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Abstract

Though people rarely speak in complete sen-
tences, punctuation confers many benefits to
the readers of transcribed speech. Unfortu-
nately, most ASR systems do not produce
punctuated output. To address this, we pro-
pose a solution for automatic punctuation that
is both cost efficient and easy to train. Our
solution benefits from the recent trend in
fine-tuning transformer-based language mod-
els. We also modify the typical framing of this
task by predicting punctuation for sequences
rather than individual tokens, which makes for
more efficient training and inference. Finally,
we find that aggregating predictions across
multiple context windows improves accuracy
even further. Our best model achieves a new
state of the art on benchmark data (TED Talks)
with a combined F1 of 83.9, representing a
48.7% relative improvement (15.3 absolute)
over the previous state of the art.

1 Introduction

Enabling computers to use speech as input has long
been an aspirational goal in the field of human com-
puter interaction. Recent advances have had dra-
matic impact across multiple domains (e.g. reliev-
ing medical professionals from having to transcribe
medical dictation (Edwards et al., 2017), improv-
ing real-time spoken language translation (Gu et al.,
2017), and affording convenience through conver-
sational interfaces like those in virtual personal
assistants (McTear et al., 2016)). For use cases that
require reading transcribed speech, however, it is
often still a challenge to recover meaningful clause
boundaries from disfluent, errorful utterances.
Humans rely on punctuation for readability, per-
haps because it lessens the burden of ambiguous
phrasing. Studies have found that removing punctu-
ation from manual transcriptions can be even more
detrimental to understanding than a word error rate

of 15% or 20% (Tiindik et al., 2018). Reading
comprehension is also significantly slower with-
out punctuation (Jones et al., 2003). For down-
stream NLP models, the lack of clausal boundaries
can significantly decrease accuracy (e.g. a 4.6%
BLEU decrease in NMT; Vandeghinste et al. 2018).
This likely reflects the discrepancy between well-
segmented training corpora and ASR output.

To solve the lack of punctuation in ASR out-
put, we propose an automatic punctuation model,
which leverages the recent trend in unsupervised
pre-training (Devlin et al., 2019) and the parallel ar-
chitecture of transformer networks (Vaswani et al.,
2017). Unsupervised pre-training dramatically re-
duces the amount of labeled data required for su-
perior performance on this task. Additionally, the
model’s departure from a recurrent architecture al-
lows direct connections between all input tokens.
This enables the network to more easily model long-
distance dependencies (e.g. on one hand, ... on the
other, ...) for improved punctuation performance.
The departure from a recurrent architecture also
allows computations to be performed in parallel for
each layer with the speed of computations limited
by the number of layers rather than the number
of time steps (usually fewer). In addition to the
parallel nature of the hidden layers, our network
also predicts in parallel for all tokens in the input
simultaneously. This helps significantly speed up
inference compared with individual predictions for
each token. During training, the parallel predic-
tion task provides a richer signal compared with
a sequential task, thereby making more efficient
use of each example. Furthermore, advancing the
prediction window less than the window’s width
(e.g. steps of 20 with a window of 50) allows ag-
gregating multiple windows of context to predict a
token’s label. This allows the network to effectively
become its own prediction ensemble and boosts ac-
curacy further. Given that the aggregate predictions
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are independently obtained, these calculations too
can be performed in parallel.

2 Related Work

Our biggest departure from previous approaches
lies in the parallel nature of inference and the deep
bidirectional information flow of our model (for
more detail, see Devlin et al. 2019). This is in con-
trast with the vast majority of previous approaches
which use a variant of Recurrent Neural Network
architecture (Tundik et al., 2017; Vandeghinste
et al., 2018; Ballesteros and Wanner, 2016; Alumie
et al., 2019; Szaszdk, 2019; Oktem, 2018; Xu et al.,
2016; Pahuja et al., 2017; Tundik and Szaszak,
2018; Tiindik et al., 2017; Tilk and Alumae, 2015;
Zelasko et al., 2018; Treviso and Aluisio, 2018).
This includes those that incorporate acoustic infor-
mation (B. Garg and Anika, 2018; Moro and Sza-
szak, 2017; Szaszak and Tiindik, 2019; Nanchen
and Garner, 2019; Mor6 and Szaszdk, 2017; Klejch
et al., 2016, 2017) and those that apply attention on
top (Tilk and Alumie, 2016; Salloum et al., 2017;
Oktem et al., 2017; Kim, 2019; Juin et al., 2017).

Though non-sequential, several previous ap-
proaches use simpler network architectures (e.g.
DNNs (Yi et al., 2017; Che et al., 2016) or CNNs
(B. Garg and Anika, 2018; Che et al., 2016; Zelasko
et al., 2018)), which have less predictive power.
The handful of approaches that make use of Trans-
former architectures are not bidirectional (Chen
et al., 2020; Nguyen et al., 2019; Varavs and Sal-
imbajevs, 2018; Wang et al., 2018). Our model
also differs from the above in that it leverages pre-
training to reduce training time and increase ac-
curacy. The one previous work that uses a pre-
trained bidirectional transformer (Cai and Wang,
2019) only predicts punctuation one token at a
time, which significantly increases both training
and inference time. It is also unable to aggregate
predictions across multiple contexts, limiting per-
formance.

3 Method

Architecture The network architecture can be
seen in Figure 1. The first component of
our network is a pre-trained language model
(RoBERTay,; Liu et al. 2019) employing the re-
cent deep bidirectional Transformer architecture
(Devlin et al., 2019; Vaswani et al., 2017). The net-
work’s input is a sequence of unpunctuated lower-
cased words tokenized using RoOBERTa’s tokeniza-
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tion scheme (see Liu et al. 2019 for more details).
We then add two additional linear layers after the
pre-trained network with each layer preserving the
fully-connected nature of the entire network. The
first linear layer maps from the masked language
model output space to a hidden state space for each
input token with parameters shared across tokens.
The second linear layer concatenates the hidden
state representations into a vector for the prediction
window which allows the tokens to interact arbi-
trarily within the window. We then apply batch nor-
malization (Ioffe and Szegedy, 2015) and dropout
(best results obtained with a rate of 0.2; Hinton
et al. 2012) prior to predicting punctuation marks
for all tokens in the window.

When aggregating predictions across contexts,
activations at the sequence layer are added for each
token prior to classification (see Figure 1 for visual-
ization). Prediction is performed in parallel during
both training and inference with the output size of
the final classifier being |classes| * lengthyindow-

Punctuation Labels
Aggregate Across Contexts
Sequence distributions
Linear Classifier Layer
Normalized sequence vector
Batch Norm and Dropout
Hidden sequence vector
Concatenate

Hidden token vectors

Linear Layer

Vocabulary distributions
(before Fine-Tuning)

Pre-trained LM

OO

Vocab IDs

Figure 1: The punctuation network takes as input a se-
quence of unpunctuated words tokenized in the same
manner as RoBERTa. It outputs predictions for these
sequences individually during training (layer O,,). For
validation and testing, however, these labels are aggre-
gated across overlapping context windows to obtain
the final punctuation predictions (layer Y;,). Note that
while the pre-trained LM’s output begins as vocabulary
distributions, they cease to be so once the entire net-
work undergoes fine-tuning.



Comma Period Question Overall

Models P R F P R F P R F P R F

DNN-A (Che et al., 2016) 48.6 424 4531597 683 637| — — — | 548 53.6 542
CNN-2A (Che et al., 2016) 48.1 445 462|576 690 628 | — — — |534 550 542
T-LSTM (Tilk and Alumae, 2015) 49.6 414 451|602 534 566 |57.1 435 494|550 472 508
T-BRNN (Tilk and Alumie, 2016) 644 452 531|723 715 719|675 587 628|689 58.1 63.1
T-BRNN-pre (Tilk and Alumie, 2016) | 65.5 47.1 54.8 | 733 725 729|707 63.0 66.7|70.0 59.7 644
Single-BiRNN (Pahuja et al., 2017) 622 477 540|746 72.1 734|675 529 593|692 598 64.2
Corr-BiRNN (Pahuja et al., 2017) 60.9 524 564|753 70.8 73.0|70.7 569 630|686 616 649
DRNN-LWMA (Kim, 2019) 634 557 593|760 735 747|750 717 733|700 646 67.2
DRNN-LWMA-pre (Kim, 2019) 629 608 619|773 737 755|696 69.6 69.6 | 699 672 68.6
RoBERTap,c 769 754 76.2 | 86.1 89.3 877|889 87.0 879 |84.0 839 839

Different Pre-trained Language Models

RoBERTa g 743 769 755|858 91.6 88.6 | 837 89.1 863|813 859 835
XLNetpase 76.6 749 758|846 90.6 875|820 89.1 854 |8l.1 849 829
T5Spase 70.5 772 737|856 855 856|837 89.1 863|799 840 819
BERT}ase 72.8 708 71.8 819 86.6 842 |80.8 913 857|785 829 80.6
ALBERT e 69.4 693 694|809 845 827|767 T1.7 742|757 752 754
DistilRoBERTa 70.0 64.5 67.1 | 782 835 808|750 71.7 733|744 732 737

Table 1: Compared to previous approaches, our model achieves state of the art performance on the reference
transcripts of the TED Talks dataset as measured by precision (P), recall (R), and F-1 score (F). Experimental
results with different pre-trained language models are included below for comparison with the best ROBERTay

model.

Training Schedule It is worth noting that we use
only the TED Talks dataset described below for
training but enjoy significant benefits from a sizable
pre-training corpus (Liu et al., 2019). Although
prediction is performed on multiple tokens at once,
the same number of training samples are generated
from the corpus by moving the sliding window one
token at a time over the input. To perform gradient
descent, we use LookAhead (Zhang et al., 2019)
with RAdam (Liu et al., 2020) as the base optimizer.
We use a simple cross-entropy function to calculate
the loss for each token’s classification prediction.

Our best performing model (see Table 1) uses
a prediction window size of 100, a final-layer
dropout of 0.2, and a hidden-state space of dimen-
sionality 1500. The top two linear layers (hence-
forth referred to as the “top layers™) are initially
trained from scratch while the transformer core
remains frozen. Then, having selected the model
version with the lowest validation loss from train-
ing the top layers, the transformer core is unfrozen,
and we fine-tune the parameters of the entire net-
work. We then select the model version with the
lowest validation loss to prevent overfitting.

We train the top layers for nine epochs with
a mini-batch size of 1000 (using 100-token se-
quences) while the transformer is frozen. The
lowest validation loss for the top layers is usually
achieved around the sixth epoch. We then unfreeze
the transformer and fine-tune the entire network for

three more epochs with a mini-batch size of 250.
We typically observe the lowest validation loss mid-
way through the first epoch while fine-tuning. It is
worth noting that a highly competitive model (82.6
overall F1) can be trained with just 1 epoch each
for the top layers and fine-tuning. This training
can be completed in slightly less than 1 hour on
a p3.16xlarge AWS instance (with 8x Tesla V100
GPUs).

For the LookAhead optimizer, we use a sync
rate of 0.5, and a sync period of 6. The RAdam
optimizer—used as the model’s base optimizer—
has its learning rate set to 1075, 61 =0.9, By =
0.999, e = 10~%. We do not use weight decay.

Data To train the network and evaluate its per-
formance (both at test and validation time), we use
the IWSLT 2012 TED Talks dataset (Cettolo et al.,
2012). This dataset is a common benchmark in au-
tomatic punctuation (e.g. Kim 2019) and consists
of a 2.1M word training set, a 296k word valida-
tion set, and a 12.6k word test set (for reference
transcription, 12.8k for ASR output). Each word is
labeled with the punctuation mark that follows it,
yielding a 4-class classification problem: comma,
period, question mark, or no punctuation. The class
balance of the training dataset is as follows: 85.7%
no punctuation, 7.53% comma, 6.3% period, 0.47%
question mark.
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4 Results

The results of our best performing model relative to
previous results published on this benchmark can
be found in Table 1. Additionally, we conducted a
number of ablation experiments manipulating vari-
ous aspects of the architecture and training routine.
In providing accuracy comparisons, all results in
this section are reported in terms of the absolute
change in the overall F1 measure.

In place of the pre-trained RoBERTay,. lan-
guage model, which provided the best result, we
also evaluated (in order of decreasing performance
relative to RoOBERTa as implemented by Wolf et al.
(2020)"): XLNetpse (-1.0%; Yang et al. 2020),
TSpase (-2.1%; Raffel et al. 2019), BERTp5e (-
3.4%; Devlin et al. 2019), and ALBERT e (-8.5%;
Lan et al. 2020). Full results from these models can
be seen at the bottom of Table 1. The performance
benefit of ROBERTap,se over BERT,ge is likely
due to the significant increase in pre-training cor-
pus size. The lower performance of ALBERT¢
may be due to the sharing of parameters across lay-
ers. Itis interesting to note that XIL.Nety,se provides
higher recall for periods and question marks and
T5pase for commas and question marks, but both
sacrifice significant precision to achieve this.

In addition to the LookAhead optimizer using
RAdam as its base, we also evaluated: LookAhead
with Adam (-1.5%), RAdam alone (-1.6%), and
Adam alone (-2.9%; Kingma and Ba 2017). Given
the class imbalance inherent in the dataset between
the no punctuation class and all the punctuation
marks, we tested focal loss (Lin et al., 2018), class
weighting, and their combination, but found that
none outperformed simple cross-entropy loss.

Perhaps the most noteworthy result is the com-
parison between parallel prediction (described
above) and sequential prediction, wherein the for-
ward pass predicts punctuation for one token at
a time using a context window centered on that
token. Sequential prediction requires longer in-
ference times (>15x) yet yields only a marginal
performance benefit (2.2%) relative to a parallel
prediction without aggregation across multiple con-
texts. Ensembling predictions over multiple con-
texts overcomes the performance gap, while retain-
ing an advantage with respect to inference time.
Compared to the self-ensemble approach, sequen-
tial prediction is >4x slower and 5.4% less accu-

! Available from https://github.com/
huggingface/transformers
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Predictions F1 CPU GPU
per token | Overall Runtime Runtime
1 76.3 1x 1x
2 79.4 1.8x 1.1x
3 81.8 2.6x 1.2x
6 83.2 5.2x 1.5x
9 83.9 7.7x 1.9x
Processor . 18x Intel Xeon | 8x Tesla V100
(c5.18xlarge) (p3.16xlarge)

Table 2: Aggregating multiple parallel predictions ex-
hibits a tradeoff between runtime and accuracy. Run-
time results on the TED test set are presented relative to
single predictions separately on CPU and GPU for ease
of reading. To relate the two, the CPU single predic-
tions are 9.4x slower than GPU. All runtime estimates
are obtained from the mean of 10 runs.

rate.

A less obvious choice must be made between a
single parallel prediction and multiple aggregated
predictions, given the additional runtime of multi-
ple predictions (see Table 2 for details). For our
purposes, the 7.6% improvement is worth the in-
crease in inference time, which is sub-linear given
GPU parallelization but still appreciable. While
our best method sums activations from different
contexts to obtain the aggregate predictions, we
also tested adding normalized probabilities across
classes and then renormalizing, but we found it
resulted in slightly worse performance (-0.3%).

In addition to the RoBERTay,, model whose
results are reported here, we also trained with a
RoBERTay,¢e model. There was no appreciable
performance difference between the two sizes (the
large being -0.4% worse) however the large model
incurred a significant slowdown (/=1.5x). This may
imply that the base model size is adequately pow-
ered for punctuation tasks, at least on manually
transcribed English datasets similar to the bench-
mark. This is supported by the findings of Kovaleva
et al. (2019), who found BERT},, to be overpa-
rameterized for most downstream tasks, implying
RoBERTaj,,e would be extremely overparameter-
ized. A smaller pre-trained language model option
is DistilRoBERTa, a knowledge distilled version
of RoBERTa (analogous to DistilBERT: Sanh et al.
2020). The DistilRoBERTa network is 12% smaller
and performs inference ~1.2x faster, but sacrifices
9.1% in accuracy on the benchmark.

The previous state of the art approach was a

multi-headed attention network on top of multi-
ple stacked bidirectional GRU layers (Kim, 2019).


https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

Given the recurrent nature of the GRU layers, the
network is subject to the shortcomings of sequen-
tial computation discussed in the Introduction. Our
findings illustrate yet another language task where
transformers outperform previous recurrent neural
network approaches.

Our approach enjoys a 48.7% relative improve-
ment (15.3 absolute) over the previous state of the
art (Kim, 2019). Given the ablation results pre-
sented above, we attribute the performance gains to
the deeply bi-directional transformer architecture,
the benefit of leveraging RoBERTa’s pre-trained
language model trained on = 33B words, and the
aggregation of multiple prediction contexts for ro-
bust inference. Some performance gain may also
be attributed to the addition of an encoding layer
trained solely on the punctuation task.

One of the more notable findings is that the non-
recurrent nature of the entire network allows for a
large degree of parallelization resulting in a more
competitive runtime compared to previous recur-
rent approaches. While source code was not openly
available for benchmarking runtime against Kim
(2019), we did compare against a similar approach
from Tilk and Alumie (2016)?, which was roughly
78.8x slower on GPUs and 1.2x slower on a CPU,
when evaluating the TED Talks test set.

The results presented here have not benefited
from any rigorous hyperparameter tuning (e.g. grid
search or Bayesian optimization). We leave that
to future work given that a rigorous systematic
approach may yield appreciable improvements in
accuracy.

5 Conclusion

We have presented a state of the art automatic punc-
tuation system which aggregates multiple predic-
tion contexts for robust inference on transcribed
speech. The use of multiple prediction contexts, un-
supervised pre-training, and increased parallelism
makes it possible to achieve significant perfor-
mance gains without increased runtime or cost.
On a different dataset, Bohac et al. (2017) re-
ported human agreement of around 76% for punc-
tuation location and 70% for use of the same punc-
tuation mark. Although we have yet to make a di-
rect comparison, it’s possible our model is already
competitive with human performance on this task.
Future work will explore how this performance

The source code is available from https://github.

com/ottokart/punctuator2

translates in terms of readability and whether it is
sufficient to compensate for some amount of word
error, as suggested by Tiindik et al. (2018).
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