
Proceedings of the First Knowledgeable Natural Language Processing Workshop, pages 27–32
December 7, 2020. c©2020 Association for Computational Linguistics

27

BERTChem-DDI : Improved Drug-Drug Interaction Prediction from text
using Chemical Structure Information

Ishani Mondal
Microsoft Research Lab

Lavelle Road, Bengaluru, India
t-imonda@microsoft.com/ishani340@gmail.com

Abstract
Traditional biomedical version of embeddings
obtained from pre-trained language models
have recently shown state-of-the-art results
for relation extraction (RE) tasks in the med-
ical domain. In this paper, we explore
how to incorporate domain knowledge, avail-
able in the form of molecular structure of
drugs, for predicting Drug-Drug Interaction
from textual corpus. We propose a method,
BERTChem-DDI, to efficiently combine drug
embeddings obtained from the rich chemical
structure of drugs (encoded in SMILES) along
with off-the-shelf domain-specific BioBERT
embedding-based RE architecture. Experi-
ments conducted on the DDIExtraction 2013
corpus clearly indicate that this strategy im-
proves other strong baselines architectures by
3.4% macro F1-score.

1 Introduction

Concurrent administration of two or more drugs to
a patient to cure an ailment might lead to positive
or negative reaction (side-effect). These kinds of
interactions are termed as Drug-Drug Interactions
(DDIs). Predicting drug-drug interactions (DDI)
is a complex task as it requires to understand the
mechanism of action of two interacting drugs. A
large number of efforts by the researchers have
been witnessed in terms of automatic extraction of
DDIs from the textual corpus (Sahu and Anand,
2018), (Liu et al., 2016), (Sun et al., 2019), (Li
and Ji, 2019) and predicting unknown DDI from
the Knowledge Graph (Purkayastha et al., 2019),
(Karim et al., 2019). Automatic extraction of DDI
from texts aids in maintaining the databases with
high coverage and help the medical experts in their
diagnosis and novel experiments.

In parallel to the progress of DDI extraction from
the textual corpus, some efforts have been observed
recently where the researchers came up with var-
ious strategies of augmenting chemical structure

information of the drugs (Asada et al., 2017) and
textual description of the drugs (Zhu et al., 2020a)
to improve Drug-Drug Interaction prediction per-
formance from corpus and Knowledge Graphs.

The DDI Prediction from the textual corpus has
been framed by the earlier researchers as relation
classification problem. Earlier methods (Sahu and
Anand, 2018), (Liu et al., 2016), (Sun et al., 2019),
(Li and Ji, 2019) for relation classification are based
on CNN or RNN based Neural Networks.

Recently, with the massive success of the pre-
trained language models (Devlin et al., 2019),
(Yang et al., 2019) in many NLP classification /
sequence labeling tasks, we formulate the problem
of DDI classification as a relation classification task
by leveraging both the entities and sentence-level
information. We propose a model that leverages
both domain-specific contextual embeddings (Bio-
BERT) (Lee et al., 2019) from the target entities
and also external Chemical Structure information
of the target entities (drugs). In the recent years,
representation learning has played a pivotal role in
solving various machine learning tasks. In addition
to information of drug entities from the text, we
make use of the rich hidden representation obtained
from the molecule generation using Variational
Auto-Encoder (Gómez-Bombarelli et al., 2018) rep-
resentation of the drugs to learn the chemical struc-
ture representation. During unsupervised learning
of chemical structure information of the drugs us-
ing Variational AutoEncoder (Kingma and Welling,
2014), we make use of the canonical SMILES rep-
resentation (Simplified Molecular Input Line Entry
System) obtained from the DrugBank (Wishart
et al., 2008). We illustrate the overview of the pro-
posed method in Figure 1. Experiments conducted
on the DDIExtraction 2013 corpus (Herrero-Zazo
et al., 2013) reveals that this method outperforms
the existing baseline models and is in line with the
new direction of research of fusing various infor-
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Figure 1: Schematic Representation of BERTChem-DDI with the input sentence “Glepafloxain is a competitive
inhibitor of the metabolism of Theophylline” tagged with two drug entities Glepafloxacin and Theophylline.

mation to boost DDI classification performance.
In a nutshell, the major contributions of this work

are summarized as follows:

• We propose a method that jointly leverages
textual and external Knowledge information
to classify relation type between the drug pairs
mentioned in the text.

• We show the molecular information from the
SMILES encoding using Variational AutoEn-
coder helps in extracting DDIs from texts.

• Our method achieves new state-of-the-art per-
formance on DDI Extraction 2013 corpus.

2 Methodology

Given a sentence s with target drug entities d1 and
d2, the task is to classify the type of relation (y) the
drugs hold between them, y ∈ (y1 , ...., yN ), where
N denotes the number of relation types.

2.1 Text-based Relation Classification

Our model for extracting DDIs from texts is based
on the pre-trained BERT-based relation classifica-
tion model by (Wu and He, 2019). Given a sentence
s with drugs d1 and d2, let the final hidden state
output from BERT module is H . Let the vectors
Hi to Hj are the final hidden state vectors from

BERT for entity d1, and Hk to Hm are the final
hidden state vectors from BERT for entity d2. An
average operation is applied to obtain the vector
representation for each of the drug entities. An acti-
vation operation tanh is applied followed by a fully
connected layer to each of the two vectors, and the
output for d1 and d2 are H

′
1 and H

′
2 respectively.

H
′
1 = W1[tanh(

1

(j − i+ 1)

j∑
t=i

Ht] + b1 (1)

H
′
2 = W2[tanh(

1

(m− k + 1)

m∑
t=k

Ht] + b2 (2)

We make W1 and W2, b1 and b2 share the same
parameters. In other words, we set W1 = W2 and
keep b1 = b2. For the final hidden state vector of
the first token (‘[CLS]’), we also add an activation
operation and a fully connected layer, which is
formally expressed as:

H
′
0 = W0(tanh(H0)) + b0 (3)

Matrices W0, W1, W2 have the same dimensions,
i.e. W0 ∈ Rd∗d ,W1 ∈ Rd∗d, W2 ∈ Rd∗d, where d
is the hidden state size from BERT.
We concatenate H

′
0, H

′
1 and H

′
2 and then add a

fully connected layer and a softmax layer, which
can be expressed as :
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h
′′
= W3[concat(H

′
0, H

′
1, H

′
2)] + b3 (4)

y
′
t = softmax(h

′′
) (5)

W3 ∈ RN∗3d, and y
′
t is the softmax probability

output over N . In Equations (1), (2), (3), (4) the
bias vectors are b0, b1, b2, b3. We use cross entropy
as the loss function. We denote this text-based
architecture as BERT-DDI.

2.2 Chemical Structure Representation

For the purpose of constructing an encoder from
which a continuous latent representation is ob-
tained, molecular representation of drugs has been
used as both input and output.

Gómez-Bombarelli et al. (Gómez-Bombarelli
et al., 2018) converted the discrete SMILES rep-
resentations of the drug molecules into a contin-
uous multi-dimensional representation using the
unsupervised deep learning algorithm Variational
Auto-Encoder(VAE) (Kingma and Welling, 2014).
This representation has also been leveraged by
(Purkayastha et al., 2019). The input x = (x1 ,x2
,....,xn ) to VAE is represented by xi ∈ X where
X = C, =, (, ), O, F , 1, 2, · · · 9 in the SMILES
representation. Each xi is a X-dimensional one-hot
vector. We denote this VAE architecture used in our
experiments as ChemVAE and is explained as fol-
lows: As an encoder it uses three 1D convolutional
layers, followed by a single fully-connected layer.
The decoder uses three layers of GRU networks.
The objective of this work is to maximize the prob-
ability distribution of generation of SMILES repre-
sentation of drug molecules with the help of latent
representation as presented in equation below:

P (XSMILES) =

∫
P (XSMILES |z)P (z)dz

(6)
In equation 6, XSMILES denotes the drug

molecules, z represents the latent SMILES rep-
resentation, P (XSMILES) denotes the probabil-
ity distribution of drug molecules. The ChemVAE
model takes SMILES representation of the drugs
as input and encodes the drugs into continuous
latent representation (z). The decoder then sam-
ples a string from the probability distribution over
characters in the input SMILES representation. Fi-
nally, the hidden representation for each of the drug
entities is treated as its chemical structure represen-
tation from ChemVAE.

Train Set Test Set
No. of unique drugs 2931 1055

No. of Normalized drugs 2670 997
No. of DDI Pairs 27779 5713

Table 1: Statistics of the DDI Extraction corpus 2013.

2.3 BERTChem-DDI
From the sentence s containing two target drug en-
tities d1 and d2, we obtain the chemical structure
representation of two drugs c1 and c2 respectively
using ChemVAE. We concatenate these two em-
beddings c1 and c2 and pass those through a fully
connected layer as represented as follows:

chm = W [concat(c1, c2)] + b (7)

W and b are the parameters of the fully-connected
layer of the chemical structure representation of d1
and d2. The final layer of BERTChem-DDI model
contains the concatenation of all the previous text-
based outputs (see Section 2.1) and chemical struc-
ture representation as expressed in the equations:

o
′
= W3[concat(H

′
0, H

′
1, H

′
2, chm)] + b3 (8)

y
′
t = softmax(o

′
) (9)

Finally the training optimization is achieved using
the cross-entropy loss (Lt) :

Lt =
∑
t

yt log y
′
t (10)

3 Experimental Setup

In this section, we explain the dataset and experi-
ments of using ChemVAE and BERTChem-DDI.

3.1 Dataset and pre-processing
We have followed the task setting of Task 9.2 in
the DDIExtraction 2013 shared task (Herrero-Zazo
et al., 2013) for the evaluation. This data set com-
prises of documents annotated with drug mentions
and five types of interactions: Mechanism, Effect,
Advice, Int and Other. The task is a multi-class
classification to classify each of the drug pairs in
the sentences into one of the types and we evaluate
using Precision (P), Recall (R) and F1-score (F1)
for each relation type.

During pre-processing, we obtain the DRUG
mentions in the corpus and map those into unique
DrugBank identifiers. This mention normalization
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Embeddings on BERT-DDI Test set Macro F1
bert-base-cased 0.806

scibert-scivocab-uncased 0.812
biobert v1.0 pubmed pmc 0.818

biobert v1.1 pubmed 0.822

Table 2: Ablation of the contextual embeddings.

Models Embeddings Macro F1
BERT-DDI biobert v1.0 pubmed pmc 0.818

BERTChem-DDI biobert v1.0 pubmed pmc 0.829
BERT-DDI biobert v1.1 pubmed 0.822

BERTChem-DDI biobert v1.1 pubmed 0.838

Table 3: Probing deeper into the influence of chemical
structure information into the BERT-based models for
DDI Relation Classification.

has been performed based on the longest overlap
of drug mentions in the DrugBank. This men-
tion normalization has been done for obtaining the
corresponding SMILES representation to encode
molecular structure information. The dataset statis-
tics of the total drugs and the normalized drugs
are enumerated in table 1. We initialize the non-
normalized drug representations using pre-trained
word2vec trained on PubMED 1.

3.2 Training Details

We make use of the pre-trained contextual embed-
dings such as bert-base-cased, scibert-scivocab-
uncased (Beltagy et al., 2019) and domain-
specific biobert v1.0 pubmed pmc and biobert v1.0
pubmed as the initialization of the transformer en-
coder in BERTChem-DDI. We uniformly keep the
maximum sequence length as 300, batch size 16,
initial learning rate for ADAM optimizer as 2e-5,
drop out 0.1 for all the embedding ablations and
trained for 5 epochs. During unsupervised training
of ChemVAE with drugs from ZINC (Irwin and
Shoichet, 2005), the input SMILES representation
has been trimmed to 120. The hidden dimension of
ChemVAE encoder is 200 and for the decoder it is
500. Finally, a 292-dimensional representation of
the drugs has been ultimately used for initialization
of the BERTChem-DDI model’s chemical structure
representations of the drugs.

4 Results and Discussion

In this section, we provide a detailed analysis of the
various results and findings that we have observed
during experimentation. We have demonstrated

1http://evexdb.org/pmresources/ngrams/PubMed/

Methods Adv Eff Mch Int Tot
F1 F1 F1 F1 F1

(Sahu and Anand, 2018) 79 67 76 43 71
(Asada et al., 2018) 81 71 73 45 72
(Zhang et al., 2017) 80 71 74 54 72
(Sun et al., 2019) 80 73 78 58 75

(Vivian et al., 2017) 85 76 77 57 77
(Zhu et al., 2020b) 86 80 84 56 80

Our method 88 80 87 58 83

Table 4: Comparison of F1 scores for all the relation
types using existing baselines on test set. Adv indicates
’Advice’, Mch denotes ’Mechanism’, ’Eff’ means ’Ef-
fect’, ’Tot’ means overall.

strong empirical results based on the proposed ap-
proach for both text and chemical structure. We
further want to understand the specific contribu-
tions by the chemical structure component besides
the pre-trained BERT and its other domain-specific
variants. For this purpose, we refer to our exper-
imental configurations in meaningful ways while
enumerating the results.

Ablation of Embeddings on BERT-DDI: Dur-
ing ablation analysis, we observe that the incorpo-
ration of domain-specific information in biobert v.1
pubmed boosts up the predictive performance in
terms of macro-F1 score (across all relation types)
by 2.3% compared to bert-base-cased. More-
over, the scibert-vocab-cased embedddings due
to the scientific details obtained during fine-tuning
achieves reasonable boost in performance. biobert
v.1 pubmed based BERT-DDI is thus the best-
performing text-based relation classification model.
The results are enumerated in Table 2.

Advantage of Chemical Structure embeddings
on BERTChem-DDI: During empirical analy-
sis of the BERTChem-DDI model, we observe how
much performance gain can be achieved by aug-
menting the chemical structure information. From
the results enumerated in terms of macro F1-score
on all the relation types in table 3, we observe that
the best-performing BERT-DDI model achieves a
performance boost of 1.6% after adding chemical
structure information in BERTChem-DDI. Probing
deeper, we observe that the relation types Mecha-
nism (3.2%) and Advice (2.11%) achieve significant
performance improvement over BERT-DDI.

Comparison with the existing baselines: We
compare our best-performing model with some of
the best-performing existing baselines. Our method
achieves the state-of-the-art performance based on
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the results in Table 4.

5 Conclusion

In this paper, we develop an approach for DDI re-
lation classification based on pre-trained language
model and chemical structure representation of
drugs. Experiments on the benchmark DDI dataset
proves the efficacy of our method. Possible direc-
tions of further research might be to explore Knowl-
edge Graph based drug representation combined
with textual description and other relation specific
embeddings obtained from various ontologies.
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