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Abstract

In this work we present a corpus for the evaluation of sensitive information detection approaches that addresses the need for real world
sensitive information for empirical studies. Our sentence corpus contains different notions of complex sensitive information that corre-
spond to different aspects of concern in a current trial of the Monsanto company.

This paper describes the annotations process, where we both employ human annotators and furthermore create automatically inferred
labels regarding technical, legal and informal communication within and with employees of Monsanto, drawing on a classification of
documents by lawyers involved in the Monsanto court case. We release corpus of high quality sentences and parse trees with these two
types of labels on sentence level.

We characterize the sensitive information via several representative sensitive information detection models, in particular both keyword-
based (n-gram) approaches and recent deep learning models, namely, recurrent neural networks (LSTM) and recursive neural networks

(RecNN).

Data and code are made publicly available.

Keywords: Corpus (Creation, Annotation, etc.), Statistical and Machine Learning Methods, Document Classification, Text categorisation

1. Introduction

Sensitive information detection addresses the problem of
identifying (parts of) text documents that are considered
sensitive in a particular application context. Sensitive infor-
mation detection is of great importance in a number of ap-
plications, where unintended leak of sensitive information
may incur severe negative consequences for individuals,
businesses or authorities. In a study from 2017 Poneman
Institute and IBM find that the average cost of a breach of
sensitive information is $3.6 million in total, for detection,
escalation, notification, and after-the-fact response (Pone-
man Institute, 2017; [Poneman Institute, 2009)).

Sensitive information detection has been studied in the
Natural Language Processing and Machine Learning re-
search communities (Neerbek et al., 2018}, |Sanchez and
Batet, 2017; Sanchez and Batet, 2016; [Berardi et al., 2015;
Gollins et al., 2014; \Grechanik et al., 2014; Hart et al.,
20115 |Chow et al., 2008)). In this work we focus on sensi-
tive information detection considered as a form of text clas-
sification, where the goal is to predict whether a sentence
contains sensitive information. Here we consider sensitive
information to be domain specific and the definition in 4
different datasets in this work is given by labels from do-
main experts.

A distinguishing feature of sensitive information detection
with respect to traditional text classification is that we are
interested not only in the content (topics and entities) but
also in context (Gollins et al., 2014). In this work we fol-
low (Gollins et al., 2014) and focus on context within a
sentence.

A limiting factor in research and evaluation of sensitive in-
formation detection methods is the lack of high quality cor-
pora, which at least in part can be attributed to the very na-
ture of sensitive data. Given the lack of publicly available

real-world data, existing work has resorted to the creation
of ad hoc evaluation data by defining particular seed key-
words as sensitive (Sanchez and Batet, 2016} (Grechanik
et al., 2014; |Chow et al., 2008)), or by using two distinct
data sources for sensitive and non-sensitive data (Hart et
al., 2011). Evaluations using these data sources are thus
limited to comparatively simple sensitive information that
is captured by keyword co-occurrence alone, or may ac-
count for structural differences in data sources rather than
for actual accuracy of sensitive information detection.

As an example of the types of sentences we encounter in the
Monsanto corpus we provide here an example of a sentence
from the GHOST sensitive information type:

But I suspect that is wishful thinking
Are you interested in writing a column
on this topic?

This sentence has been labeled sensitive by the annotators,
and indeed the sentence discusses writing for Monsanto.
Note that the sentence does not explicitly talk about ghost
writing or even authorship of the written material. This is
an example of where context influences sensitivity.

So far, a single corpus provides a language resource with
real sensitive information, namely, the Enron corpus (Cor-
mack et al., 2010; Klimt and Yang, 2004). It contains cor-
porate documents with a variety of information content and
structure, and has been used extensively to evaluate sensi-
tive information detection (Sanchez and Batet, 2016; [Hart
et al., 2011; |Chow et al., 2008). However, the corpus is
unlabeled and more than 15 years old. Thus, the need for
an up-to-date labeled corpus for state-of-the-art empirical
evaluation.

We here present a new real-world sentence resource with
complex sensitive information. We process, label, analyze,
and characterize recently released documents that are part
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of the Monsanto trial (Baum Hedlund Aristei & Goldman,
2017) as a source of great value to the research community.
We provide two sets; the first contains inferred sentence
level datasets based on expert labels at document level by
lawyers involved in the trial (“silver” labels); the second
contains labels directly annotated manually at the sentence
level (“golden” labels). Following the 4 different sensitive
information definitions extracted from the trial documents,
we in total provide 8 classification datasets and 15, 000 la-
beled sentences. We release this language resource into
the ELRA Catalogue of Language Resourcetogether with
source code for loading of corpus and building of new mod-
el

Furthermore, we characterize the complexity of the datasets
in terms of the sensitive information content in the sen-
tences. In particular, we study traditional sensitive detec-
tion methods such as n-gram or inference rule based ap-
proaches and more recent deep LSTM models and recur-
sive neural networks. We find that all datasets present com-
plex sensitive information which is not fully captured by
traditional models. Complex models that consider phrase-
like context capture more of the complexity of the sensitive
information. Still, some sensitive information is not de-
tected using existing methods, which provides interesting
open problems for research and evaluation of future meth-
ods.

2. Related Sensitive Information Corpora
and Related Work

Sensitive information corpora are scarce due to the inher-
ently private nature of the data. This poses a challenge to
research in sensitive information detection. We here review
document collections used for evaluation purposes.

Open datasets such as Wikipedia has been used for detect-
ing well-defined types of sensitive information, e.g. Per-
sonal Identifiable Information (PII); HIV (Health) (Sanchez
and Batet, 2017) or Catholicism (Religion) (Sanchez and
Batet, 2016). As discussed e.g. in (Neerbek et al., 2018)),
such forms of PII are often defined as a seed set of named
entities which are comparatively easy to detect, and such
resources are thus not sufficiently challenging for realistic
sensitive information detection benchmarking.

WikiLeaks is used as a sensitive information source in (Hart
et al., 2011), where other webpages are considered non-
sensitive. That is two very different sources for content (in-
ternal secret documents versus public webpages) and suc-
cessful distinction may be due to differences in data source
rather than sensitivity of content. See also discussion in
(Neerbek et al., 2018)).

(Berardi et al., 2015) uses a corpus of 1111 historical
records from UK government on Personal Information and
International Relations. The corpus is not publicly avail-
able due to its sensitive nature. (McDonald et al., 2014)
shows that both types of information can be modeled us-
ing features such as entity (person or country) and senti-
ment towards this entity, and thus does not capture aspects
of sensitivity beyond such entity (sentiments).

"http://catalogue.elra.info
Thttps://github.com/neerbek/taboo—mon

The Enron corpus (Hart et al., 2011} |Chow et al., 2008) has
been partially labeled by law students as part of the TREC
legal track NLP tasks (Cormack et al., 2010).

The corpus we present in this work contains real documents
with complex sensitive and recent content. It complements
the Enron corpus which concerns mostly finances with fur-
ther complex sensitivity notions as discussed below.

3. Curation of the Monsanto Datasets

The Monsanto papers and the series of trials from which
they originate are still ongoing. The trial(s) was begun in
2017 where a group sued Monsanto for claiming Roundu;ﬁ
to be safe, while Monsanto allegedly knew that Roundup
could cause cancer. The Monsanto papers are internal pa-
pers from Monsanto, relevant to the trials and released due
to effort by Baum, Hedlund, Aristei & Goldman law firm
during the trialﬂ (McHenry, 2018; |Baum Hedlund Aristei
& Goldman, 2017).

As part of this trial (Baum Hedlund Arister & Goldman,
2017), law firm Baum, Hedlund, Aristei & Goldman cate-
gorizes Monsanto corporate documents into four categories
(see below). No formal definition is provided, but a head-
line and description of the (sensitive) content in each doc-
ument. Below we list the headlines and our informally de-
rived descriptions of sensitivity notions (manually created
based on content of sampled documents):

e GHOST, Ghostwriting, Peer-Review & Retraction.
Concerns article writing and peer-reviewing by Mon-
santo salaried people as well as efforts in pressuring
journals to retract damning studies without revealing
Monsanto connection

e TOXIC, Surfactants, Carcinogenicity & Testing.
Concerns chemical glyphosate (part of Monsanto
product Roundup), in particular toxicity; declining
funding for further studies; declining requested studies
or declining data to regulators

e CHEMI, Absorption, Distribution, Metabolism &
Excretion. Discussion on studies and results with re-
gards to how animals and human react/absorb ingre-
dients found when using Monsanto products. Discus-
sions on starting studies deemed “risky”. (Note, while
TOXIC is concerned with when and if Monsanto’s
products might cause cancer, CH EM I is more con-
cerned with the actual chemical reactions with ingre-
dients found in Monsanto products.)

e REGUL, Regulatory & Government. Concerns re-
wards for scientists that protect Roundup business;
efforts to monitor and influence regulative bodies
for possible negative rulings or ratings related to
Roundup/glyphosate.

We downloaded all 274 documents (emails, doc, excel,
scans, etc) from lawfirm Baum, Hedlund, Aristei & Gold-

*Roundup is a herbicide which is developed by Monsanto
Yhttps://www.baumhedlundlaw.com/toxic—
tort-law/monsanto-roundup-lawsuit/
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Number 21

Id MONGLY 03934897

Link http://baumhedlundlaw.com/pdf/monsanto—documents/25-Invoice—-Showing-—
Monsanto—-Paid-$20000-to-Expert—-Panel-Member-Dr—John—-Acquavella.pdf

Link text Invoice Showing Monsanto Paid $20, 000 to Expert Panel Member Dr. John Acquavella

Description | This document is an invoice dated August 31, 2015 from Monsanto to Dr. John Acquavella in the sum of
$20, 700 for “consulting hours in August 2015 related to the glyphosate expert epidemiology panel.” at 1.

Number 27

Id MONGLY 02085862

Link http://baumhedlundlaw.com/pdf/monsanto-documents/4-Internal-Email-
Further-Demonstrating-Heydens—-Involvement-Drafting-Expert-Panel-
Manuscript.pdf

Link text Internal Email Further Demonstrating Heydens’ Involvement in Drafting Expert Panel Manuscript

Description | This document contains an email from Dr. Heydens to Ashley Roberts regarding the introduction to the
Expert Panel Manuscript. Among other features, Dr. Heydens’ draft attempts to convey “that glyphosate is
really expansively used.” at 1.

Table 1: Example metadata harvested in human readable form: for each document number and id, a link to the source, a

link text and a brief description are provided.

marE] with human readable description of 120 links to doc-
uments®] We matched the documents with the human read-
able description. We resolved minor issues with matching
document ids, links and descriptive texts. We use the four
different types of sensitive information that Baum, Hed-
lund, Aristei & Goldman identified at the document level
to label the documents (as discussed above).

Each document is annotated by with number, an id, a link,
a link text and a description. An example is shown in Ta-
ble [Tl All documents are pdf documents. Some are ex-
ported from emails, word documents, and so on. Some of
the documents are or contain scanned images of their text
without any optical character recognition. We extracted all
text encoded in the documents, but have not used OCR to
transform non-text content.

Before tokenizing sentences, we removed email headers,
except for the subject. We used the NLTK toolkit (Bird
et al., 2009) and tokenized sentences using the Punkt
sentence boundary detection approach (Kiss and Strunk,
2006), yielding 10, 774 sentences. The length distribution
is shown in Table 2

We cleaned the data further by removing very short sen-
tences (4 words or less) and very long sentences (200 words
or more). By doing so, we removed 3160 short sentences
and 35 long sentences. We used label majority as the la-
bel for the dataset. We obtain a total of 7537 high quality
sentences (see also Table[3).

We employ two labeling approaches to curate two sets of
labels for each Monsanto datasets, to create silver datasets
and golden datasets.

For the silver datasets, we assign the document label (sen-
sitive or not with respect to each of the 4 datasets) to all
sentences of that document, as provided by the lawyers at

Shttps://www.baumhedlundlaw.com/toxic—
tort-law/monsanto—-roundup—-lawsuit/monsanto-
secret-documents/

%https://www.baumhedlundlaw.com/pdf/
monsanto-documents/monsanto-papers—chart—
1009 .pdf

Length (characters) ‘ Count

[0; 4] 1175
[5;19] 1122
[20; 74] 2428
[75; 124 2062
[125; 299] 3165
[300; 499] 573
[500; 1000] 195
[1000; 3165] 54

[0; 3165] | 10774

Table 2: Raw sentence length distribution (in characters)

Length (words) | Count

[5;9] 705
[10; 19] 2339
20; 29] 1881
30; 39] 1076
[40; 49] 572
[50; 74] 605
[75;99] 203
[100; 149] 114
[150; 200] 42
[5;200] | 7537

Table 3: Final sentence length distribution (in words)

Baum, Hedlund, Aristei & Goldman. Such silver datasets
thus require little human annotation effort (if we were to
add more documents), as the legal experts only need to la-
bel at the document level. We thus have sensitive labels
for all 7537 sentences. From documents with different la-
bels, we uniformly at random select sentences for negative
sampling for each dataset, resulting in the distribution of
sentences shown in Table [4l

The silver labels are representative of application scenarios
where sentence labels are not available or (too) costly to ob-

1260


http://baumhedlundlaw.com/pdf/monsanto-documents/25-Invoice-Showing-Monsanto-Paid-$20000-to-Expert-Panel-Member-Dr-John-Acquavella.pdf
http://baumhedlundlaw.com/pdf/monsanto-documents/25-Invoice-Showing-Monsanto-Paid-$20000-to-Expert-Panel-Member-Dr-John-Acquavella.pdf
http://baumhedlundlaw.com/pdf/monsanto-documents/4-Internal-Email-Further-Demonstrating-Heydens-Involvement-Drafting-Expert-Panel-Manuscript.pdf
http://baumhedlundlaw.com/pdf/monsanto-documents/4-Internal-Email-Further-Demonstrating-Heydens-Involvement-Drafting-Expert-Panel-Manuscript.pdf
http://baumhedlundlaw.com/pdf/monsanto-documents/4-Internal-Email-Further-Demonstrating-Heydens-Involvement-Drafting-Expert-Panel-Manuscript.pdf
https://www.baumhedlundlaw.com/toxic-tort-law/monsanto-roundup-lawsuit/monsanto-secret-documents/
https://www.baumhedlundlaw.com/toxic-tort-law/monsanto-roundup-lawsuit/monsanto-secret-documents/
https://www.baumhedlundlaw.com/toxic-tort-law/monsanto-roundup-lawsuit/monsanto-secret-documents/
https://www.baumhedlundlaw.com/pdf/monsanto-documents/monsanto-papers-chart-1009.pdf
https://www.baumhedlundlaw.com/pdf/monsanto-documents/monsanto-papers-chart-1009.pdf
https://www.baumhedlundlaw.com/pdf/monsanto-documents/monsanto-papers-chart-1009.pdf

Dataset ‘ Total ‘ Train ‘ Dev ‘ Test Dataset ‘ Total ‘ Train ‘ Dev ‘ Test
GHOST | 6932 5900 500 532 GHOST | 296 144 62 90
3466 2949 245 272 77 41 14 22
50.00% | 49.98% | 49.00% | 51.13% 26.01% | 28.47% | 22.58% | 24.44%
TOXIC 2892 2200 340 352 TOXIC 252 134 65 53
1446 1099 176 171 57 26 15 16
50.00% | 49.95% | 51.76% | 48.58% 22.62% | 19.40% | 23.08% | 30.19%
CHEMI | 2702 2100 300 302 CHEMI | 250 123 61 66
1351 1048 154 149 32 17 5 10
50.00% | 49.90% | 51.33% | 49.34% 12.80% | 13.82% | 8.20% 15.15%
REGUL | 2548 1950 300 298 REGUL | 275 139 69 67
1274 951 170 153 34 19 9 6
50.00% | 48.77% | 56.67% | 51.34% 12.36% | 13.67% | 13.04% | 8.96%
Total 15074 12150 1440 1484 Total 1073 540 257 276
7537 6047 745 745 200 103 43 54
50.00% | 49.77% | 51.74% | 50.20% 18.64% | 19.07% | 16.73% | 19.57%

Table 4: Silver data (row 1: sentence count; row 2: sensitive
sentence count; row 3: ratio of sensitive sentences)

tain. In some applications, and in particular for larger doc-
uments, though, a document which contains sensitive infor-
mation may also contain non-sensitive information. E.g. an
email may contain greetings or best wishes which is gener-
ally not sensitive. For silver labels such documents may
introduce noise. To study the impact of such noise, we also
create golden labels where assignment of sensitivity is man-
ually conducted at the sentence level. In the evaluation, we
compare models constructed and tested on datasets follow-
ing either labeling approach.

The golden labels are provided by 3 annotators for each
sentence in a subset of about 1000 sentences. For annota-
tion guidelines the annotators were given an introduction to
the Monsanto case and the different types of sensitive in-
formation (the list introduced in the beginning of this sec-
tion above), and participated in a kick-off worksho;ﬂ Each
annotator was given the same 1073 sentences taken at ran-
dom from documents labeled by the lawyers at Baum, Hed-
lund, Aristei & Goldman. These 1073 sentences were dis-
tributed uniformly at random across each sensitive informa-
tion type. Each annotator then labels the sentence sensitive
or not according to any of the sensitive information types
given. We use majority of inter-annotator agreement i.e.,
assign sensitivity to sentences which at least 2 annotators
have labeled sensitive. In our data all 3 annotators agreed
on label for 65.88% of the sentences. The inter-annotator
agreement can be assessed with the Fleiss Kappa (Fleiss,
1971)) which takes values below or equal to 1, with 1 indi-
cating perfect agreement and less than 0 indicating agree-
ment by chance. Our Fleiss Kappa is 0.33 which in the rule
of thumb by (Landis and Koch, 1977) can be considered a
“fair agreement”.

Distribution of labels in this golden annotated dataset is
shown in Table

"See also https://github.com/neerbek/taboo—-
mon/blob/master/doc/AnnotationDescription.
txt

Table 5: Golden data (row 1: sentence count; row 2: sensi-
tive sentence count; row 3: ratio of sensitive sentences)

We observe that GHOST and TOX IC have sensitive ra-
tio around 25%, where CHEMI and REGU L are more
skewed with a sensitive ratio around 15%.

4. Empirical Characterization

We characterize the sensitivity of information in sentences
in our data resource by an empirical study of existing ap-
proaches in the field. We place particular focus on compar-
ing silver and golden labels.

4.1. Detection Models

Broadly speaking, the models for sensitive information de-
tection can be divided into keyword-based and context-
based (Neerbek et al., 2018)). Keyword-based approaches
assign probabilities to words (or rather, n-grams) occur-
ring in sensitive (or non-sensitive) sentences. They differ
in how they utilize these probabilities (Sanchez and Batet,
2016; Berardi et al., 2015} |Grechanik et al., 2014; |[Hart et
al., 2011; |Chow et al., 2008). Context-based approaches
consider the context (beyond n-grams) of a word occur-
rence for assigning probability of a sentence being sensi-
tive. Dense embedding approaches can be seen as a proto-
typical way of encoding context for a word (e.g. (Mikolov
et al., 2013; [Pennington et al., 2014))). In a context-based
approach, the probability of a particular word or phrase be-
ing sensitive is allowed to vary with the context (sentence,
paragraph, document) in which the word appears, allowing
them to detect more complex types of sensitive information
that are not characterized by (co-)occurrence of keywords
alone. In this evaluation we focus on sentence level sensi-
tive information.

We quantify the complexity of our corpus by making
use of these characteristic differences in keyword-based
and context-based approaches, respectively. Simply put,
datasets where the performance gap between the two is
large, contain more complex sensitive information. We use
recurrent memory cell neural networks, LSTM(Hochreiter
and Schmidhuber, 1997) and recursive neural networks,
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RecNN(Elman, 1990; |Goller and Kuchler, 1996; Socher et
al., 2013)) as examples of context-based approaches. Both
generate an embedding for each context and predict based
on this context embedding.

Keyword-based approaches used are InfRule (Chow et al.,
2008)), C-san (C-sanitized) (Sanchez and Batet, 2016) and
an empirical upper bound on keyword-based approaches we
term Keyword-Max.

InfRule. One of the earliest works in the sensitive infor-
mation detection domain (Chow et al., 2008) is inspired
by association rule mining (Agrawal and Srikant, 1994).
It considers words in a sentence as events in a probabilis-
tic process and discovers rules which can either be simple:
w — s (word w implies sensitive information s) or com-
plex combinations using conjunction, disjunction and logi-
cal not (wy A wg A —~ws A (wg Vws)) — s. The confidence
of a rule is the fraction of times it occurs and predicts cor-
rectly in the training set. We follow the setup in (Chow et
al., 2008) which uses InfRule on the Enron corpus using
simple rules and a constant confidence cutoff.

C-san. (Sanchez and Batet, 2016)) use point-wise mutual
information (PMI) between a word w and a type of sen-
sitive information s (s can be a known sensitive word or
inferred some other way) PMI(s;w) = log %, ie.,
logarithm of the probability of the joint occurrence of word
w and sensitive information s, normalized by the probabil-
ity of occurrences of sensitive information s multiplied by
the probability of occurrences of the word w. A sentence is
considered sensitive if its PMI exceeds a sensitivity thresh-
old. The threshold is determined using the information con-
tent (IC) of the sensitive information s, defined as the loga-
rithm of the fraction of occurrences of sensitive information
s5: IC(s) = —1log(P(s)), where o is a user defined con-
stant which reflects the cost of false negatives. A text is
sensitive if for any word we have PMI(s;w) > IC(s).
The intuition behind this definition is that (for « = 1) PMI
is maximal if PMI(s;w) = IC(s) and word w will pre-
dict/disclose the information s with probability 1, thus w
is a good predictor. By dividing /C by a > 1 we detect
keyword-based predictors with lower than 1 probability and
thus will be able to predict sensitive information even when
perfect predictors do not exist.

Keyword-Max. To identify how much of the sensitive in-
formation potentially could be captured by keyword-based
approaches, we include a form of (upper) empirical base-
line. We allow it to set hyperparameters based on the test
set, which means it is given access to additional informa-
tion that in reality is not available. It is still interesting as it
denotes the limit of keyword based approaches, and thereby
provides a further indication of the complexity of sensitive
information that cannot be captured by keyword-based ap-
proaches.

LSTM. The sequential LSTM approach builds a neu-
ral network model and for each word in a sentence ap-
plies the neural network in sequence. For a given text
t = (wy,ws,...,w,) and for each step consider a new
word w; and apply the neural network to obtain both a
new memory cell state and a hidden state. Whereas the
hidden state is mainly used to parse information from one

step to another, the memory cell is “protected” by several
gated states which allows the LSTM to carry information
across longer step counts than what is generally possible
using vanilla recurrent neural networks. In our previous
work (Neerbek et al., 2019) we built LSTM models for sen-
sitive information detection. Prediction is based on the state
arrived at after sequentially processing every word in the
sentence by adding a fully connected layer. In our evalu-
ation we apply these models on the Monsanto datasets de-
veloped here.

Please note that the LSTM could be augmented with struc-
tural information similar to the RecNN below. In our
dataset characterization, we use the LSTM as a represen-
tative of unstructured sequential deep methods, and the
RecNN as a structured one. Both approaches use GloVe
word embeddings (Pennington et al., 2014).

RecNN. As discussed in (Neerbek et al., 2019; [Neer-
bek et al., 2018) the recursive neural network, RecNN, ap-
proach has been used successfully for sensitive informa-
tion detection. The use of RecNN for context dependent
tasks is motivated by the previous RecNN models for e.g.
sentiment analysis (Socher et al., 2013)) and paraphrase de-
tection (Socher et al., 2011). In a RecNN we are given
both the text ¢ and a structure over the text S. As struc-
ture here we generate probabilistic context-free grammars
(pcfg) based constituent trees (Klein and Manning, 2003)),
where the pcfg was trained over the Penn Treebank (Taylor
et al., 2003). Let Y be the set of all nodes in the structure
and all words in ¢, then the structure S is a mapping from
each element in Y to a list of parents also in Y. The struc-
ture can be a directed acyclic graph (DAG). In this study
we follow (Socher et al., 2013; |Socher et al., 2011) and
restrict the approach to only tree-like structures. In this
case the length of the list of parents is at most 1, and the
list of parents is empty for the root node in the structure.
As described in Section 3] our data resource contains con-
stituency parse trees for each sentence (text) t. We follow
(Neerbek et al., 2018) where given a sentence, the root state
is the last state of the evaluation of the neural network on
that sentence which may carry most information about the
sentence. As for the LSTM, we add a fully connected layer
for predicting sensitivity. Compared to our previous work
we develop transfer learning for the RecNN model between
our silver and golden dataset and show improved perfor-
mance of the RecNN model.

Experimental setup. Both InfRule and C-san use a cut-
off of minimum confidence that a keyword must have.
These cutoffs are set using the dev dataset. In contrast,
Keyword-Max is allowed to set that cutoff based on the data
in the test set, even though that is not available in a real ap-
plication. As we observe in our study, there is a limit to the
sensitive information that keyword-based approaches can
successfully detect, which makes it possible for us to re-
liably characterize complex sensitivity in our datasets. In-
fRule uses default parameters on Enron data as in (Chow,
et al., 2008), C-san « values used in (Sanchez and Batet,
2016), namely, o € {1,1.5,2}. LSTM and RecNN ap-
proaches use GloVe embeddings (Pennington et al., 2014),
with embedding size 100 given the relatively low number
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of labeled sentences. Dropout rate 0.5 was found to work
well for LSTM, while lowering dropout rate for RecNN
to 0.1 yielded the best results. For LSTM we obtain the
best results using AdaDelta optimizer for learning rate op-
timization. For RecNN the best results were found using
stochastic gradient decent (SGD) with learning rate deter-
mined through line search. Please note that we are mainly
interested in obtaining optimal performance for each ap-
proach such that the complexity of the datasets is accurately
characterized.

4.2. Silver Labels

In the following, we characterize our data resource with the
above models using silver labels for training and evalua-
tion. For each sensitive information type we train a specific
model for each of the approaches.
In Table [6] we characterize sensitive information com-
plexity using silver sentence labels on reported accuracy
score We observe that InfRule generally finds more
complex sensitive information than C-san when « is set
to 1, but if this parameter is optimized, C-san captures
additional sensitive information beyond InfRule results.
We observe that InfRule and C-san generally perform
better on REGU L, where differences between all mod-
els are smaller. This indicates less complex sensitive
information compared to the other datasets. Addition-
ally, we find that by giving keyword-based approaches ac-
cess to test set information, in the Keyword-Max model
as described above, we obtain an empirical upper limit
on the less complex sensitive information as follows:

GHOST | TOXIC | CHEMI | REGUL

78.60% 73.24% 80.67% 75.00%
The context-based approaches LSTM and RecNN are ca-
pable of capturing more complex sensitive information be-
yond the keyword-based approaches. We observe that
on silver labels LSTM has best performance on TOXIC'
and CHEMI. These datasets both deal with discussions
on cause and effect of chemical compounds and exper-
imental design. Likely, this follows a more sequential
buildup, presentation-wise, which the LSTM is particularly
designed for capturing. Conversely, we observe that the
structured approach RecNN which has access to the con-
stituency parse tree for each text shows best performance
for datasets GHOST and REGU L. Both datasets con-
tain many emails and are thus more conversational in na-
ture. Accordingly, we observe that the RecNN outperforms
LSTM here. This shows that complex sensitive information
may show different structures in these datasets.
Overall, we conclude that all datasets contain sensitive
information that can be captured by keyword-based ap-
proaches, but also more complex types that require ad-
vanced methods that exploit the context. We also note that
none of the approaches achieves close to perfect accuracy,
i.e., these datasets still provide potential for research on
methods that can capture aspects of sensitivity that are not
currently detected.

8More details on experiments parameters can be found in
https://github.com/neerbek/taboo-mon/blob/
master/doc/ExperimentParameters.txt

4.3. Golden Labels

We now turn to the characterization of the data with respect
to the golden labels. We subdivide this study into four cases
and due to space considerations we restrict our characteri-
zation experiments to our most expressive model family,
the RecNN. While small differences occur, the overall con-
clusions remain the same.

Furthermore in our 3. case we motivate the use of transfer
learning between our larger silver dataset and the smaller
golden dataset as a way to characterize the level of sen-
sitive information learnable from the silver dataset. Such
characterization is based on the concept of transfer learn-
ing discussed in (Yosinski et al., 2014) for embedding
based model families and thus not as such applicable to the
keyword-based approaches.

In our 4. case we return to characterization using all mod-
els, including the transfer learning models and summaries
the characterizations learned over the datasets.

1. Case: Silver-to-Golden In this evaluation, we build
silver label based models and study how well they pre-
dict golden labels. This allows an understanding of how
valuable the relatively easily obtainable document-based
silver labels are when compared to human labels on sen-
tence level. Note that in the silver dataset all the labels of
the golden subset are sensitive. If the models have learned
to distinguish sentences containing sensitive information
from noisy, falsely labeled non-sensitive sentences then
the model should predict some of the sentences correctly
as non-sensitive in the golden dataset simply because the
model has learned the sensitive information type. Put dif-
ferently, noisy sentences which are incorrectly labeled sen-
sitive in the silver dataset may be similar to non-sensitive
sentences in the silver dataset. Consider our previous ex-
ample with sensitive emails. The initial greeting may be
very similar to other greetings from non-sensitive emails.
Thus a model may still learn to correctly label greetings as
non-sensitive even though they appear in a sensitive email.
When this is the case, we say that the model has success-
fully learned the sensitive information type, and it is an in-
dication of the usefulness of sensitive labels for training of
sensitive information detection models.

2. Case: Golden-to-Golden Here, models trained on
golden labels are evaluated against golden label test sets.
This provides insight into accuracy using sentence level hu-
man labels. A major challenge with the golden dataset is
its smaller size as it is based on manual effort, which may
make the models prone to overfitting. We train with differ-
ent types of regularization to combat overfitting.

3. Case: Silver-Transfer-to-Golden The third case out-
lines how transfer learning models may combine both silver
and golden labels to counter both issues with noise in silver
labels and issues with limited training data in golden la-
bels. It further provides an indication about the relationship
between the silver and golden labels beyond Case 1. Our
study is based on transfer learning for deep neural mod-
els as discussed in (Yosinski et al., 2014)) for convolutional
models (CNNs). They train a layered model on one task
and then transfer the weights to a second task that benefits
if sufficiently similar. In our study, we transfer all layers
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Approach ‘ GHOST ‘ TOXIC ‘ CHEMI ‘ REGUL
InfRule 57.80% 59.71% 60.33% 67.33%
C-san;a =1 49.60% 52.94% 54.00% 61.33%
C-san; o = 1.5 | 62.40% 65.29% | 67.67% 71.33%
C-san; o = 2 72.60% 70.29% 71.33% 74.33%
LSTM 83.60% 77.33% | 86.67% 82.33%
RecNN 86.60% | 75.00% 83.67% 87.00%

Table 6: Characterizing complexity of silver label data using accuracy of keyword-based (top) and context-based ap-
proaches (bottom): keyword-based approaches can successfully capture the majority of sensitive content; more complex
sensitive information is captured by deep learning methods; no existing method can fully recover all sensitive content

Dataset ‘ Prec-Sen ‘ Prec-Non-sen ‘ Acc

GHOST | 31.82% 61.76% 54.44%
TOXIC 37.50% 83.78% 69.81%
CHEMI | 70.00% 51.79% 54.55%
REGUL | 16.67% 73.77% 68.66%

Table 7: Dive in on performance of RecNN model; Preci-
sion and accuracy on golden label test set for models using
silver labels for training.

except 1 from silver models and train the final layer using
the golden training set.

4. case: Overview on Golden We provide an overall
comparison of all models to characterize the golden dataset
as we did with the silver dataset in Section [£.2]

4.3.1. Results - 1. Case: Silver-to-Golden

In Table [/| we show precision for each class (sensitive vs
non-sensitive) as well as accuracy against the golden la-
bels. Consider a correctly predicted sensitive label as true-
positive (tp), a sensitive label predicted incorrectly as non-
sensitive as false-negative (fn), a correctly predicted non-
sensitive label as true-negative (tn) and a non-sensitive la-
bel predicted incorrectly as sensitive as false-positive (fp),
then precision sensitive is Prec-sen = tpi%, and precision
non-sensitive is Prec-Non-sen = tanp'

Due to space limitations, we here show results only for
RecNN models that capture most sensitive information in
our previous evaluation. The focus in this characterization
is on the relationship between silver and golden labels; a
final overview also on the golden labels is provided in the
final characterization.

From the results in Table [/| we observe that models trained
on silver labels do learn to correctly predict sensitive sen-
tences vs non-sensitive sentence, even though all non-
sensitive sentences in the golden test sets are labeled sensi-
tive in the silver datasets. This demonstrates that datasets
with silver noisy labels indeed provide useful training data
for sensitive information detection models.

4.3.2. Results - 2. Case: Golden-to-Golden

In the interest of space, we only present RecNN character-
ization as before (results for all models are summarized in
the final overview). We train models on the training data
with golden labels and evaluate on the golden test sets. As
the golden datasets are relatively small due to the efforts in

Dataset ‘ Train ‘ Dev ‘ Test
GHOST | 71.53% 77.42% | 75.56%
100.00% | 79.03% | 75.56%
TOXIC | 80.60% 76.92% | 69.81%
100.00% | 76.92% | 71.70%
CHEMI | 86.18% 91.80% | 84.85%
100.00% | 83.61% | 80.30%
REGUL | 86.33% 86.96% | 91.04%
100.00% | 82.61% | 88.06%

Table 8: Accuracies on golden test set by training using
golden label training set only. For each dataset, row 1 is ac-
curacy if always predicting “non-sensitive”, row 2 RecNN
accuracy. Note: 100% accuracy on training set and poor
test results mean overfitting due to small training sets.

Dataset | Acc | Non-sen
GHOST | 77.78% | 75.56%
TOXIC 71.70% | 69.81%
CHEMI | 84.85% | 84.85%
REGUL 92.54% | 91.04%

Table 9: Accuracy obtained on golden label test set using
transfer learning, i.e., trained first on silver label training
set, then all but one layers fixed and finetuning the final
layer using the golden label training sets.

manually labeling on sentence level, we particularly study
overfitting. For this, we show performance results on train-
ing, development (validation) and test sets, separately (Ta-
ble [§). As expected, the models that perform well on the
training data fail to generalize well to the development and
test set, i.e., experience overfitting. Concretely, the models
reach almost 100% accuracy on the training set, but much
lower accuracy on the development and tests sets. Model
hyperparameters was found through a line search on devel-
opment se

Except on TOXIC where we observe higher test score
than just always predicting “non-sensitive”, we observe
that the overfitting results in worse generalization (i.e., test
scores being lower than major class fraction). TOXIC
seems to have a high ratio of sensitive information in the
test set. The data was sampled uniformly and thus the distri-

%https://github.com/neerbek/taboo—mon/
blob/master/doc/ExperimentParameters.txt
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Approach ‘ GHOST ‘ TOXIC ‘ CHEMI ‘ REGUL
InfRule 76.67% 73.58% | 84.85% 92.04%
C-san; o =1 77.78% | 73.58% | 83.33% 91.04%
C-san; « = 1.5 | 75.56% 69.81% 84.85% 91.04%
C-san; o = 2 75.56% 69.81% 84.85% 91.04%
LSTM 77.78% | 69.81% 84.85% 91.04%
RecNN 75.56% 71.70% 80.30% 88.06%
RecNN-tf 77.78% | 71.70% 84.85% 92.54%

Table 10: Characterizing complexity of sensitive information on golden test sets using keyword-based approaches (top) and
context-based approaches (bottom): keyword-based approaches capture more sensitive content on less noisy golden data as
compared to silver data; across almost all models and datasets performance increases slightly; in particular, REGUL golden
labels seem easiest to recover; transfer learning captures most sensitive content as it makes use of both silver and golden
labels; no existing method can fully recover all sensitive content

bution is expected to be uniform, but for small size datasets
small variance in actual numbers can lead to a biases which
can contribute to the score on TOX IC.

The overfitting is a sign that the sensitive information types
are difficult to detect and require larger samples of labeled
data to detect properly. If the information types could
be characterized using a simple set of keywords, then we
would expect our RecNN model to be able to obtain bet-
ter performance. Our results in Table [§] implies that our
sensitive information types extend beyond simple keyword
based definitions and in fact contain some complex infor-
mation.

In the next section we address the need for additional data
(using transfer learning) and show increased performance
for our models when we can combine golden datasets with
transferred learning from the silver datasets. This indicate
a key characteristics of our sensitive information datasets,
namely that they do indeed carry complex sensitive infor-
mation which cannot be captured by simple keyword-based
approaches alone.

4.3.3. Results - 3. Case: Silver-Transfer-to-Golden
We now turn to the combination of silver labels and golden
labels using transfer learning. As discussed above, trans-
fer learning allows making use of both silver and golden
labels, thereby potentially counteracting noise and limited
training data. We used the same models trained on the sil-
ver datasets as above for transfer learning with golden la-
bels. We then trained a single layer model on top of these
(fixed) representations. We fine-tuned hyper-parameters us-
ing line search and found adding data augmentation in the
form of small amounts of random noise to the input embed-
dings worked well as regularization. We obtained the test
accuracies shown in Table

With transfer learning we are able to extract the most learn-
ing from the datasets, i.e., obtain the highest accuracies
across the datasets. Following (Yosinski et al., 2014) we
know that transfer learning performs well if the two tasks
share similarities, which means that silver and golden la-
bels are sufficiently related, and can thus be used for train-
ing and evaluation sensitive information detection models.
We have successfully transferred learning from the original
models (the silver labels) to the golden labels. This further-
more implies that our document based silver labels actually

provide knowledge which with relatively little effort can be
utilized for sensitive information detection, even at the sen-
tence level. Noise in the silver labels can thus be success-
fully ignored by the models used in our characterization.
Similar performance even in the face of noise in the silver
labels furthermore implies that, all things being equal, a
larger dataset with silver labels may be more valuable than
a smaller golden label dataset. If available, the combination
of the two labels in learning seems a promising approach
indeed, both with respect to training and with respect to
evaluation of approaches.

4.3.4. Results - 4. Case: Overview on Golden

We conclude the characterization by comparing all models
on the golden datasets. In Table we provide a complete
overview over results of all the models used to character-
ize the golden datasets. RecNN-tf here denotes the transfer
model discussed in the previous section.

We note that the golden dataset, as seen before, provides
limited training data, which means that RecNN does not
perform well. The performance of the different keyword-
based methods is similar in trend as we saw in Table [6] C-
san performing better than InfRule when the « parameter
is chosen to match the dataset. On REGUL InfRule is
slightly better than C-san, both worse than RecNN-tf. The
RecNN-tf model performs better than the keyword based
models, except for TOXIC where the small dataset sizes
makes the keyword based methods better.

Overall, the transfer model RecNN-tf provides the best per-
formance and thereby indicates how much of the sensitive
information can be successfully captured by the models in
our study using both silver and golden labels. It thus also
provides an indication of the potential for further improve-
ment of sensitive information detection models using this
data resource.

5. Conclusion

In this work, we present new, real-world datasets based on
the Monsanto documents labeled by lawyers involved in the
court case. We provide labels following two different label-
ing approaches, golden and silver, with the data - in total
8 datasets for the sensitive information detection research
community.
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