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RESUME
Modeéles contextualisés en langue francaise pour la reconnaissance des entités nommées dans
le domaine biomédical

La reconnaissance des entités nommées (NER) est essentielle pour les applications biomédicales
car elle permet la découverte de connaissances dans des données en texte libre. Comme les entités
sont des phrases sémantiques, leur signification est conditionnée par le contexte pour éviter toute
ambiguité. Dans ce travail, nous explorons les modeles de langage contextualisés pour la NER dans
les textes biomédicaux francais dans le cadre du Défi Fouille de Textes. Notre meilleure approche a
obtenu une mesure F1 de 66% pour les symptomes et les signes, et les catégories de pathologie, en
étant dans le top 1 pour la sous-tache 1. Pour les catégories anatomie, dose, examen, mode, moment,
substance, traitement et valeur, elle a obtenu une mesure F1 de 75% (sous-tache 2). Si I’on considere
toutes les catégories, notre modele a obtenu le meilleur résultat dans le cadre de ce défi, avec une
mesure F1 de 72%. L utilisation d’un ensemble de modeles de langages neuronaux s’est révélée tres

efficace, améliorant une base de référence du CRF de 28% et un modele de langage spécialisé unique
de 4%.

ABSTRACT

Named entity recognition (NER) is key for biomedical applications as it allows knowledge discovery
in free text data. As entities are semantic phrases, their meaning is conditioned to the context to avoid
ambiguity. In this work, we explore contextualized language models for NER in French biomedical
text as part of the Défi Fouille de Textes challenge. Our best approach achieved an F;-measure of
66% for symptoms and signs, and pathology categories, being top 1 for subtask 1. For anatomy, dose,
exam, mode, moment, substance, treatment, and value categories, it achieved an F;-measure of 75%
(subtask 2). If considered all categories, our model achieved the best result in the challenge, with an
Fi-measure of 72%. The use of an ensemble of neural language models proved to be very effective,
improving a CRF baseline by up to 28% and a single specialised language model by 4%.

MOTS-CLES : reconnaissance d’entités nommées, encapsulation de mots contextualisés, CRF,
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BERT, CamemBERT.

KEYWORDS: named entity recognition, contextualized word embeddings, CRF, BERT, Camem-
BERT.

1 Introduction

The large amount of raw text data available in the biomedical domain enables to leverage the wealth of
the content. Combined with manually curated data, it allows the development of automatic techniques
to unlock the value of the raw resources for supporting healthcare and advance science. In particular,
information extraction methods enable the extraction of specific data types from text data (e.g.,
entities). Information extraction fosters several applications from tracking of technologies (Teodoro
et al., 2010) in patents to clinical decision support (Liu ef al., 2016), biocuration assistance (Liu et al.,
2016; Teodoro et al., 2020), and healthcare-associated infections detection (Tvardik ez al., 2018) in
the biomedical domain. It has also important challenges associated with the application domain and
the language in which the text is available. Indeed, information extraction systems for recognizing
entities are mostly focused on English. However, it is widely recognised that it is crucial that research
expands to other languages in the same scale (Dupont, 2017; Grabar et al., 2019).

Named entity recognition (NER) is a key part in information extraction systems. Named entities are
phrases that contain names of persons, organizations, locations (Tjong Kim Sang & De Meulder,
2003) to name but a few examples. There are many studies for NER in French language, for instance in
1) journalistic data (Dupont, 2017; Martin et al., 2020) with a set of entities like person, organization,
company, location, point of interest, fiction character and product; and ii) recognizing entities in
tweets (Sileo et al., 2017), including person, music artist, organisation, product and media, among
others. In the biomedical domain, recognizing entities is mainly focused on semantic groups and
concepts from Unified Medical Language System (UMLS) on The Quaero French Medical Corpus
(Névéol et al., 2014). The Quaero corpus contains annotated French Medline (titles and abstracts)
and European Medicines Agency (EMEA) documents (drug labels).

Community challenges, such as CLEF eHealth, have been evaluating specific information extraction
tasks for the clinical domain (Sankhavara & Majumder, 2019). Erasmus MC, one of the CLEF eHealth
top scorers, is a dictionary-based NER for French UMLS and translations for non-French terms,
achieving 74.9% of F;-measure for EMEA and 69.8% of F;-measure for Medline corpus in semantic
groups annotation (Van Mulligen et al., 2016). In Erasmus MC, semantics could be missed by the
presence of compounded semantic groups or UMLS concepts. Similarly, SIFR annotator is a semantic
annotator for French clinical narratives (Tchechmedjiev et al., 2018). It relies on Mgrep, a concept
recognizer based on label matching and heuristics, and achieves 62.6% of F;-measure in EMEA and
58.9% of F;-measure in Medline for semantic groups. The tool is limited due to the lack of word
disambiguator and scarce French ontologies concerning English ontologies.

Deep neural language models have been recently leveraged to improve NER methods (Lee et al.,
2019). Deep neural language models are self-supervised models that take advantage of free text
to learn word representations using their context (Turian et al., 2010). With the advent of low-
dimensional representation models supported by deep neural networks, such as word2vec (Mikolov
et al., 2013), the importance of word representations has become more evident. Further research has
been taken to find out more accurate representations of words, such as in Global Vectors (GloVe)
(Pennington et al., 2014), and to the more recent contextualized representations, like ELMo (Peters
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et al., 2018), UMLFiT (Howard & Ruder, 2018), and BERT (Devlin et al., 2019). In particular,
BERT is based on the transformers architecture, which uses an attention mechanism, via bidirectional
pre-training from unlabeled text, conditioned in left and right contexts in all layers (Devlin et al.,
2019). BioBERT (Lee et al., 2019), a BERT-based model trained on large-scale biomedical corpora
has shown significant improvements in downstream tasks in the biomedical domain, including NER.
Similarly, CamemBERT ! is a contextualized language model trained and optimized specifically for
French language (Martin et al., 2020; Devlin et al., 2019) based on RoBERTa model (Liu ef al.,
2019).

In this paper, we investigate contextualized language models for French NER in clinical texts in the
context of the Information Extraction task of the Défi Fouille de Textes (DEFT) challenge (Cardon
et al., 2020). This task is divided in two subtasks, which aim to identify anatomie (anatomy), dose,
examen, mode, moment, pathologie (pathology), sosy (symptoms and signs), substance, traitement
and valeur (value) entities in clinical narratives. Inasmuch as each language has its own peculiarities,
our hypothesis is that it is worth designing a specific language model for French clinical corpora.
Thus, we explore a CamemBERT-based model pre-trained on a biomedical corpus and fine-tuned on
the DEFT information extraction task data. We compare its performance with multilingual BERT,
CamemBERT and an ensemble of language models. In the following sections, we describe the design
and results of the experiments.

2 Methods

In this work, we explore two perspectives for NER : as information extraction and as word representa-
tion. For the first, named entities are considered as a sequence classification problem, for which we
propose a baseline method using the conditional random fields (CRF) framework. For the latter, our
methodology is based on different deep neural language models derived from the BERT architecture.
These methods were used to extract named entities in subtask 1 - symptoms and signs, and pathology
- and subtask 2 - anatomy, dose, exam, mode, moment, substance, treatment, and value of the DEFT
Information extraction task.

2.1 Conditional Random Fields

We used a linear chain CRF sequence classifier as a baseline and relied on the implementation of
CRFSuite . This probabilistic graphical model considers correlations between the neighborhood of
words in a sentence and its features, jointly with the corresponding labels. Such correlation allows
this model to learn the labels in a sequence (Lafferty et al., 2001). In fact, linear chain CRF estimates
the conditional probability of a label given a word sequence (Sutton, 2012). As shown in Table
1, our model relies on a set of NER standard features defined over a window of 42 tokens (Guo
et al., 2014; Copara et al., 2016), including the word itself, lower-cased word, capitalization pattern,
prefixes, suffixes, among others. Additionally, we used language-based features, such as lower-casing
the words in the text, checking if the current token is a measure unit and whether the current token
contains a French character. It is worth noting that we have not used gazetteers extensively, just a
short list of units.

1. https://camembert-model.fr/
2. http://www.chokkan.org/software/crfsuite/
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Feature

word Une premiere dose de 20 mg
lowercase word une premiere dose de 20 mg
capitalization pattern | ULL LLLLLLLL | LLLL LL DD LL

type InitUpper | AllLetter AllLetter | AllLetter | AllDigit | AllLetter
prefixes u, un, une | p, pr, pre d, do, dos | d, de 2,20 m, mg
sufixes e, ne, une | e, re, ere e, se,ose | e, de 0, 20 g, mg
unit no no no no no yes
french char no yes no no no no

TABLE 1 — Example of features for the sentence "Une premiéere dose de 20 mg". *U — uppercase ; L
— lowercase ; D — digit.

In our CRF model each entity is associated with one label (as usually in NER) and when there are
nested entities, we keep entities that encompass other and dismiss nested entities.

2.2 Transformers with a token classification on top

For this experiment, we selected five BERT-based language models. The first, bert-base-multilingual-
cased (Devlin et al., 2019), is used as our transformer baseline as it was not trained specifically on a
French corpus. The second and the third models, camembert-base and camembert-large, respectively,
are based on the ROBERTa architecture (Liu et al., 2019), a BERT-based model with some changes
(tokenizer, training task, optimization, etc.) and trained on a large French corpus (Martin et al.,
2020). Models 4 and 35, so called, camembert-bio-base and camembert-bio-large, respectively, are
CamemBERT-based models pre-trained on a french biomedical corpus containing 31k+ scientific
publications extracted from PubMed. To further pre-train these models, we took CamemBERT
weights as a starting point. Then, using an Adam optimizer (Kingma & Ba, 2014), we minimized a
masked-language modeling loss. We trained it using 512 tokens during 5 epochs with a learning rate
of 5e-5 and batch size of 24 3.

As RoBERTa models are based on the BERT architecture, all our base and large models share
hyper-parameters. For the base models, we have 12 layers (L), with 768 hidden units (H) and 12
attention heads (A). For the large architecture versions, we have L=24, H=1024 and A=16. The
multilingual BERT model * uses WordPiece > as a tokenizer whereas the CamemBERT-based models
use SentencePiece (Kudo & Richardson, 2018). ® The tokenizer’s choice was driven by the original
model’s tokenizer. Indeed, as we were fine-tuning BERT or CamemBERT models, we had to reuse
the whole pipeline which includes the tokenizer (makes the link between a token and its trained
representation possible). As explained in their paper (Martin et al., 2020), SentencePiece does not
require pre-tokenization which makes it a non-language specific tokenizer. Table 2 summarizes these
architectural differences.

3. For the large model, as each step was too big for our 4 GPUs machine, we used gradient accumulation (i.e., the
accumulation of 2 batches of 12 in order to get a batch of 24)

4. The multilingual BERT model uses a vocabulary size of 30K.

5. Comparison between WordPience and SentencePiece tokenizers
sentencepiece

6. CamemBERT uses a vocabulary size of 32K.

https://github.com/google/
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Tokenizer WordPiece SentencePiece
bert-base-
Model multilineual- camembert- | camembert- | camembert- | camembert-
cased £ base bio-base large bio-large
layer (L) 12 24
hidden (H) 768 1024
heads (A) 12 16

TABLE 2 — Architectural differences of BERT-based models.

For the fine-tuning of the NER models, we used the hugging face ’ framework, which basically
standardizes the process for all the transformers. Each NER model is a BERT module with a fully
connected layer on top of the hidden states of each token. As entities could overlap, we decided
to use a binary or one-vs-all approach per entity instead of using a softmax which does not allow
multi-labelling. All previously presented language models were fine-tuned on the DEFT task 3 dataset
for 20 epochs, with a sequence length of maximum 256 tokens, a learning rate of 4e-5 and a warmup
proportion of 0.1. As for the CRF baseline, we use one label for each entity, discarding nested entities.

2.3 Dataset

In DEFT task 3 - information extraction - there are two subtasks. Subtask 1 is focused on the
pathologie and sosy (symptoms and signs) entities. Subtask 2 concerns the identification of anatomie,
dose, examen, mode, moment, substance, traitement, and valeur entities. For assessing these subtasks,
the challenge organisers provided a training dataset composed of 100 French clinical documents
manually annotated with the 8098 entities (Grabar et al., 2018). The annotated data include all the
entities mentioned for each subtask, in addition to informational entities (e.g. date, durée, frequence)
that have not been considered in our models. An example of annotation is shown in Figure 1. As we
can notice, nested entities appear often in the annotations, sometimes within the same subtask and
sometimes across subtasks.

7. https://huggingface.co/transformers/

40


https://huggingface.co/transformers/

signe ou symptome

‘

Patiente de 45 ans, présentait des douleurs périombilicale intenses depuis trois mois. Ces douleurs étaient accompagnées

:‘%ignE ou symptime [absent]

*ignE ou symptame [absent] - anatomie|
de vomissements sans  ftroubles dutransit  ni de notion d’hémorragie digestive. Son examen clinique trouvait un
signe ou symptime signe ou symptame
- Enatomie] - anatomie] _h
empatement sus-ombilical avec paleur cutanéomugqueuse diffuse. Le bilan biologique montrait une
(pathologie]
valeur substance| pathologie| |valeur - anatomie| -

. —~ T e e, . . . . T NPTy P Py . . .
anémie a 9g/dl d'hémoglobine et une hypo albuminémie & 28g/l. La fibroscopie oeso-gastroduodénale objectivait une

; anatomie B pathologie [ possible

gastrite congestive avec atrophie des villosités duodénale dont la Eiopsié etait en faveur d'une maladie coeliague.

FIGURE 1 — An example of clinical narrative with entity annotations for subtasks 1 and 2. The
annotations are color coded.

Table 3 shows the distribution of annotations among the entities in the training data. The majority
of annotations come from the sosy, anatomie and examen entities, which compose together 54% of
the training data. On the other hand, mode, dose and moment represent 13% of the dataset. To train
and validate our models in the training phase, this dataset was split into train (80%), dev (10%) and
test (10%) sets. The hyper-parameters of the models were selected for the test phase based on their
performance on the dev set.

Entity Train Dev Test All
(count/ %) | (count/ %) | (count/ %) | (count/ %)

anatomie 1241/ 19 57176 174 /126 1472 /18
dose 302/5 40/4 5/1 347/ 4
examen 962/ 15 119/12 137720 1218 /15
mode 214 /3 2412 11/2 249 /3
moment 363/6 7718 54178 494 /6
pathologie | 260 /4 91/9 184 /27 53577
SOsy 1451/23 196/ 20 33/5 1680 /21
substance | 883/ 14 85/8 22/3 990/ 12
traitement | 301/5 193/19 52/8 546 /7
valeur 443 /17 119/12 5/1 56717
Total 6420/ 100 | 1001 /100 | 677 /100 8098 / 100

TABLE 3 — Entity distribution for the training phase collection.

3 Results and Discussion

In this section, we present the results of our models for the training and test phases for both subtasks.
During the training phase, we used only the training collection provided in the challenge in order to
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develop and tune our models. During the test phase, we evaluated over the test collection with the
parameters identified in the training phase.

3.1 Training phase

Table 4 shows the results of our models in the training phase. The baseline CRF model achieved 0.4641
of overall micro F;-measure, having a highest F;-measure for the valeur entity (0.7708) and the
lowest for the pathologie entity (0.1967). For the transformer-based models, the camembert-bio-base
model outperforms both base models (BERT and CamemBERT) for the overall micro and macro
F;-measures, demonstrating the effectiveness of the specific biomedical corpus for the clinical NER
task. For the large transformer models, CamemBERT achieves the highest micro F;-measure (0.6826)
and camembert-bio achieves the highest macro F;-measure (0.5790). All contextualized language
models outperform the baseline CRF model significantly, showing the outstanding performance of
these architectures for NER in biomedical French texts.

As described in Section 2.2, we used a one-vs-all approach to predict the overlapped (nested) entities
for the transformer models. This approach was not as effective for the CRF baseline, reducing the
overall (micro) F;-measure performance to 0.4464. Using this approach, no dose entity was correctly
recognised and F;-measure of traitement decreased to 0.1538. Nonetheless, the performance for
recognising anatomie improved to 0.5300 of F;-measure. These results suggest that in order to predict
dose or traitement correctly, it is necessary to observe near entities, given the nature of the CRF
learning model. We believe that the anatomie entity increased its performance mainly due to the fact
that it appears usually nested in the sosy, pathologie or examen entities. However, in a one-vs-all
approach, this entity will not be nested.

F;- ) bert-bgse- camembert | camembert- | camembert- | camembert-
baseline | multilingual- . .
measure cased -base large bio-base bio-large
anatomie 0.3673 0.7170 0.7675 0.8022 0.7921 0.7751
dose 0.2500 0.1111 0.4286 0.1538 0.2857 0.1538
examen 0.5727 0.6618 0.6957 0.6667 0.6926 0.7011
mode 0.2857 0.2857 0.3333 0.2857 0.4444 0.2500
moment 0.4000 0.6957 0.7273 0.6364 0.6667 0.7273
pathologie | 0.1967 0.3725 0.4956 0.5714 0.4248 0.5474
SOSy 0.4356 0.6139 0.5838 0.6961 0.6563 0.6772
substance | 0.4878 0.4400 0.3902 0.5854 0.5909 0.6341
traitement | 0.4255 0.4590 0.3810 0.4848 0.3582 0.5161
valeur 0.7708 0.7961 0.7885 0.8302 0.8182 0.8077
Overall | 5 4641 | 0.6135 0.6311 0.6826 0.6569 0.6791
(micro)
Overall 1) 1192 | 05153 0.5592 0.5713 0.5730 0.5790
(macro)

TABLE 4 — Evaluation of different models in the training phase.

We also assessed a voting strategy, or ensemble, between the transformers models, where all 5 BERT
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models vote with their predictions. For example, when the voting threshold v = 1, we use the set
of positive predictions coming from all the models, whereas when v = 3, we only use the positive
predictions when the majority of the models agree on an annotation. As shown in Figure 2, the
precision increases proportionally to the voting threshold, whereas the recall decreases. This clearly
points out the fact that the predictions of those models are different, otherwise recall would keep
constant as we increase the number of votes to validate a positive prediction. For the test phase, we
used the ensemble threshold v = 3, which resulted in the best overall (micro) F;-score in the training
phase.

Metrics against thresholds

0.9
o8 et
0.7 T

0.6 ﬁ'—— ----- .___\
0.5 - -
0.4
0.3
0.2
0.1

v=1 v=2 v=3 v=4 v=5
--=:Precision ==Recall —F1-score

FIGURE 2 — Validation of the voting strategy.

3.2 Test phase

In the test phase, we evaluated 3 runs for a dataset of 67 clinical narratives. For run 1, we used the
baseline model based on CRF. For run 2, we used the camembert-bio-large model. Finally, for run 3,
we used an ensemble based on a voting threshold of 3. The performance of our models is summarised
in Table 5. The ensemble model achieves 0.7262 of overall micro F} -measure, surpassing in 2.6%
the camembert-bio-large and in 14.8% the baseline. Taking into account camembert-bio-large and
baseline models, the former is better by 12.18%. This clearly shows that transformer methods in
biomedical French NER reach outstanding performance by only leveraging wealth in unstructured
data and without the necessity to design handcrafted features. Concerning the ensemble model, it
achieved the best overall F7-measure for both subtasks among our models, being the highest score
for subtask 1 and for the "all categories" evaluations among all models in the competition.

Similarly to the training phase, the highest F;-measure in the test phase is achieved for the valeur
entity (0.8561). This entity represents 9% of the annotations in the test collection, while in the whole
data collection it represents 16%. Thus, it seems that the training data is sufficiently characterized to
learn this entity automatically. The lowest performance for the ensemble method is found for dose
entity, as well we can confirm the lowest performance for this entity in Table 4 (during training phase).
This can be due to the variety of values in the annotated data, combining numbers and words (e.g.
de 0,5 a 0,75 litre), measure units (e.g. Img/kg/j) or simply words that easily could be associated
with a non-entity word (e.g. 24 paquets/année’ or ‘02’). Mode entities mostly are words without
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abbreviations neither numbers (e.g. ‘voie parasternale droite’ or ‘voie centrale intraveineuse’) i.e. it
contains less variety in the kind of values, this could come with an easier way to learn patterns and
make predictions.

bert-base-

F1- . . camembert- | camembert- | ensemble
Task 3 baseline | multilingual- )

measure large* bio-large (t=3)

cased*

pathologie | 0.3984 0.3628 0.5617 0.5344 0.5644
Subtask 1 SOSy 0.5091 0.5574 0.6318 0.6268 0.6733

Overall 0.4984 0.5303 0.6225 0.6153 0.6603

anatomie 0.5561 0.7646 0.8024 0.7978 0.8069

dose 0.3684 0.3604 0.5385 0.4118 0.5217

examen 0.6787 0.6842 0.7169 0.7149 0.7333

mode 0.3423 0.5935 0.6543 0.6386 0.6486
Subtask 2 moment 0.6273 0.6748 0.7219 0.7576 0.7869

substance | 0.578 0.5586 0.6667 0.6702 0.6379

traitement | 0.4756 0.4598 0.5724 0.5573 0.6076

valeur 0.7969 0.8160 0.8637 0.8393 0.8561

Overall 0.6151 0.6894 0.7441 0.7370 0.7547

| Overall 1 o298 | 0.6380 0.7073 0.6996 0.7262

All categories | (micro)

Overall | ) 5331 | 0.5832 0.6730 0.6549 0.6837

(macro)

TABLE 5 — Test phase results. *Non-official runs.

Table 6 shows the statistics of the official results for all participants in the challenge. For subtask 1,
our voting approach resulted in a F;-score of 0.6603, which is the max reported for the overall result
of the competition. In subtask 2, our best model was 1% lower than the top score, which achieved
a Fy-score of 0.7626 (against our 0.7547). Considering both tasks across all categories, our voting
model achieved the highest score in the competition. This results is shown in the “Non official” of
Table 6 provided by the challenge organisers. The ‘“Non official” results takes into account even
entities that were counted as informational (e.g. date, durée, frequence). As we did not predict any of
those informational entities, our F;-measure for those are 0.0000 and we end up with a diminished
overall F;-measure of 0.7152, which is the max reported in the non official row. However, without
taking into account those entities, our overall F;-measure is 0.7262 as reported in Table 5.

Task 3 Min Max Median | Mean

Subtask 1 0.0645 | 0.6603 | 0.4557 | 0.4347
Subtask 2 0.1352 | 0.7626 | 0.6151 | 0.6012
Non official | 0.1297 | 0.7152 | 0.5679 | 0.5533

TABLE 6 — Official summarize results over DEFT task 3.
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3.3 CamemBERT vs. CamemBERT bio

If we compare the results of the camembert-base model against the camembert-bio-base model, we
notice a significant improvement in performance for the latter. However, this result is unexpectedly
not translated to the large version of the camembert model, as locally trained models tend to have
superior performance (Lee et al., 2019). We believe that this is due to the size of the biomedical corpus
(31k French abstracts from PubMed) used to pre-train the CamemBERT models, which is relatively
small compared to the size of the original CamemBERT corpus. For a comparison, BioBERT (Lee
et al., 2019) was pre-trained on 18B words corpora extracted from PubMed and PMC ; while Clinical
BERT (Alsentzer et al., 2019) was trained on clinical text from approximately 2 million notes in the
MIMIC-III v1.4 database. While the biomedical French corpus works well for the smaller model,
it was limited to improve the original camembert-large model weights for the specificities of the
biomedical language as this model contains much more parameters than the base version (335M vs.
110M parameters).

Nevertheless, what makes our approach powerful is the dissimilarities of the respective model
predictions. Indeed, if camembert-bio and CamemBERT models were to predict the same entities for
a given text, the voting would not have made any sense. Our hypothesis is that, by creating different
models, we were able to start our fine-tuning with a language model that has different perspectives.
Then, by allowing each model to vote, we were able to outperform the camembert-large model by two
basis points. To verify this hypothesis, it would be interesting to see if fine-tuning the same model 5
times (number of models we used for voting) would have improved its performances. For example,
would the camembert-large have improved if we had fine-tuned it 5 times and used those 5 models as
an ensemble ? The only randomness in such experiment would be the order of the documents during
the training phase.

3.4 Language specific vs. multi-language model

Bert-base-multilingual-cased model was trained in 104 languages, including French, however
camembert-base model was trained and optimized specifically for French language. The camembert-
base model (not part of the official evaluation) shows slightly better performance for most entities
(pathologie, sosy, anatomie, dose, examen, moment, traitement, valeur) compared to the bert-base-
multilingual-cased model.

For subtask 1, camembert-base achieves 0.5802 of overall Fj-measure vs 0.5303 of bert-base-
multilingual-cased, i.e. almost 5% of improvement. In subtask 2, an overall F’-measure of 0.7081 of
camembert-base vs 0.6894 of overall /'y measure of bert-base-multilingual-cased, makes camembert-
base 1.87% better. These improvements in camembert-base highlight a direct relationship between
language and performance. In addition, these differences show that subtask 1 is more dependent on
the language than subtask 2.

4 Conclusion

Among the experiments we have done, we can conclude that recognizing entities in biomedical
domain is not a straightforward task and adding the complexity of language makes this task more
difficult. For DEFT task 3 challenge, we proposed mainly two families of learning methods: a baseline
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based on CRF and a set of transformers language models. We focused on exploring the performance
of our NER models with the contextualized language models enriched with local text. Our best results
were given by the ensemble method based on a voting strategy between the BERT based models,
including CamemBERT (trained specifically for French) and CamemBERT-bio (trained on French
biomedical texts), achieving 66% F;-measure in subtask 1 and 75% F;-measure in subtask 2. The
ensemble of deep neural language models proved to be the most effective method for biomedical
information extraction in French texts. As next steps, we will investigate whether fine-tuning the same
model a number of times would improve performance. We are also interested to investigate nested
entities approaches over DEFT task 3 data.
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