performance
gain of PNN is varied, however, and depends on the do-
main. For the ’Restaurant’ dataset as target, PNN achieves
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a micro F1 score of 47.1% vs. 32.4% achieved by fine-
tuning. The second experiment, however, does not show as
remarkable a difference, with micro F1 scores of 27.6% vs
22.9% for PNN and fine-tuning respectively.
In our experiments, PNNs with two source columns are not
evaluated for ABSA; we hypothesize, however, that similar
to NER 2PNN performs at least as well as 1PNN in most
cases (Dugar, 2019).

4.4. Catastrophic forgetting
As demonstrated in figure 5, we confirm the occurrence
of catastrophic forgetting for NER. Initially, the model is
trained on the CoNLL03 (Sang and De Meulder, 2003)
dataset. After being subsequently fine-tuned on JNLPBA,
the model’s performance is crippled on the original domain.
A performance degradation of approximately 70% can be
observed (Gupta, 2019).

5. Conclusion
Transfer learning ensures a learning algorithm’s ability to
generalize over new domains and tasks in a competent man-
ner. In this paper, we evaluate progressive neural net-
works as a transfer learning approach with reference to
natural language processing tasks. We observe that pro-
gressive networks consistently outperform the conventional
transfer technique of fine-tuning the network on named en-
tity recognition, sentiment analysis, and aspect-based sen-
timent analysis. We further observe that PNNs with two
source networks and according lateral connections produce
marginally better results than with a single source network.
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Doğan, R. I., Leaman, R., and Lu, Z. (2014). Ncbi dis-
ease corpus: a resource for disease name recognition and
concept normalization. Journal of biomedical informat-
ics, 47:1–10.

Dos Santos, C. and Gatti, M. (2014). Deep convolutional
neural networks for sentiment analysis of short texts. In
Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Pa-
pers, pages 69–78.

Dugar, S. (2019). Aspect-based sentiment analysis using
deep neural networks and transfer learning, 3. Master’s
thesis under supervision of Gerhard Hagerer, M.Sc, and
PD Dr. Georg Groh.

French, R. M. (1999). Catastrophic forgetting in connec-
tionist networks. Trends in cognitive sciences, 3(4):128–
135.

Gideon, J., Khorram, S., Aldeneh, Z., Dimitriadis, D.,
and Provost, E. M. (2017). Progressive neural networks
for transfer learning in emotion recognition. CoRR,
abs/1706.03256.

Gupta, S. (2019). Neural transfer learning for natural lan-
guage processing, 4. Master’s thesis under supervision
of Gerhard Hagerer, M.Sc, and PD Dr. Georg Groh.

Hodas, N. O., Shaffer, K., Yankov, A., Corley, C. D., An-
derson, A., and Cheney, W. (2017). Beyond fine tuning:
Adding capacity to leverage few labels. Technical report,
Pacific Northwest National Lab.(PNNL), Richland, WA
(United States).

Howard, J. and Ruder, S. (2018). Universal language
model fine-tuning for text classification. arXiv preprint
arXiv:1801.06146.

Kim, J.-D., Ohta, T., Tsuruoka, Y., Tateisi, Y., and Collier,
N. (2004). Introduction to the bio-entity recognition task
at jnlpba. In Proceedings of the international joint work-
shop on natural language processing in biomedicine and
its applications, pages 70–75. Citeseer.

Kim, Y. (2014). Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1746–1751, Doha, Qatar, Oc-
tober. Association for Computational Linguistics.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N. C., Veness,
J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,
Clopath, C., Kumaran, D., and Hadsell, R. (2016).
Overcoming catastrophic forgetting in neural networks.
CoRR, abs/1612.00796.

Lafferty, J. D., McCallum, A., and Pereira, F. (2001). Con-
ditional random fields: Probabilistic models for segment-
ing and labeling sequence data. In ICML.

Lakkaraju, H., Socher, R., and Manning, C. (2014). As-
pect specific sentiment analysis using hierarchical deep
learning. In NIPS Workshop on deep learning and repre-
sentation learning.



1381

Li, J., Sun, Y., Johnson, R. J., Sciaky, D., Wei, C.-H.,
Leaman, R., Davis, A. P., Mattingly, C. J., Wiegers,
T. C., and Lu, Z. (2016). Biocreative v cdr task cor-
pus: a resource for chemical disease relation extraction.
Database, 2016.

Luo, G., Huang, X., Lin, C.-Y., and Nie, Z. (2015). Joint
entity recognition and disambiguation. In Proceedings
of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 879–888, Lisbon, Portugal,
September. Association for Computational Linguistics.

Ma, X. and Hovy, E. H. (2016). End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. CoRR,
abs/1603.01354.
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