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Abstract
We introduce a new classification task for scientific statements and release a large-scale dataset for supervised learning. Our resource
is derived from a machine-readable representation of the arXiv.org collection of preprint articles. We explore fifty author-annotated
categories and empirically motivate a task design of grouping 10.5 million annotated paragraphs into thirteen classes. We demonstrate
that the task setup aligns with known success rates from the state of the art, peaking at a 0.91 F1-score via a BiLSTM encoder-decoder
model. Additionally, we introduce a lexeme serialization for mathematical formulas, and observe that context-aware models could
improve when also trained on the symbolic modality. Finally, we discuss the limitations of both data and task design, and outline
potential directions towards increasingly complex models of scientific discourse, beyond isolated statements.
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1. Introduction
Scientific discourse is a promising avenue for natural lan-
guage processing (NLP). Scholarly works are rich in refer-
ential meaning due to their conceptual focus and structured
expositions. They present a multitude of targets for the de-
velopment of semantic enrichment and data mining tech-
niques. We survey a prime example of an openly available
library of scientific texts – the arXiv.org preprint server. It
is one of the largest international repositories of STEM sci-
entific articles, numbering over 1.5 million submissions at
the time of writing. Crucially, these texts are prepared for
human academic consumption via print. It is only a re-
cent development that they have been made available in a
fully machine-readable representation, as part of a decade-
long research endeavor (Stamerjohanns et al., 2010). The
arXMLiv project now publishes an HTML5 dataset (Ginev,
2018) of 1.2 million documents converted from the original
submissions – allowing for straightforward reuse in main-
stream NLP pipelines. This dataset surpasses 11 billion to-
kens and is sufficiently large to bootstrap pre-training lan-
guage models.
In this paper we outline and motivate a new statement clas-
sification task, the first to be extracted from this corpus.
Our goal is to fully leverage the annotations authors de-
posit while visually highlighting the key statements in their
texts. We have attempted to collect the full spectrum of
annotated statements, ranging from standard pieces of nar-
rative (e.g. abstract, related work) to specialized parts of a
scientific exposition (e.g. method, result). Our emphasis is
on constructing the biggest possible resource for supervised
learning, while also maintaining the highest possible qual-
ity in data collection. Our goal is to set the stage for further
research, as well as to provide open and reproducible in-
frastructure for the wider community.
In Section 2, we explain the precautions needed to reliably
work with the data. Next, in Section 3 we perform first
measurements of the data available for a “statement clas-
sification” task and motivate a concrete organization and
methodology. We perform standard baseline evaluations in
Section 4 and discuss our results in Section 5. We out-
line previous attempts to analyze arXiv in Section 6, along

with a brief overview of statement classification tasks. Sec-
tion 7 concludes the paper and surveys the possible next
steps, paving the way for future experiments using a reli-
able representation of arXiv data, and scientific discourse
in general.

2. Dataset Preparation
The most challenging aspect of arXiv’s technical docu-
ments, mostly written in LATEX, is to transition them into
a standardized structured format. To enumerate: con-
tent, metadata, styling directives and non-textual modali-
ties should be explicitly and cleanly separated. One such
format is a scholarly flavor of HTML5, as produced in
the arXMLiv project, via the LaTeXML conversion tool
(Miller, 2019). The following preprocessing tasks, over
HTML documents, are straightforward and follow standard
techniques. The only exception is including mathematical
expressions, discussed in Section 4.1.

2.1. Label selection
arXiv was never intended to be used for supervised learn-
ing tasks. However, documents authored in LATEX have
the potential for highly regular markup, especially in dis-
ciplined use. In this paper we focus on scientific statements
at the paragraph level, classically highlighted to readers via
a variety of sectioning headings, and thus leaving an an-
notation trace. We attempt to retrieve as many as possible
of these entries, but restrict ourselves to clean high-level
markup deposited by authors (e.g. \begin{theorem}).
We verified that we can indeed rely on an author’s in-
tent to provide a heading for a formally distinct state-
ment, when they leverage the \newtheorem mecha-
nism, provided by the amsthm LATEX package. No ef-
fort is made to capture custom low-level markup (e.g.
{\bf Theorem 4.1}\newline), in order to avoid
unneeded heuristic ambiguity or added noise.
We performed a survey of the most frequent author-
supplied statement annotations in arXiv articles. We could
only conduct this survey reliably due to the HTML dataset
canonically preserving the authored markup and structure.
First, we selected the top 500 environment names, from a
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total set of 20,000 unique \newtheorem-defined custom
names. This selection allows us to capture 98% of avail-
able annotated paragraphs, as we observe a common core of
standard statement names followed by a low-volume long
tail. Next, each environment was mapped to its canonical
label, for example {mainthm} was mapped to theorem.
After curating, this resulted in a selection of 44 classes. Ad-
ditionally, we also curated 12 “closed set” section heading
names (such as \section{Introduction}). Taking
the union, we arrived at a total set of 50 distinct labels.
To obtain the statement content for our classification task,
we extracted the first logical paragraph within a marked up
environment belonging to the label set. The headings are
reliably marked up via HTML classes, allowing for robust
selection queries written in XPath (Berglund et al., 2007).
A logical paragraph is distinct from an HTML “block”
paragraph, as it may span multiple blocks with interleaved
multi-modal block content – most notably display-style
equations.

2.2. Paragraph Preprocessing
Both paragraph extraction, as well as transitioning to a
plain-text representation that is compatible with modern
NLP toolchains, were performed via the llamapun toolkit
(Ginev and Schaefer, 2019), which specializes in efficient
parallel processing and analysis of this flavor of document
markup. We performed the preprocessing steps in order to
remain fully aligned to the GloVe embeddings distributed
together with the dataset (Ginev, 2018). GloVe (Penning-
ton et al., 2014) obtains a vectorial representation of words
that is rich in latent features.
In order to control quality, we only included paragraphs that
passed a language detection test for English via a recent im-
plementation (Potapov, 2019) of n-gram text categorization
(Cavnar and Trenkle, 2001). To regularize the data, we also
removed paragraphs with traces of conversion errors (er-
ror markup; words over 25 characters). Narrative text is
downcased and copied, punctuation is discarded and math-
ematical expressions are substituted with their lexematized
form. Citations, references and numeric literals are sub-
stituted with placeholder words. All other content is dis-
carded. Llamapun implements its own word and sentence
tokenization, aware of the formula modality. The tokenized
sentences are preserved via newline characters in the seri-
alized plain-text files, so we did not insert a special word
token. A small example of a single sentence remark is pre-
sented in Figure 1.
Thus constructed, the extracted set has a median of 100
words per paragraph, and a mean of 145 words per para-
graph. The label selection described in Section 21 was suf-
ficient to extract 10.5 million paragraphs, or roughly 13%
of the full 77 million paragraphs available in the entire cor-
pus, which allows for using data-hungry modeling tech-
niques.
We package and republish the preprocessed content, avail-
able at (Ginev, 2019a). The paragraphs for each label reside
in a subdirectory of the corresponding name, one plain-text
paragraph per file, one sentence per line. Each filename is
obtained via the SHA-256 hash of its contents, guarantee-
ing both uniqueness, as well as random order, as part of this

derivative collection.

2.3. Math lexemes
The LaTeXML conversion tool has a dedicated grammat-
ical parsing stage for mathematics. We leverage its tok-
enized input representation to serialize the constituent lex-
emes of each expression. The goal is to provide a unified
inline context of interleaved text and math symbolism, to
allow for more complete models over this type of discourse.
It is well-established that the lexicon of mathematical ex-
pressions is much smaller than natural text (Cajori, 1993),
being largely restricted to letters of the English and Greek
alphabets, and a limited set of operator symbols. Hence,
we use a different preprocessing approach for the symbolic
modality, in fact opposite to the narrative approach, in an
effort to expand its vocabulary and mitigate the challenges
of lexical ambiguity.
While we downcase regular text in an effort to constrain the
open-ended lexicon of technical English, our formula seri-
alization instead not only preserves case, but also encodes
the available stylistic information w.r.t to font. Namely, we
preserve the distinctions between the various font styles,
weights and faces. For example: N (italic_N), N
(caligraphic_N) and N (blackboard_N) are three
different entries in our plain-text data, when they occur in-
side formulas. Meanwhile, a bold Naturals or italic Natu-
rals that occur in regular text are still mapped to a regular
small naturals.

3. Task Design
We pre-partition the 50 class data into an 80/20 train/test
split, which we consistently use in our modeling work. In
order to inform if a classification task is well-posed, we pre-
train a range of models known to perform well in the state
of the art. In Figure 2, we share the confusion matrix of our
best 50-class baseline model, a BiLSTM encoder-decoder.
We observed several general phenomena.
First, some classes were strongly separable in the task
posed as-is, such as acknowledgement, abstract and proof,
at near-perfect classification rates. Second, there were
“confusion nests” of interconnected classes. Most notably,
proposition, lemma and theorem, dominated by the latter
two, had a strong indication of a shared language nest. On
closer inspection, 9 classes (as seen in Table 1) were consis-
tently misclassified in the dominant lemma-theorem nest. It
stands to reason that as a first approximation we can then
unify this constellation of classes into a single parent class,
which we named after the most abstract label in the group -
proposition. Such regroupings simplify the task and reduce
the classification difficulty when performed correctly. As
we will show in Figure 3, a consistent reorganization based
on the confusion scores allows us to define a constrained
problem with clear utility and integrity. Lastly, we also re-
mark that the model performs in a very scattershot manner
on about half of the label set. In some cases that is due to
very little training data (e.g. hint), in others it is due to lim-
itations of the task setup (e.g. experiment, which is hard to
separate from example and result without additional con-
text).
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Importantly, note that c is independent of the εj’s.

importantly note that italic_c is independent of the
italic_epsilon POSTSUBSCRIPT_start italic_j POSTSUBSCRIPT_end s

Figure 1: Plain-text equivalent with sub-formula lexemes, for a LATEX-authored remark

Class Included Members Frequency

abstract 1,030,774
acknowledgement 162,230
conclusion discussion 401,235
definition 686,717
example 295,152
introduction 688,530
keywords 1,565
proof demonstration 2,148,793
proposition assumption, claim, 4,060,029

condition conjecture
corollary, fact,
lemma, theorem

problem question 57,609
related work 26,299
remark note 643,500
result 239,931

Table 1: Labeled data for “13 nest” classification task

Following these observations, we propose a reduced task
with an emphasis on class-separability at scale. To this
end, we preserve the clearly separable cases and group the
observed inter-confused nests together into more abstract
union classes. All low-volume and scattershot classes are
ignored for the reduced task. This brings us to a “13 nest”
classification task, based on 25 of the original 50 classes,
grouped into 13 separable classes. Importantly, we retain
99% of the available data, or 10.4 million from the original
10.5 million paragraphs. The full breakdown of the organi-
zation and the final data frequency in each class is presented
in Table 1.
Next, we present several baseline models for the classifica-
tion task over these thirteen targets. We acknowledge that
the original fifty classes could be utilized differently, and
potentially modeled in full. To succeed in that direction, it
is possible that the task setup would need to include both
more data volume for the infrequent classes, as well as full
document context, for distinguishing between classes with
similar linguistic footprints (e.g. a conclusion can often re-
semble a discussion, but is always at the end of an article).

4. Baselines
We present a set of six baselines, together with a control
for the impact of the mathematical modality to classifica-
tion performance, as summarized in Table 2. All baselines
were prepared via Keras (Chollet, 2015) on the Tensorflow
backend (Abadi et al., 2015), and are made openly available

(Ginev, 2019c).
For our baseline model implementations, we fix a para-
graph size of 480 words, as a trade-off between model size
and data coverage. Over the 10.4 million paragraphs in
the task, 96.46% are 480 words or less. Out-of-vocabulary
words were dropped, as is consistent with GloVe embed-
dings, which discard low frequency lexemes. In-vocabulary
words are mapped to their dictionary index and embedded
via the GloVe embeddings provided alongside the HTML
data (Ginev, 2018). The vocabulary contains just over one
million words, and includes math lexemes. All trained
baseline models used a weighted categorical cross-entropy
loss function and the Adam optimizer (Kingma and Ba,
2015). Training relied on an early-stopping guard at a loss
delta of 0.001 with a patience of 3 epochs.
The most frequent class in the data is proposition, trans-
lating into a “zero rule” baseline of 0.388, obtained by the
trivial model constantly emitting that label. To validate data
integrity, we run a logistic regression on the plain dictionary
indexes, achieving a near-random F1 score of 0.30.
Our simplest competitive baseline is a logistic regression
over the GloVe-embedded representation of a paragraph.
The embedded input is a (480, 300) matrix, as induced by
the 300-dimensional GloVe vectors. This is the case for
all following baselines, which also use the embedding as a
first layer. This model already displays a productive 0.77
F1 score, and we observe a single class that is perfectly
recognized – acknowledgement.
Additionally, we train a perceptron model, starting with the
GloVe embedded paragraph and containing a single hidden
layer of 128 neurons, showcasing a 0.83 F1 score.
A baseline that is near the state of the art is the Hierarchi-
cal Attention Networks (HAN) model (Yang et al., 2016).
HAN excels at document-sized classification tasks, as using
an attention mechanism allows them to address the long-
range contextual information deficiencies of earlier archi-
tectures. As our statement task is only a small fraction of a
document in size, we would expect HANs to be mildly suc-
cessful. For the HAN implementation, we used an openly
available Keras plugin (Hoogenboom, 2018). In order to
avoid the extra complexity of evaluating the sentence tok-
enization, we did not use the sentence breaks, but instead
partitioned the 480 word input into fixed sentence sizes.
Performing a grid search on 3% of the data, we found the
best partition to be 8 sentences of 60 words each. Thus
trained, the HAN model achieved an F1 score of 0.89.
Last, we train a Bidirectional LSTM (BiLSTM) encoder-
decoder model, also known as a sequence-to-sequence
(seq2seq) model, turned into a classifier via a standard
softmax-activated dense layer. BiLSTM encoder-decoder
models (Cho et al., 2014) have been shown to learn rich
representations over their training data, generalize well and
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Figure 2: Normalized confusion matrix of a 50-class BiLSTM encoder-decoder

are successful in tracking long-distance contextual informa-
tion, compared to classical RNN approaches - both due to
the gating mechanisms of LSTM cells and the bidirectional
application over the input. Encoder-decoders remain near
to state-of-the-art results and are often coupled with dif-
ferent modeling components in ensemble techniques. Re-
cent work (Sachan et al., 2019) suggests simple encoder-
decoder models continue to be able to achieve competitive
results, and we provide them as a baseline.

We coarsely searched for a good layer size by training
model variants with 32, 64, 128 and 256 LSTM cells. We
also coarsely experimented with upto 8 layers in depth. Our

best model from these limited investigations has the shape:

BiLSTM(128)→ BiLSTM(64)→ LSTM(64)→ Dense(13)

It achieves a baseline F1 score of 0.91, the best baseline
presented in this paper. Its confusion matrix, also evaluated
on the unseen test set of 2.1 million paragraphs, is presented
in Figure 3. We are hosting a live demonstration of this
baseline model at (Ginev, 2019b).

4.1. Controlling for the formula modality
Starting from scratch, we re-extract the statement dataset
with all traces of math symbolism omitted. The new col-
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Baselines 50-class F1 score F1 (no math)

Zero Rule 0.201 0.206
BiLSTM encoder-decoder 0.67 0.67

Baselines 13-class F1 score F1 (no math)

Zero Rule 0.388 0.369
LogReg 0.30 0.35
LogReg + GloVe 0.77 0.77
Perceptron 0.83 0.83
HAN 0.89 0.88
BiLSTM encoder-decoder 0.91 0.90

Table 2: Baselines for “13 nest” classification tasks

lection has a mean of 59 words per paragraph and a median
of 37.
A separate set of GloVe embeddings is built on the math-
free data. All baseline methods are retrained and re-
evaluated. The baseline results are summarized in Table 2.
In brief, the math symbolism modality did not influence
regression models, and provided a 0.01 F1 score improve-
ment to context-sensitive models. We leave investigations
of the robustness of these findings to other studies, but re-
mark further use of math symbolism has hints of promise
for improving classification performance.

5. Discussion
There is a clear hierarchy of difficulty in discriminating
between different classes. At the two extremes, logistic
regression was enough to achieve perfect classification of
the acknowledgement label, while example had mixed re-
sults even with our best benchmark. Acknowledgements
meet two very helpful criteria. First, they use emotive lan-
guage visibly different from the main body of a scientific
manuscript, which is technical and aims to be free of senti-
ment. Second, they have a very standard and narrow com-
municative function, which contributes to their regularity
and separability. To contrast, examples can be difficult to
separate from e.g. remark and proposition. A component
to that is the task limitation of using only the first paragraph
of a potentially longer exposition, and having no manual
curation of the annotated data. It is also unclear whether a
human evaluator could accurately classify first paragraphs
which act as preliminary to the central statement.
Composite groups of classes may be empirical demonstra-
tions of language nests, as indicated by the consolidated
proposition class, which achieved a recall of 0.98. This
shows how it can be fruitful to use a model known to per-
form well on standard NLP tasks in pre-analysis, in order
to guide task design. Our investigations have shown that a
careful grouping of related classes, while retaining 99% of
available annotated data, is essential for reaching state-of-
the-art performance with known models on this task. We
have demonstrated that the performance of the same base-
line model improves from 0.67 to 0.91 F1 score through
this type of empirical curation.
There are two observations on data integrity in mutual ten-
sion. On one hand, we have a very large dataset, in the

tens of millions of labeled samples, sufficient to train deep
learning networks, as well as to saturate the models we’ve
presented as baselines, which have less than a million hy-
perparemeters. Achieving a high F1 score in the announce-
ment of the task gives us some confidence of data quality
and experimental design that allow for state-of-art methods
to compete. On the other hand, we do not have the capacity
to provide a real human evaluation on the task as posed, in
order to set a natural “best” baseline, which would certainly
be less than a perfect score. As the samples were never
intentionally marked up for classification training, there is
unaccounted noise, as well as conflicting counter-examples.
This is the case as there is a qualitative difference between
being asked to assign a label to an existing paragraph, com-
pared to starting a new paragraph with the prior intention of
it ultimately being e.g. a definition. A couple of problem-
atic examples we observed are abstracts which begin with
an enumeration of keywords, as well as conclusions which
begin with an acknowledgement.

6. Related Work
Our work is the first systematic large-scale attempt to do
scientific statement classification that we are aware of. Pre-
vious efforts of using arXiv as a dataset mainly focus on
topic modeling and statistical analyses. They suffer from
two technical drawbacks.
First, the size and heterogeneous nature of the dataset has
posed a challenge. Early experiments would commonly
analyze in the low tens of thousands of articles (Watt,
2008), which comprise only 1-2% of all available entries
and may offer a skewed sample. Similarly, a limited ex-
ploration into a “segment classification” task over arXiv
has been carried out by (Solovyev and Zhiltsov, 2011). It
examines only a small fraction of an early version of the
arXMLiv dataset, but does not attempt to model the lan-
guage of statements, instead focusing on structural relation-
ships and headings. The reader would notice headings (e.g.
“Definition 2.3”) are indeed reliably induced by the origi-
nal author markup, thus somewhat directly achieve the 1.0
F1 score reported for the sample. Nevertheless, (Solovyev
and Zhiltsov, 2011) is the first body of work we’re aware of
that broaches a “statement classification”-near task descrip-
tion for arXiv. More recently, a larger subset of arXMLiv
has been used by the Math information retrieval (MathIR)
community, who employ over a hundred thousand articles
for benchmarking math-aware search systems (Aizawa et
al., 2016).
The second challenge is high quality representation. Even
cases where the experiment spans the entire corpus (Rah-
man and Finin, 2017; Clement et al., 2019; Dai et al., 2015)
currently lack the canonical machine-readability offered by
the HTML format we base our data extraction on. Instead,
they work via reverse-engineering the printer-oriented PDF
format back into a plain text form. These approaches are
lossy and retrieve less structural information than the cues
deposited by the author in the original sources. In partic-
ular, the HTML dataset preserves the exact environment
scoping of marked up statements; it allows us to create
structured trees for mathematical expressions; and clearly
and reliably separates away the styling from the content
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Figure 3: Normalized confusion matrix of a 13-class BiLSTM encoder-decoder

of the document. Our approach has been recognized by
the MathIR community (Aizawa et al., 2016), who use the
machine-readable formula representations for their investi-
gations into formula retrieval.

7. Conclusion
This paper proposed a novel scientific statement classifica-
tion task. The task aims to assign 13 statement labels to
10.4 million paragraphs from 1.2 million scientific preprint
articles submitted to arXiv.org. We trained and evaluated
several baseline models, and report a best benchmark of
0.91 F1 score for a BiLSTM encoder-decoder. We are
hopeful to see this baseline bested in follow-up work.
By working in the open, using a machine-readable HTML
format and following a joint annual release cycle of dataset

and derived resources, we hope to facilitate transparent and
easy reproducibility of this work. Adding to the source
data and embeddings which were already public (Ginev,
2018), we provide open implementations of our prepro-
cessing (Ginev and Schaefer, 2019), experimental setup and
models (Ginev, 2019c) and offer a live demonstration site
for the best baseline (Ginev, 2019b). The final task data is
also published as a dedicated resource (Ginev, 2019a) and
is meant to be a starting point for future experiments by the
larger community.

7.1. Future work
The arXiv.org server is receiving an accelerating number of
submissions every year, and shows promise to be a continu-
ously expanding and self-renewing source of data. We plan
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to update and continue to improve the datasets and auxiliary
resources presented in this paper on an annual basis.
We would suggest that an extension of the task is possi-
ble, where each paragraph is analyzed as part of the full-
document context. In positionally anchored cases, such as
abstract and conclusion, this is likely to provide a strong
boost. Similarly, there is a dependent order between the-
orems and their proofs. We are considering extending the
task to a sequence-of-paragraphs classification task, where
the model would be presented with a (n, 480, 300) input for
a document of n paragraphs and predict a sequence of n la-
bels. This will provide additional document-level insight,
as the current paragraph task only attempts to separate the
language nests of single statements in isolation.
Our statement classification dataset also has room for ex-
pansion. We could survey all high frequency heading titles
in the corpus, and repurpose them as labels. Lastly, there
are various forms of human curation that could aid us in
evaluation, from providing a human benchmark score, to
identifying and eliminating invalid samples.
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