IWPT 2020

The 16th International Conference
on Parsing Technologies and
IWPT 2020 Shared Task on

Parsing into Enhanced Universal Dependencies

Proceedings of the Conference

July 9, 2020

Organized by SIGPARSE
the ACL Special Interest Group on Natural Language Parsing

(©2020 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@Qaclweb.org

ISBN 978-1-952148-11-8

ii

Preface

Welcome to the 16th International Conference on Parsing Technologies IWPT 2020), which this year
(for the first time since 2007) is co-located with the Annual Meeting of the Association for Computational
Linguistics (ACL). The IWPT meeting series, hosted by the ACL Special Interest Group in Natural
Language Parsing (SIGPARSE), has been held biennualy since its inaugual meeting in 1989 in Pittsburgh,
PA (USA).

For 2020, the SIGPARSE steering group decided to try out something new, co-location with the main
ACL meeting in the form of a reduced one-day IWPT programme. The main motivation for this move
was to reduce fragmentation (and travel) and to increase IWPT visibility in the ‘mainstream’ ACL
community (we already know that at least one of these goals was attained). At the same time, IWPT
launches its own series of parsing shared tasks this year, which strengthens the experimental and applied
perspective on parsing technologies in the conference programme.

The IWPT 2020 shared task focuses on the parsing of Enhanced Universal Dependencies (EUD) over 17
languages. This is the first time that graph-based representations of syntactic structures are evaluated on
such a large scale, and we believe it will pave way for research on richer models and representations. The
task attracted system submissions from ten teams from around the world and, thus, establishes a highly
relevant point of comparison for this line of syntactic analysis. We are very grateful to everyone who
contributed to this shared task, starting with the data providers who worked hard to meet our deadline.
Thanks to the participant teams who worked tirelessly in a short time period to provide such a set of great
and interesting systems!

Owing to the COVID-19 pandemic this year, the meeting will regrettably be held entirely virtual, where
for IWPT we have adopted a mostly-asynchronous format: Accepted papers (of three different types:
long, short, and shared task) will be presented through pre-recorded talks, which become available on-
line for individual viewing before the actual conference day. On the original date of the conference, July
9, there will be a three-hour live session, scheduled so that the timing should be convenient (all things
considered) for participants around the world: 14:00-17:00 UTC, which translates, for example, into a
starting time at 7:00 in the morning at the US West Coast and wrapping up at 1:00 in the morning in
Melbourne, Australia. The live sessions will be devoted exclusively to questions and answers, organized
into five thematic sessions. Authors of papers associated with each session will be available to answer
questions and disucss their work (possibly also among themselves).

There has been (and to some degree still is) much uncertainty about the format of ACL and IWPT this
year, and in a sense we were positively surprised to receive a number of submissions comparable to
recent IWPT instances. Out of 24 regular paper submissions, the programme committee accepted 14
for presentation at the conference. The IWPT 2020 programme is complemented by one invited talk,
by Paola Merlo of the University of Geneva (to whom we are immensely grateful for honoring her
commitment despite the mostly-asynchronous, virtual format) and by an overview paper and ten system
descriptions from the IWPT 2020 shared task. We further gratefully acknowledge the work of authors
and reviewers, as well as of the ACL workshop chairs, who had to try and shepherd our community
through a difficult logistics process.

Copenhagen, Davis, Groningen, Kyoto, Oslo, Paris, Peking, Prague, and Tel Aviv

Gosse Bouma, Yuji Matsumoto, Stephan Oepen, Kenji Sagae, Djamé Seddah,
Weiwei Sun, Anders S@gaard, Reut Tsarfaty, and Dan Zeman

iii

Organizers:

Kenji Sagae, University of California at Davis (General Chair)
Anders Sggaard, University of Copenhagen (Programme Co-Chair)
Weiwei Sun, Peking University (Programme Co-Chair)

Gosse Bouma, University of Groningen (Shared Task Co-Chair)
Djamé Seddah, University Paris-Sorbonne (Shared Task Co-Chair)
Dan Zeman, Charles University in Prague (Shared Task Co-Chair)
Stephan Oepen, University of Oslo (Publicity Chair)

Program Committee:

Zeljko Agié

Mark Anderson
Miguel Ballesteros
James Barry

Steven Bethard
Anders Bjorkelund
Gosse Bouma
Marie Candito
Xavier Carreras
John Carroll

Ozlem Cetinoglu
Grzegorz Chrupata
Ryan Cotterell
Miryam de Lhoneux
Mathieu Dehouck
Chris Dyer

Adam Ek

Jennifer Foster
Annemarie Friedrich
Yoav Goldberg
Carlos Gémez-Rodriguez
Han He

Johannes Heinecke
James Henderson
Daniel Hershcovich
Jenna Kanerva
Sandra Kiibler
Marco Kuhlmann
Jonathan K. Kummerfeld
Xuezhe Ma

Gabriel Marzinotto
Yusuke Miyao
Mark-Jan Nederhof
Joakim Nivre
Stephan Oepen
Lilja @vrelid
Barbara Plank

Ines Rehbein

Roi Reichart
Kenji Sagae
Giorgio Satta
Natalie Schluter
Djamé Seddah
Anders Sggaard
Weiwei Sun
Ivan Titov
Gertjan van Noord
Joachim Wagner
Rui Yan

Daniel Zeman
Yi Zhang

Yue Zhang

Invited Speaker:

Paola Merlo, University of Geneva

vi

Table of Contents

Syntactic Parsing in Humans and Machines
Paola Merloo e 1

Distilling Neural Networks for Greener and Faster Dependency Parsing
Mark Anderson and Carlos Gémez-Rodriguez i 2

End-to-End Negation Resolution as Graph Parsing
Robin Kurtz, Stephan Oepen and Marco Kuhlmann it 14

Integrating Graph-Based and Transition-Based Dependency Parsers in the Deep Contextualized Era
Agnieszka Falenska, Anders Bjorkelund and Jonas Kuhn 25

Semi-supervised Parsing with a Variational Autoencoding Parser
Xiao Zhang and Dan GoldwWasser.out e 40

Memory-bounded Neural Incremental Parsing for Psycholinguistic Prediction
Lifeng Jin and William Schuler 48

Obfuscation for Privacy-preserving Syntactic Parsing
Zhifeng Hu, Serhii Havrylov, Ivan Titov and Shay B.Cohen 62

Tensors over Semirings for Latent-Variable Weighted Logic Programs
Esma Balkir, Daniel Gildea and Shay B. Cohen........ i i, 73

Advances in Using Grammars with Latent Annotations for Discontinuous Parsing
Kilian Gebhardt o e e 91

Lexicalization of Probabilistic Linear Context-free Rewriting Systems
Richard Morbitz and Thomas Ruprecht i e 98

Self-Training for Unsupervised Parsing with PRPN
Anhad Mohananey, Katharina Kann and Samuel R. Bowman............................... 105

Span-Based LCFRS-2 Parsing
Milos$ Stanojevi¢ and Mark Steedman.t e 111

Analysis of the Penn Korean Universal Dependency Treebank (PKT-UD): Manual Revision to Build
Robust Parsing Model in Korean

Tae Hwan Oh, Ji Yoon Han, Hyonsu Choe, Seokwon Park, Han He, Jinho D. Choi, Na-Rae Han,
Jena D. Hwang and Hansaem Kim e 122

Statistical Deep Parsing for Spanish Using Neural Networks
Luis Chiruzzo and Dina WonSeVer.ttt e 132

The Importance of Category Labels in Grammar Induction with Child-directed Utterances
Lifeng Jin and William Schuler i e 145

Overview of the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies
Gosse Bouma, Djamé Seddah and Daniel Zeman ..., 151

Turku Enhanced Parser Pipeline: From Raw Text to Enhanced Graphs in the INPT 2020 Shared Task
Jenna Kanerva, Filip Ginter and Sampo Pyysalo........... 162

vii

Hybrid Enhanced Universal Dependencies Parsing
Johannes Heinecke e 174

Adaptation of Multilingual Transformer Encoder for Robust Enhanced Universal Dependency Parsing

Han He and Jinho D. Choi. e 181
Efficient EUD Parsing
Mathieu Dehouck, Mark Anderson and Carlos Gémez-Rodriguez 192

Linear Neural Parsing and Hybrid Enhancement for Enhanced Universal Dependencies
Giuseppe Attardi, Daniele Sartiano and Maria Simi ..., .. 206

Enhanced Universal Dependency Parsing with Second-Order Inference and Mixture of Training Data
Xinyu Wang, Yong Jiang and Kewei Tu........... .. e 215

How Much of Enhanced UD Is Contained in UD?
Adam Ek and Jean-Philippe Bernardy 221

The ADAPT Enhanced Dependency Parser at the IWPT 2020 Shared Task
James Barry, Joachim Wagner and Jennifer Foster o i L. 227

Kopsala: Transition-Based Graph Parsing via Efficient Training and Effective Encoding
Daniel Hershcovich, Miryam de Lhoneux, Artur Kulmizev, Elham Pejhan and Joakim Nivre . . 236

RobertNLP at the IWPT 2020 Shared Task: Surprisingly Simple Enhanced UD Parsing for English
Stefan Griinewald and Annemarie Friedrich i i i 245

viii

Conference Program

July 9, 2020

14:00 UTC-14:15 UTC Session 1: Invited Talk Q&A
Syntactic Parsing in Humans and Machines

Paola Merlo

14:15 UTC-14:40 UTC Session 2: Regular Papers Q&A

Distilling Neural Networks for Greener and Faster Dependency Parsing
Mark Anderson and Carlos Gémez-Rodriguez

End-to-End Negation Resolution as Graph Parsing
Robin Kurtz, Stephan Oepen and Marco Kuhlmann

Integrating Graph-Based and Transition-Based Dependency Parsers in the Deep
Contextualized Era

Agnieszka Falenska, Anders Bjorkelund and Jonas Kuhn

Semi-supervised Parsing with a Variational Autoencoding Parser

Xiao Zhang and Dan Goldwasser

14:40 UTC-15:00 UTC Session 3: Regular Papers Q&A

Memory-bounded Neural Incremental Parsing for Psycholinguistic Prediction
Lifeng Jin and William Schuler

Obfuscation for Privacy-preserving Syntactic Parsing
Zhifeng Hu, Serhii Havrylov, Ivan Titov and Shay B. Cohen

Tensors over Semirings for Latent-Variable Weighted Logic Programs
Esma Balkir, Daniel Gildea and Shay B. Cohen

X

July 9, 2020 (continued)

15:10 UTC-15:35 UTC Session 4: Regular Papers Q&A

Advances in Using Grammars with Latent Annotations for Discontinuous Parsing
Kilian Gebhardt

Lexicalization of Probabilistic Linear Context-free Rewriting Systems
Richard Mérbitz and Thomas Ruprecht

Self-Training for Unsupervised Parsing with PRPN
Anhad Mohananey, Katharina Kann and Samuel R. Bowman

Span-Based LCFRS-2 Parsing
Milos§ Stanojevi¢ and Mark Steedman

15:35 UTC-16:00 UTC Session 5: Regular Papers Q&A

Analysis of the Penn Korean Universal Dependency Treebank (PKT-UD): Manual
Revision to Build Robust Parsing Model in Korean

Tae Hwan Oh, Ji Yoon Han, Hyonsu Choe, Seokwon Park, Han He, Jinho D. Choi,
Na-Rae Han, Jena D. Hwang and Hansaem Kim

Statistical Deep Parsing for Spanish Using Neural Networks
Luis Chiruzzo and Dina Wonsever

The Importance of Category Labels in Grammar Induction with Child-directed Ut-
terances
Lifeng Jin and William Schuler

July 9, 2020 (continued)

16:10 UTC-17:00 UTC Session 6: Shared Task Q&A

Overview of the IWPT 2020 Shared Task on Parsing into Enhanced Universal De-
pendencies
Gosse Bouma, Djamé Seddah and Daniel Zeman

Turku Enhanced Parser Pipeline: From Raw Text to Enhanced Graphs in the INPT
2020 Shared Task
Jenna Kanerva, Filip Ginter and Sampo Pyysalo

Hybrid Enhanced Universal Dependencies Parsing
Johannes Heinecke

Adaptation of Multilingual Transformer Encoder for Robust Enhanced Universal
Dependency Parsing
Han He and Jinho D. Choi

Efficient EUD Parsing
Mathieu Dehouck, Mark Anderson and Carlos Gémez-Rodriguez

Linear Neural Parsing and Hybrid Enhancement for Enhanced Universal Depen-
dencies
Giuseppe Attardi, Daniele Sartiano and Maria Simi

Enhanced Universal Dependency Parsing with Second-Order Inference and Mixture
of Training Data
Xinyu Wang, Yong Jiang and Kewei Tu

How Much of Enhanced UD Is Contained in UD?
Adam Ek and Jean-Philippe Bernardy

The ADAPT Enhanced Dependency Parser at the IWPT 2020 Shared Task
James Barry, Joachim Wagner and Jennifer Foster

Kogpsala: Transition-Based Graph Parsing via Efficient Training and Effective En-
coding

Daniel Hershcovich, Miryam de Lhoneux, Artur Kulmizev, Elham Pejhan and
Joakim Nivre

RobertNLP at the INWPT 2020 Shared Task: Surprisingly Simple Enhanced UD Pars-

ing for English
Stefan Griinewald and Annemarie Friedrich

X1

July 9, 2020 (continued)

xii

Syntactic Parsing in Humans and Machines

Paola Merlo
Computational Learning and Computational Linguistics,
University of Geneva, Switzerland
paola.merlo@unige.ch

Abstract

To process the syntactic structures of a language in ways that are compatible with human expectations,
we need computational representations of lexical and syntactic properties that form the basis of human
knowledge of words and sentences.

Recent neural-network-based and distributed semantics techniques have developed systems of consider-
able practical success and impressive performance. As has been advocated by many, however, such sys-
tems still lack human-like properties. In particular, linguistic, psycholinguistic and neuroscientific investi-
gations have shown that human processing of sentences is sensitive to structure and unbounded relations.

In the spirit of better understanding the structure building and long-distance properties of neural networks,
I will present an overview of recent results on agreement and island effects in syntax in several languages.
While certain sets of results in the literature indicate that neural language models exhibit long-distance
agreement abilities, other finer-grained investigation of how these effects are calculated indicates that
that the similarity spaces they define do not correlate with human experimental results on intervention
similarity in long-distance dependencies. This opens the way to reflections on how to better match the
syntactic properties of natural languages in the representations of neural models.

1

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, page 1
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

Distilling Neural Networks for Greener and Faster Dependency Parsing

Mark Anderson

Carlos Goémez-Rodriguez

Universidade da Coruna, CITIC
FASTPARSE Lab, LyS Research Group,
Departamento de Ciencias de la Computacién y Tecnologias de la Informacion
Campus Elvifia, s/n, 15071 A Coruiia, Spain
{m.anderson,carlos.gomez } @udc.es

Abstract

The carbon footprint of natural language pro-
cessing research has been increasing in recent
years due to its reliance on large and ineffi-
cient neural network implementations. Dis-
tillation is a network compression technique
which attempts to impart knowledge from a
large model to a smaller one. We use teacher-
student distillation to improve the efficiency of
the Biaffine dependency parser which obtains
state-of-the-art performance with respect to
accuracy and parsing speed (Dozat and Man-
ning, 2017). When distilling to 20% of the
original model’s trainable parameters, we only
observe an average decrease of ~1 point for
both UAS and LAS across a number of diverse
Universal Dependency treebanks while being
2.30x (1.19x) faster than the baseline model
on CPU (GPU) at inference time. We also ob-
serve a small increase in performance when
compressing to 80% for some treebanks. Fi-
nally, through distillation we attain a parser
which is not only faster but also more accu-
rate than the fastest modern parser on the Penn
Treebank.

1 Introduction

Ethical NLP research has recently gained attention
(Kurita et al., 2019; Sun et al., 2019). For exam-
ple, the environmental cost of Al research has be-
come a focus of the community, especially with re-
gards to the development of deep neural networks
(Schwartz et al., 2019; Strubell et al., 2019). Be-
yond developing systems to be greener, increasing
the efficiency of models makes them more cost-
effective, which is a compelling argument even for
people who might downplay the extent of anthro-
pogenic climate change.

In conjunction with this push for greener Al,
NLP practitioners have turned to the problem of
developing models that are not only accurate but
also efficient, so as to make them more readily

2

deployable across different machines with vary-
ing computational capabilities (Strzyz et al., 2019;
Clark et al., 2019; Vilares et al., 2019; Junczys-
Dowmunt et al., 2018). This is in contrast with the
recently popular principle of make it bigger, make
it better (Devlin et al., 2019; Radford et al., 2019).

Here we explore teacher-student distillation as
a means of increasing the efficiency of neural net-
work systems used to undertake a core task in
NLP, dependency parsing. To do so, we take
a state-of-the-art Biaffine parser from Dozat and
Manning (2017). The Biaffine parser is not only
one of the most accurate parsers, it is the fastest
implementation by almost an order of magnitude
among state-of-the-art performing parsers.

Contribution We utilise teacher-student distil-
lation to compress Biaffine parsers trained on a di-
verse subset of Universal Dependency (UD) tree-
banks. We find that distillation maintains accuracy
performance close to that of the full model and ob-
tains far better accuracy than simply implementing
equivalent model size reductions by changing the
parser’s network size and training normally. Fur-
thermore, we can compress a parser to 20% of
its trainable parameters with minimal loss in ac-
curacy and with a speed 2.30x (1.19x) faster than
that of the original model on CPU (GPU).

2 Dependency parsing

Dependency parsing is a core NLP task where the
syntactic relations of words in a sentence are en-
coded as a well-formed tree with each word at-
tached to a head via a labelled arc. Figure 1 shows
an example of such a tree. The syntactic informa-
tion attained from parsers has been shown to bene-
fit a number of other NLP tasks such as relation ex-
traction (Zhang et al., 2018), machine translation
(Chen et al., 2018), and sentiment analysis (Poria
et al., 2014, Vilares et al., 2017).

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 2—13
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

(NSUBJ)
NSUBJ

Al

The son of

=

cat hunts the rat

the

Figure 1: Dependency tree example.

2.1 Current parser performance

Table 1 shows performance details of current state-
of-the-art dependency parsers on the English Penn
Treebank (PTB) with predicted POS tags from the
Stanford POS tagger (Marcus and Marcinkiewicz,
1993; Toutanova et al., 2003). The Biaffine parser
of Dozat and Manning (2017) offers the best trade-
off between accuracy and parsing speed with the
HPSG parser of Zhou and Zhao (2019) achiev-
ing the absolute best reported accuracy but with
a reported parsing speed of roughly one third of
the Biaffine’s parsing speed. It is important to
note that direct comparisons between systems with
respect to parsing speed are wrought with com-
pounding variables, e.g. different GPUs or CPUs
used, different number of CPU cores, different
batch sizes, and often hardware is not even re-
ported.

We therefore run a subset of parsers locally to
achieve speed measurements in a controlled envi-
ronment, also shown in Table 1: we compare a Py-
Torch implentation of the Biaffine parser (which
runs more than twice as fast as the reported speed
of the original implementation); the UUParser
from Smith et al. (2018a) which is one of the lead-
ing parsers for Universal Dependency (UD) pars-
ing; a sequence-labelling dependency parser from
Strzyz et al. (2019) which has the fastest reported
parsing speed amongst modern parsers; and also
distilled Biaffine parsers from our implementation
described below. All speeds measured here are
with the system run with a single CPU core for
both GPU and CPU runs.!

Biaffine parser is a graph-based parser ex-
tended from the graph-based BIST parser (Kiper-
wasser and Goldberg, 2016) to use a biaffine at-
tention mechanism which pairs the prediction of
edges with the prediction of labels. This results in

IThis is for ease of comparability. Parsing can trivially
be parallelised by allocating sentences to different cores, so
speed per core is an informative metric to compare parsers
(Hall et al., 2014).

a fast and accurate parser, as described above, and
is used as the parser architecture for our experi-
ments. More details of the system can be found in
Dozat and Manning (2017).

3 Network compression

Model compression has been under considera-
tion for almost as long as neural networks have
been utilised, e.g. LeCun et al. (1990) intro-
duced a pruning technique which removed weights
based on a locally predicted contribution from
each weight so as to minimise the perturbation to
the error function. More recently, Han et al. (2015)
introduced a means of pruning a network up to
40 times smaller with minimal affect on perfor-
mance. Hagiwara (1994) and Wan et al. (2009)
utilised magnitude-based pruning to increase net-
work generalisation. More specific to NLP, See
et al. (2016) used absolute-magnitude pruning to
compress neural machine translation systems by
40% with minimal loss in performance. How-
ever, pruning networks leaves them in an irreg-
ularly sparse state which cannot be trivially re-
cast into less sparse architectures. Sparse tensors
could be used for network layers to obtain real-life
decreases in computational complexity, however,
current deep learning libraries lack this feature.
Anwar et al. (2017) introduced structured pruning
to account for this, but this kernel-based technique
is restricted to convolutional networks. More re-
cently Voita et al. (2019) pruned the heads of the
attention mechanism in their neural machine trans-
lation system and found that the remaining heads
were linguistically salient with respect to syntax,
suggesting that pruning could also be used to un-
dertake more interesting analyses beyond merely
compressing models and helping generalisation.
Ba and Caruana (2014) and Hinton et al. (2015)
developed distillation as a means of network com-
pression from the work of Bucild et al. (2006),
who compressed a large ensemble of networks
into one smaller network. Similar and more re-
cent work, used this method of compressing many
models into one to achieve state-of-the-art pars-
ing performance (Kuncoro et al., 2016). Teacher-
student distillation is the process of taking a large
network, the feacher, and transferring its knowl-
edge to a smaller network, the student. Teacher-
student distillation has successfully been exploited
in NLP for machine translation, language mod-
elling, and speech recognition (Kim and Rush,

speed (sent/s)

GPU CPU UAS LAS
Pointer-TD (Ma et al., 2018) - 1027 | 95877 94.19f
Pointer-LR (Fernandez-Gonzélez and Gémez-Rodriguez, 2019) - 231" | 96.047 94431
HPSG (Zhou and Zhao, 2019) 158.71 - 96.097 94.68"
BIST - Transition (Kiperwasser and Goldberg, 2016) - 761 | 9397 9197
BIST - Graph (Kiperwasser and Goldberg, 2016) - 804+0* | 93.17 91.0
Biaffine (Dozat and Manning, 2017) 4111 - 95.74" 94.08'
CM (Chen and Manning, 2014) - 654" | 91.807 89.60f
SeqLab (Strzyz et al., 2019) 648+20% 101+2F | 93.67¢ 91.72¢
UUParser (Smith et al., 2018a) - 42+1 94.63 92.77
Biaffine (PyTorch) 10033 53+£0 | 95.74 94.07
SeqLab 106413 99+1 | 93.46 91.49
Biaffine-D20 1189+4 39142 | 92.84 90.73
Biaffine-D40 1153+3 96+0 | 94.59 92.64
Biaffine-D60 111246 71+1 | 9478 92.86
Biaffine-D80 103345 6140 | 94.84 9295

Table 1: Speed and accuracy performance for state-of-the-art parsers and parsers from our distillation method,
Biaffine-D7 compressing to m% of the original model, for the English PTB with POS tags predicted from the
Stanford POS tagger. In the first table block, t denotes values taken from the original paper and I from Strzyz
et al. (2019). Values with no superscript (corresponding to the models in the shaded area, i.e. the second and third
blocks) are from running the models on our system locally with a single CPU core for both CPU and GPU speeds
(averaged over 5 runs) and with a batch size of 256 (excluding UUParser which doesn’t support batching) with

GloVe 100 dimension embeddings.

2016; Yu et al., 2018; Lu et al., 2017). Beyond
that it has also been successfully used in conjunc-
tion with exploring structured linguistic prediction
spaces (Liu et al., 2018). Latterly, it has also been
used to distill task-specific knowledge from BERT
(Tang et al., 2019).

Other compression techniques have been used
such as low-rank approximation decomposition
(Yu et al., 2017), vector quantisation (Wu et al.,
2016), and Huffman coding (Han et al., 2016). For
a more thorough survey of current neural network
compression methods see Cheng et al. (2018).

4 Teacher-student distillation

The essence of model distillation is to train a
model and subsequently use the patterns it learnt
to influence the training of a smaller model. For
teacher-student distillation, the smaller model, the
student, explicitly uses the information learnt by
the larger original model, the teacher, by compar-
ing the distribution of each model’s output layer.
We use the Kullback-Leibler divergence to calcu-
late the loss between the teacher and the student:

EKLZ*ZZP(Xz‘)log)

P(Xz‘
teb i Q(x:)

(1)

where P is the probability distribution from the
teacher’s softmax layer, () is the probability distri-
bution from the student’s, and x; is input vector to

the softmax corresponding to token w; of a given
tree ¢ for all trees in batch b.

For our implementation, there are two probabil-
ity distributions for each model, one for the arc
prediction and one for the label prediction. By
using the distributions of the teacher rather than
just using the predicted arc and label, the student
can learn more comprehensively about which arcs
and labels are very unlikely in a given context, i.e.
if the teacher makes a mistake in its prediction,
the distribution might still carry useful informa-
tion such as having a similar probability for y, and
yp Which can help guide the student better rather
than just learning to copy the teacher’s predictions.

In addition to the loss with respect to the
teacher’s distributions, the student model is also
trained using the loss on the gold labels in the
training data. We use categorical cross entropy to
calculate the loss on the student’s predicted head
classifications:

Log=— Z Z log p(h;|x;) 2)

teb 4

where h; is the true head position for token wj,
corresponding to the softmax layer input vector x;,
of tree ¢ in batch b. Similarly, categorical cross en-
tropy is used to calculate the loss on the predicted
arc labels for the student model. The total loss for

the student model is therefore:

L = Lxr(Th, Sh) + Lrxr(Tiab, Siab)
+ ECE(h) + ,CCE(lab) 3)

where Lcp(h) is the loss for the student’s pre-
dicted head positions, Log(lab) is the loss for
the student’s predicted arc label, Lr 1 (Th, Sp) is
the loss between the teacher’s probability distribu-
tion for arc predictions and that of the student, and
L 1,(Tiap, Siap) is the loss between label distribu-
tions. This combination of losses broadly follows
the methods used in Tang et al. (2019) but is al-
tered to fit the Biaffine parser.

5 Methodology

We train Biaffine parsers and apply the teacher-
student distillation method to compress these
models into a number of different sizes for a num-
ber of Universal Treebanks v2.4 (UD) (Nivre et al.,
2019). We use the hyperparameters from Dozat
and Manning (2017), but use a PyTorch imple-
mentation for our experiments which obtains the
same parsing results and runs faster than the re-
ported speed of the original (see Table 1).> The
hyperparameter values can be seen in Table 7 in
the Appendix. During distillation dropout is not
used as in earlier experiments with dropout per-
formance was hampered. And subsequent work
on distillation which uses dropout also didn’t per-
form well, but it isn’t clear if this is the cause of
the poorer performance, e.g. different treebanks
were used, UPOS tags weren’t, and no pre-trained
embeddings were used (Dehouck et al., 2020). Be-
yond lexical features, the model only utilises uni-
versal part-of-speech (UPOS) tags. Gold UPOS
tags were used for training and at runtime. Also,
we used gold sentence segmentation and tokeni-
sation. We opted to use these settings to com-
pare models under homogeneous settings, so as
to make reproducibility of and comparability with
our results easier.

Data We use the subset of UD treebanks sug-
gested by de Lhoneux et al. (2017) from v2.4, so
as to cover a wide range of linguistic features, lin-
guistic typologies, and different dataset sizes. We
make some changes as this set of treebanks was

>The implementation can be found at
github.com/zysite/biaffine-parser. Be-
yond adding our distillation method, we also included the
Chu-Liu/Edmonds’ algorithm, as used in the original, to
enforce well-formed trees.

chosen from a previous UD version. We exchange
Kazakh with Uyghur because the Kazakh data
does not include a development set and Uyghur
is a closely related language. We also exchange
Ancient-Greek-Proiel for Ancient-Greek-Perseus
because it contains more non-projective arcs (the
number of arcs which cross another arc in a
given tree) as this was the original justification
for including Ancient Greek. Further, we fol-
low Smith et al. (2018b) and exchange Czech-
PDT with Russian-GSD. We also included Wolof
as African languages were wholly unrepresented
in the original collection of suggested treebanks
(Dione, 2019). Details of the treebanks pertinent
to parsing can be seen in Table 2. We use pre-
trained word embeddings from FastText (Grave
et al., 2018) for all but Ancient Greek, for which
we used embeddings from Ginter et al. (2017),
and Wolof, for which we used embeddings from
Heinzerling and Strube (2018). When necessary,
we used the algorithm of Raunak (2017) to reduce
the embeddings to 100 dimensions.

For each treebank we then acquired the follow-
ing models:

i Baseline 1: Full-sized model is trained as nor-
mal and undergoes no compression technique.

ii Baseline 2: Model is trained as normal but
with equivalent sizes of the distilled mod-
els (20%, 40%, 60%, and 80% of the origi-
nal size) and undergoes no compression tech-
nique. These models have the same overall
structure of baseline 1, with just the number of
dimensions of each layer changed to result in a
specific percentage of trainable parameters of
the full model.

iii Distilled: Model is distilled using the teacher-
student method. We have four models were
the first is distilled into a smaller network with
20% of the parameters of the original, the sec-
ond 40%, the third 60%, and the last 80%. The
network structure and parameters of the dis-
tilled models are the exact same as those of the
baseline 2 models.

Hardware For evaluating the speed of each
model when parsing the test sets of each treebank
we set the number of CPU cores to be one and ei-
ther ran the parser using that solitary core or using
a GPU (using a single CPU core too). The CPU

used was an Intel Core 17-7700 and the GPU was
an Nvidia GeForce GTX 1080.3

Experiment We compare the performance of
each model on the aforementioned UD treebanks
with respect to the unlabelled attachment score
(UAS) which evaluates the accuracy of the arcs,
and the labelled attachment score (LAS) which
also includes the accuracy of the arc labels. We
also evaluate the differences in inference time for
each model on CPU and GPU with respect to sen-
tences per second and tokens per second. We
report sentences per second as this has been the
measurement traditionally used in most of the lit-
erature, but we also use tokens per second as
this more readily captures the difference in speed
across parsers for different treebanks where the
sentence length varies considerably. We also re-
port the number of trainable parameters of each
distilled model and how they compare to the base-
line, as this is considered a good measure of how
green a model is in lieu of the number of floating
point operations (FPO) (Schwartz et al., 2019).4

6 Results and Discussion

Figure 2 shows the average attachment scores
across all test treebanks (all results presented in
this section are on the test treebanks) for the dis-
tilled models and the equivalent-sized base models
against the size of the model relative to the origi-
nal full model. There is a clear gap in performance
between these two sets of models with roughly
2 points of UAS and LAS more for the distilled
models. This shows that the distilled models do
actually manage to leverage the information from
the original full model. The full model’s scores
are also shown and it is clear that on average the
model can be distilled to 60% with no loss in per-
formance. When compressing to 20% of the full
model, the performance only decreases by about 1
point for both UAS and LAS.

Figures 3a and 3b show the differences in UAS
and LAS for the models distilled to 20% and
80% respectively for each treebank when com-
pared to the equivalent sized baseline model and
the full baseline model. The distilled models far
outperform the equivalent-sized baselines for all
treebanks. It is clear that for the smaller model

3Using Python 3.7.0, PyTorch 1.0.0, and CUDA 8.0.

“There exist a number of packages for computing the FPO
of a model but, to our knowledge, as of yet they do not include
the capability of dealing with LSTMs.

--&- Baseg -@- Distill Base

__________ -0
85.0 e -
84.5 ‘/’,,
n 840
<
DEIS| g A
JFURTREELE x
83.0{ e
82.5 .
R
20 30 40 50 60 70 %
Percentage of base model
(@)
-k Baseg -@- Distill Base
gos -
80.0 o e
795, __--"""
79.0{ @
(3]
<785)
7801 et A
T S
7751 et
7700 T
A
20 30 40 50 60 70 %

Percentage of base model

(b)

Figure 2: UAS (a) and LAS (a) against the model size
relative to the original full-sized model: Baseg, the
baseline models of equivalent size to the distilled mod-
els; Distill, the distilled models; Base, the performance
of the original full-sized model.

some treebanks suffer more when compressed to
20% than others when compared to the full base-
line model, e.g. Finnish-TDT and Ancient-Greek-
Perseus. These two treebanks have the largest
percentage of non-projective arcs (as can be seen
in Table 2) which could account for the decrease
in performance, with a more powerful model re-
quired to account for this added syntactic com-
plexity.

However, the two smallest treebanks, Tamil-
TTB and Wolof-WTB, actually increase in ac-
curacy when using distillation, especially Tamil-
TTB, which is by far the smallest treebank, with
an increase in UAS and LAS of about 4 points
over the full base model. This is likely the result
of over-fitting when using the larger, more power-
ful model, so that reducing the model size actually
helps with generalisation.

These observations are echoed in the results for
the model distilled to 80%, where most treebanks
lose less than a point for UAS and LAS against the
full baseline, but have a smaller increase in per-
formance over the equivalent-sized baseline. This
makes sense as the model is still close in size to the
full baseline and still similarly powerful. The in-
crease in performance for Tamil-TTB and Wolof-

number of trees
train dev test

average sent length average arc length non-proj. arc pct
train dev test train dev test train dev test

Ancient-Greek-Perseus | 11476 1137 1306| 149 20.5 17.0 | 41 45 4.1 239 232 235
Chinese-GSD 3997 500 500 |25.7 263 250 | 47 49 47 01 00 03
English-EWT 12543 2002 2077 | 17.3 13.6 13.1 37 35 36 1.0 0.6 06
Finnish-TDT 12217 1364 1555|143 144 145 34 34 34 1.6 19 18
Hebrew-HTB 5241 484 491 | 273 246 260 | 39 38 3.7 08 08 09
Russian-GSD 3850 579 601 | 20.5 212 199 | 35 37 3.7 1.1 1.0 12
Tamil-TTB 400 80 120 | 16.8 168 17.6 | 3.5 3.7 3.7 03 00 02
Uyghur-UDT 1656 900 900 | 12.6 12.8 125 35 35 35 1.1 13 14
Wolof-WTB 1188 449 470 | 20.8 239 23.1 35 38 36 04 04 05

Table 2: Statistics for salient features with respect to parsing difficulty for each UD treebank used: number of
trees, the number of data instances; average sent length, the length of each data instance on average; average arc
length, the mean distance between heads and dependents; non.proj. arc pct, the percentage of non-projective arcs

in a treebank.

er zh en fi he

ru ta ug wo avg

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Full
B-20|70.5 64.4|85.1 82.1
B-40|72.2 66.4|86.1 83.5
B-60|72.0 66.4|86.7 84.0|89.5 87.5
B-80|71.8 66.2|86.7 84.3|89.1 87.1

88.1

75.5 70.4|88.2 85.9(90.8 89.0/90.5 88.6|90.8 88.6|88.9 85.2(76.9 71.0(75.2 58.9|88.5 84.5
88.6 86.4|86.7 83.6|87.9 85.1
88.9 86.8|87.7 84.8|88.5 85.6(87.1
85.5|88.7 86.3
88.5 85.9189.3 86.6|87.1

85.0 80.2
86.3 82.0|76.2 69.9|72.2 55.6|86.1 81.8|82.2 76.8
83.1|78.4 71.8|73.0 55.7|86.5 82.2|83.2 77.8
83.1|77.5 70.9|72.7 55.9|87.5 83.1|83.3 78.1
82.9|78.2 71.5|73.0 56.2|87.8 83.6(83.5 78.3

87.1

D-20(72.3 66.4|86.7 84.2|189.5 87.7|87.6 84.9|89.4 86.7|88.2 84.2|80.6 74.7|74.1 57.9|89.0 85.0|84.1 79.1

D-40|74.0 68.3
D-60|74.2 68.7|88.3 85.9|90.1 88.3
D-80|75.0 69.6|88.4 86.2|90.1 88.3

89.4 87.1

87.9 85.6/89.9 88.0/89.5 86.9|89.4 87.0/88.4 84.6|80.9 74.7|74.5 58.3|89.4 855
90.0 87.5
89.2 86.9|90.3 88.0|88.8 85.0|81.2 75.4|74.6 58.6|89.6 85.7|85.3 80.4

84.9 79.9

88.6 84.7|80.4 74.5|74.5 58.6|89.5 85.8|/85.0 80.1

Table 3: Full attachment scores for each model and for each test treebank where Full means the original sized
model, B-X means training a model with X% of the trainable parameters of the original model, and D-X means
distilling to a model with X% of the trainable parameters of the original model.

WTB are greater for this distilled model, which
suggests the full model doesn’t need to be com-
pressed to such a small model to help with gener-
alisation. The full set of attachment scores from
our experiments can be seen in Table 3.

With respect to how green our distilled models
are, Table 5 shows the number of trainable pa-
rameters for each distilled model for each tree-
bank alongside its corresponding full-scale base-
line. We report these in lieu of FPO as, to our
knowledge, no packages exist to calculate the FPO
for neural network layers like LSTMs which are
used in our network. These numbers do not de-

Energy (kJ)
Full D-80 D-60 D-40 D-20
inf 0.32 0.31 0.27 0.25 0.24
w/load | 691 6.70 6.9 5.95 3.67

Table 4: Total inference energy consumption (inf) used
for all test treebanks (8K sentences) and also with the
energy consumption used to load each of the 9 mod-
els (w/ load). The standard deviation for inference en-
ergy consumption was 0.01 exclusively and for the con-
sumption with loading models it ranged from 0.06 to
0.15.

pend on the hardware used and strongly correlate
with the amount of memory a model consumes.
Different algorithms do utilise parameters differ-
ently, however, the models compared here are of
the same structure and use the same algorithm, so
comparisons of the number of trainable model pa-
rameters do relate to how much work each respec-
tive model does compared to another. Beyond this
we offer a nominal analysis of inference energy
consumption for each of the model sizes. These
measurements can be seen in Table 4. The full
baseline uses roughly 33% more than the small-
est distilled model. This difference is more pro-
nounced when including the energy used to load
the models (which might be a consideration if
the parser cannot be kept in memory) as the full
baseline almost uses twice as much energy as the
smallest distilled model.

Figures 4 and 5 show the parsing speeds on
CPU and GPU for the distilled models and for the
full baseline model in sentences and tokens per
second, respectively. The speeds are reported for
different batch sizes as this obviously affects the
speed at which a neural network can make predic-

gr

zh

en

fi

he

ru

ta

ug

wo

Full

12.28

11.98

12.23

12.77

12.04

11.92

11.22

11.45

11.39

D-20
D-40
D-60
D-80

247 (19.7)
4.88 (39.3)
7.35(59.8)
9.80 (80.3)

2.42(20.2)
4.79 (39.5)
7.24 (60.5)
9.57 (79.8)

2.44 (19.7)
4.86 (39.3)
7.33(59.8)
9.75 (79.5)

2.56 (19.7)
5.12 (40.2)
7.66 (59.8)
10.23 (80.3)

2.39 (19.2)
4.80 (40.0)
7.19 (59.2)
9.59 (79.2)

2.36 (19.3)
4.73 (39.5)
7.18 (59.7)
9.52 (79.8)

2.25(19.6)
4.49 (39.3)
6.71 (59.8)
8.94 (79.5)

2.30 (20.2)
4.60 (40.4)
6.90 (60.5)
9.19 (79.8)

2.27 (19.5)
4.57 (39.8)
6.84 (60.2)
9.12 (80.5)

Table 5: Trainable model parameters (x 10%) with percentage of full model in parentheses, where Full means the
original sized model and D-X means distilling to a model with X% of the trainable parameters of the original

model.
EE UAS, B LAS, UASe, Wil LASe
4 N
2 :. ‘.ﬂ ; “‘ N N j‘
v mN N N N N DER N
< 0 g J L S N \ N
'S
L %
-2
-4
fi wo ru he zh ug ar ta ewt
Treebank
(a)
Fm UAS, BE LAS, UASeq 1 LASeq
4
2 N B | ‘:
; g \‘ N N ! | ‘
2 AN N A8 4 A A
-2
-4
fi wo ru he zh ug ar ta ewt
Treebank
(b)

Figure 3: Delta UAS and LAS for when comparing
both the original base model and equivalent-sized base
models for each treebank for two of our distilled mod-
els: (a) D-20, 20% of original model and (b) D-80, 80%
of original model.

tions, but the maximum batch size that can be used
on different systems varies significantly. As can
be seen in Figures 4a and 5a, the limiting factor in
parsing speed is the bottleneck of loading the data
onto the GPU when using a batch size less than
~50 sentences. However, with a batch size of 256
sentences, we achieve an increase in parsing speed
of 19% over the full baseline model when consid-
ering tokens per second.

As expected, a much smaller batch size is re-
quired to achieve increases in parsing speed when

-e- Full - D-80 D-60 -=- D-40

1400

11200
C
3
~ 1000
o
g P
%y
2 800 &
o k
o
O 600 /
L
40075 50 100 150 200 250
Batch size
(@)
—e- Full ¢ D-80 D-60 -#- D-40 --»- D-20
160
_____ M
__ 140 s
X
$ 120
n F T e e e e = e B e N
8 -
T lo0{ X
Q 1
o 1
[S PP Y PO PT TN *
= p
P = = ——— [e
O gol 4% - »
*°
a0 °
0 50 100 150 200 250
Batch size
(b)

Figure 4: GPU (a) and single core CPU (b) speeds in
sentence per second with varying batch sizes for dis-
tilled models (D-X) and full-sized base model (Full).
Shaded areas show the standard error. Speeds for
Tamil-TTB are not included as the test treebank is too
small for larger batch sizes.

using a CPU. Even with a batch size of 16 sen-
tences, the smallest model more than doubles the
speed of the baseline. For a batch size of 256, the
distilled model compressed to 20% increases the
speed of the baseline by 130% when considering
tokens per second. A full breakdown of the pars-
ing speeds for each treebank and each model when
using a batch size of 256 sentences is given in Ta-
ble 6 in the Appendix.

Figure 6 shows the attachment scores and the
corresponding parsing speed against model size
for the distilled model and the full baseline model.
These plots clearly show that the cost in accu-

Full e D-80 D-60 -m- D-40 - D-20

22k
QZOK
< 18k
£
- 16k
o
L 14k
)
S 12k
o
O 10k
8k
0 50 100 150 200 250
Batch size
(@)
-e- Full --#- D-80 D-60 -#- D-40 --»- D-20
25001 seannnnnnaanaas e X
o
2250
Qg 5
<2000y
= e e L
5 1750 " -
X
9 o
2 1500 J
2 i
2 1250 RS DOSs— e ———— .
(@) *
10001 -
¢
750
0 50 100 150 200 250
Batch size
(b)

Figure 5: GPU (a) and single core CPU (b) speeds in
tokens per second with varying batch sizes for distilled
models (D-X) and full-sized base model (Full). Shaded
areas show the standard error. Speeds for Tamil-TTB
are not included as the test treebank is too small for
larger batch sizes.

racy is neglible when compared to the large in-
crease in parsing speed. So not only does this
teacher-student distillation technique maintain the
accuracy of the baseline model, but it achieves
real compression and with it practical increases in
parsing speed and with a greener implementation.
In absolute terms, our distilled models are faster
than the previously fastest parser using sequence
labelling, as can be seen explicitly in Table 1 for
PTB, and outperforms it by over 1 point with re-
spect to UAS and LAS when compressing to 40%.
Distilling to 20% results in a speed 4x that of the
sequence labelling model on CPU but comes at a
cost of 0.62 points for UAS and 0.76 for LAS com-
pared to the sequence labelling accuracies. Fur-
thermore, the increase in parsing accuracy for the
smaller treebanks suggests that distillation could
be used as a more efficient way of finding optimal
hyperparameters depending on the available data,
rather than training numerous models with varying
hyperparameter settings.

We also need to consider training costs, an im-
portant factor to implement green Al. In this re-

—a— GPU speed

©o
o

23000
88 W,
~.
g6 o 220000
S g <
@ R S
Dea S £
5] = 210003
£ 82 =]
< ~. o}
L ﬁ:\ Arennnnnnanas A v
B80T e x = 200002
< ‘N O
78 N,
\'\
L]
76 19000
20% 40% 60% 80% Full
Percentage of base model
(@)
-o- UAS A LAS CPU speed
90
2400
88
2200 _
L 86 @
o ~
g 20005
o 84)
1800
(]
€ 82 o
< 1600 &
] 801 ... e NS PP RRTE L NPOO0000BE00006s A
= A 14008
78
1200
76 1000
20% 40% 60% 80% Full
Percentage of base model

(b)

Figure 6: Comparison of attachment scores and per-
centage increase of speed (tok/s) for different distilled
models with batch size 256: speed on GPU (a) and
speed on CPU (b). Shaded areas show the standard er-
ror. Speeds for Tamil-TTB are not included as the test
treebank is too small for larger batch sizes.

spect, while our full baseline model took 66.4
seconds per epoch to train on English-EWT (the
largest treebank used in this analysis), the base-
line reduced to 20% trainable parameters required
52.9s per epoch, and the distillation into 20% of
the original parameters clocked in at 103.1s per
epoch. The distillation process takes longer and
must be done after a full model is trained. How-
ever, the optimal model when distilling often oc-
curred earlier (about epoch 50, rather than 80-100)
suggesting less training is required.

In practice, the intended use of a parser should
be considered when evaluating the environmental
adequacy of distillation: in systems that will parse
at a large scale or be deployed for extended periods
of time, the savings at decoding time will offset the
increased carbon footprint from training, but this
may not be true in smaller-scale scenarios. How-
ever, in the latter, distillation can still be useful to
reduce hardware requirements of the machine(s)

used for decoding, indirectly reducing emissions.

6.1 Future work

There are numerous ways in which this distilla-
tion technique could be augmented to potentially
retain more performance and even outperform the
large baseline models, such as using teacher an-
nealing introduced by Clark et al. (2019) where
the distillation process gradually secedes to stan-
dard training. Beyond this, the structure of the
distilled models can be altered, e.g. student mod-
els which are more shallow than the teacher mod-
els (Ba and Caruana, 2014). This technique could
further improve the efficiency of models and make
them more environmentally friendly by reducing
the depth of the models and therefore the total
number of trainable parameters.

Distillation techniques can also be easily ex-
panded to other NLP tasks. Already attempts
have been made to make BERT more wieldy by
compressing the information it contains into task-
specific models (Tang et al., 2019). But this can be
extended to other tasks more specifically and po-
tentially reduce the environmental impact of NLP
research and deployable NLP systems.

7 Conclusion

We have obtained results that suggest using
teacher-student distillation for UD parsing is an
effective means of increasing parsing efficiency.
The baseline parser used for our experiments was
not only accurate but already fast, meaning it was a
strong baseline from which to see improvements.
We obtained parsing speeds 2.30x (1.19x) faster
on CPU (GPU) while only losing ~1 point for
both UAS and LAS when compared to the origi-
nal sized model. Furthermore, the smallest model
which obtains these results only has 20% of the
original model’s trainable parameters, vastly re-
ducing its environmental impact.

Acknowledgments

This work has received funding from the Eu-
ropean Research Council (ERC), under the Eu-
ropean Union’s Horizon 2020 research and in-
novation programme (FASTPARSE, grant agree-
ment No 714150), from the ANSWER-ASAP
project (TIN2017-85160-C2-1-R) from MINECO,
and from Xunta de Galicia (ED431B 2017/01,
ED431G 2019/01).

10

References

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
2017. Structured pruning of deep convolutional neu-
ral networks. ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), 13(3):32.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in Neural Information
Processing Systems, pages 2654-2662.

Cristian Bucild, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In
Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining, pages 535-541. ACM.

Dangi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing, pages 740-750.

Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro
Sumita, and Tiejun Zhao. 2018. Syntax-directed at-
tention for neural machine translation. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2018.
Model compression and acceleration for deep neural
networks: The principles, progress, and challenges.
IEEE Signal Processing Magazine, 35(1):126-136.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D Manning, and Quoc Le. 2019.
BAM! Born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5931-5937.

Mathieu Dehouck, Mark Anderson, and Carlos
Go6mez-Rodriguez. 2020. Efficient EUD parsing. In
Proceedings of the Enhanced Universal Dependen-
cies (EUD) Shared task at INPT 2020 (In press).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171-4186.

Cheikh M Bamba Dione. 2019. Developing universal
dependencies for wolof. In Proceedings of the Third
Workshop on Universal Dependencies (UDW, Syn-
taxFest 2019), pages 12-23.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. Proceedings of the 5th International Confer-
ence on Learning Representations.

Daniel Fernindez-Gonzédlez and Carlos Goémez-
Rodriguez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of NAACL-
HLT, pages 710-716.

Filip Ginter, Jan Hajic, Juhani Luotolahti, Milan
Straka, and Daniel Zeman. 2017. CoNLL 2017
shared task-automatically annotated raw texts and
word embeddings. LINDAT/CLARIN digital li-
brary at the Institute of Formal and Applied Linguis-
tics, Charles University.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Masafumi Hagiwara. 1994. A simple and effective
method for removal of hidden units and weights.
Neurocomputing, 6(2):207-218.

David Hall, Taylor Berg-Kirkpatrick, and Dan Klein.
2014. Sparser, better, faster GPU parsing. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 208-217.

Song Han, Huizi Mao, and William J Dally. 2016.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. ICLR.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, pages 1135-1143.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, et al. 2018.
Marian: Fast neural machine translation in C++. In
Proceedings of ACL 2018, System Demonstrations,
pages 116-121.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of
EMNLP, pages 1317-1327.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313-327.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an ensemble of greedy dependency parsers
into one MST parser. In Proceedings of the 2016

11

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1744—1753, Austin, Texas.
Association for Computational Linguistics.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W
Black, and Yulia Tsvetkov. 2019. Measuring bias
in contextualized word representations. Proceed-
ings of the 1st Workshop on Gender Bias in Natural
Language Processing, page 166—172.

Yann LeCun, John S Denker, and Sara A Solla. 1990.
Optimal brain damage. In Advances in neural infor-
mation processing systems, pages 598—605.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017. Old school vs. new school: Comparing
transition-based parsers with and without neural net-
work enhancement. In TLT, pages 99-110.

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin,
and Ting Liu. 2018. Distilling knowledge for
search-based structured prediction. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 1393-1402, Melbourne, Australia. As-
sociation for Computational Linguistics.

Liang Lu, Michelle Guo, and Steve Renals. 2017.
Knowledge distillation for small-footprint highway
networks. In 2017 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4820-4824. IEEE.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403—-1414.

Mitchell P Marcus and Mary Ann Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2).

Joakim Nivre, Mitchell Abrams, Zeljko Agié, et al.
2019. Universal Dependencies 2.4. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (UFAL), Faculty of
Mathematics and Physics, Charles University.

Soujanya Poria, Erik Cambria, Grégoire Winterstein,
and Guang-Bin Huang. 2014. Sentic patterns:
Dependency-based rules for concept-level sentiment
analysis. Knowledge-Based Systems, 69:45-63.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8).

Vikas Raunak. 2017. Simple and effective dimension-
ality reduction for word embeddings. Proceedings
of NIPS LLD Workshop.

Roy Schwartz, Jesse Dodge, Noah A Smith, and
Oren Etzioni. 2019. Green Al arXiv preprint
arXiv:1907.10597.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 291-301.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018a.
82 treebanks, 34 models: Universal dependency
parsing with multi-treebank models. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages

113-123.

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and
Joakim Nivre. 2018b. An investigation of the inter-
actions between pre-trained word embeddings, char-
acter models and pos tags in dependency parsing.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2711-2720.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gémez-
Rodriguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of NAACL-HLT,
pages 717-723.

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang,
Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth
Belding, Kai-Wei Chang, and William Yang Wang.
2019. Mitigating gender bias in natural language
processing: Literature review. Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1630—1640.

Raphael Tang, Yao Lu, Linging Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. arXiv preprint arXiv:1903.12136.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173—180. Association for computa-
tional Linguistics.

David Vilares, Mostafa Abdou, and Anders Sggaard.
2019. Better, faster, stronger sequence tagging con-
stituent parsers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3372-3383.

12

David Vilares, Carlos Go6mez-Rodriguez, and
Miguel A Alonso. 2017. Universal, unsuper-
vised (rule-based), uncovered sentiment analysis.
Knowledge-Based Systems, 118:45-55.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5797-5808.

Weishui Wan, Shingo Mabu, Kaoru Shimada, Kotaro
Hirasawa, and Jinglu Hu. 2009. Enhancing the gen-
eralization ability of neural networks through con-
trolling the hidden layers. Applied Soft Computing,
9(1):404-414.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu,
and Jian Cheng. 2016. Quantized convolutional neu-
ral networks for mobile devices. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 4820—4828.

Seunghak Yu, Nilesh Kulkarni, Haejun Lee, and Jihie
Kim. 2018. On-device neural language model based
word prediction. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 128—131.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng
Tao. 2017. On compressing deep models by low
rank and sparse decomposition. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 7370-7379.

Yuhao Zhang, Peng Qi, and Christopher D Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205-2215.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396—
2408.

A Appendix

Full D-20 D-40 D-60 D-80
CPU(tok/s) 1211 £2 2842 + 3 2086 + 3 1638 +£3 1390 £ 1
(sent/s)| 7544+0.1 177.1+0.2 130.0+0.2 | 102.14+0.2 86.6 £ 0.0
GPU(tok/s) 19219 +77 | 21017 £ 142 | 21296 + 122 | 20346 + 70 | 19202 + 147
(sent/s) | 1197.6 £4.8 |[1309.6 8.9 |1327.0+7.6 |1267.8 £4.3 |1196.5+09.1
CPU(tok/s) 1124 +2 2503 +3 1872 +2 1490 + 2 1278 £ 1
/h (sent/s)| 46.8+0.1 104.2 +0.1 779 £ 0.1 62.0+0.1 532+£0.0
GPU(tok/s) 21255+ 113 | 25665 + 82 | 24862 4+ 134 | 23567 £28 | 22663 +91
(sent/s) | 884.7+4.7 |1068.3+3.4 |10349+56 | 981.0+1.2 | 943.4+3.8
CPU(tok/s) 884 + 1 2217+ 10 1548 £3 1217+ 1 1010+ 7
n (sent/s) | 73.2+0.1 183.5+0.8 128.1 £0.3 100.7 £ 0.1 83.6 + 0.6
GPU(tok/s) 16942 £25 | 20538 £60 | 19739 £109 | 19003 £90 | 17511 £57
(sent/s) | 1402.2 £2.1 [1699.8 +5.0 |1633.74+9.0 |1572.7 7.4 |1449.2 +4.7
CPU(tok/s) 988 + 1 2586 + 3 1767 +2 1371 £2 1153+ 0
(sent/s)| 7294+0.0 | 190.9+0.2 1304 4+0.2 | 101.240.1 85.1£0.0
GPU(tok/s) 18325 +£46 | 22181 +50 | 21408 4+ 130 | 20220 £90 | 19013 + 33
(sent/s) | 1352.4 +3.4 |1637.04+3.7 |1580.0+9.6 [14923+6.7 [1403.2+24
CPU(tok/s) 1180 + 1 2644 +3 1964 + 2 1582 +1 1337+ 1
he (sent/s)| 47.24+0.0 | 105.7+0.1 78.5+0.1 63.3+0.0 53.5+£00
GPU(tok/s) 22202 +£98 | 26441 4+ 150 | 25418 + 181 | 24233 + 176 | 22651 4+ 89
(sent/s) | 887.4+3.9 |1056.8+6.0 |1016.0+7.2 | 968.6+7.1 | 9054+ 3.5
CPU(tok/s) 734+ 1 1717+ 3 1237+ 1 976 £ 1 83241
- (sent/s) | 38.7+0.0 90.6 0.1 65.3 £ 0.1 51.5+0.1 439+0.1
GPU(tok/s) 16383 £+ 87 19661 £+ 137 | 18337 £ 44 17901 + 65 17014 £ 21
(sent/s) | 864.9+4.6 [1037.9+72 | 968.0+23 | 9449+34 | 898.2+ 1.1
CPU(tok/s) 1110 £2 2334 +5 1799 £ 1 1464 £2 1251 +£2
ia (sent/s) | 67.0£0.1 140.8 £0.3 108.5 £ 0.1 88.3+0.1 75.5+£0.1
GPU(tok/s) 17188 £ 194 | 19829 £ 126 | 19771 £ 106 | 18540 £ 98 18172 £ 151
(sent/s) | 1037.0 £ 11.7 11963 + 7.6 |1192.8 6.4 |1118.6 £5.9 |1096.4 +9.1
CPU(tok/s) 1058 + 1 2289 +3 1806 + 2 1404 + 2 1199 +2
(sent/s)| 92.24+0.1 199.4 +0.3 157.34+0.2 12244+0.2 | 1045+0.1
GPU(tok/s) 17974 +35 | 21298 £82 | 21004 + 93 19738 =70 | 18963 + 132
(sent/s) | 1566.0 3.0 |1855.6+7.2 |1829.9+8.1 [1719.6+6.1 [1652.1+11.5
CPU(tok/s) 1245 +£2 2559+ 5 2021 +£3 1614 +2 1398 +2
(sent/s) | 56.3+0.1 115.6 +£ 0.2 91.3+0.1 72.9 £+ 0.1 63.2 + 0.1
GPU(tok/s) 20225 +£74 | 24361 £94 | 21564 +73 | 20661 4+ 102 | 21059 + 105
(sent/s) | 913.8 £3.4 [1100.6+4.2 | 9742+33 | 9334+4.6 | 951.4+4.7
CPU(tok/s) 1070 £ 21 2440 + 39 1808 + 32 1431 £ 26 1218 +£23
av (sent/s) | 63.5+2.1 146.8 £ 5.4 108.1 £ 3.8 853+29 72.5+24
gGPU(tok/s) 18933 £ 243 | 22503 £ 307 | 21488 £ 271 | 20463 £ 251 | 19666 £ 252
(sent/s) | 1124.7 £33.3 | 1336.3 +40.1 | 1282.8 +-41.7 | 1220.4 + 38.8 | 1168.2 + 34.8
Table 6: Speeds with batch size 256.
hyperparameter value
word embedding dimensions 100
pos embedding dimensions 100
embedding dropout 0.33
BiLSTM dimensions 400
BiLSTM layers 3
arc MLP dimensions 500
label MLP dimensions 100
MLP layers 1
learning rate 0.2
dropout 0.33
momentum 0.9
L2 norm A 0.9
annealing 0.75" (t/5000)
€ 1x10712
optimiser Adam
loss function Cross entropy
epochs 100

Table 7: Hyperparameters for full-sized baseline models.

13

End-to-End Negation Resolution as Graph Parsing

Robin Kurtz®, Stephan Oepen*, Marco Kuhlmann®
@ Linkoping University, Department of Computer and Information Science
& University of Oslo, Department of Informatics
robin.kurtz@liu.se, oe@ifi.uio.no,marco.kuhlmann@liu.se

Abstract

We present a neural end-to-end architecture
for negation resolution based on a formula-
tion of the task as a graph parsing problem.
Our approach allows for the straightforward
inclusion of many types of graph-structured
features without the need for representation-
specific heuristics. In our experiments, we
specifically gauge the usefulness of syntactic
information for negation resolution. Despite
the conceptual simplicity of our architecture,
we achieve state-of-the-art results on the Co-
nan Doyle benchmark dataset, including a new
top result for our best model.

1 Introduction

Negation resolution (NR), the task of detecting
negation and determining its scope, is relevant for
a large number of applications in natural language
processing, and has been the subject of several
contrastive research efforts (Morante and Blanco,
2012; Oepen et al., 2017; Fares et al., 2018). In
this paper we cast NR as a graph parsing prob-
lem. More specifically, we represent negation cues
and corresponding scopes as a bi-lexical graph and
learn to predict this graph from the tokens. Under
this representation, we may apply any dependency
graph parser to the task of negation resolution. The
specific parsing architecture that we use in this pa-
per extends that of Dozat and Manning (2018).

Contributions This work (a) rationally recon-
structs the previous state of the art in negation
resolution; (b) develops a novel approach to the
problem based on general graph parsing tech-
niques; (c) proposes and evaluates different ways
of integrating ‘external’ grammatical information;
(d) gauges the utility of morpho-syntactic pre-
processing at different levels of accuracy; (e) shifts
experimental focus (back) to a complete, end-to-
end perspective on the task; and (f) reflects on un-

14

certainty in judging experimental findings, includ-
ing thorough significance testing.

Paper Structure In the following Section 2, we
review selected related work on negation resolution.
Section 3 describes the specific NR task that we
address in this paper. In Section 4 we present our
new encoding of negations and our parsing model,
followed by the description of our experiments and
results in Section 5. We discuss these results in
Section 6 and summarize our findings in Section 7.

2 Related Work

While there exist a variety of datasets that anno-
tate negation (Jiménez-Zafra et al., 2020), the Bio-
Scope (Szarvas et al., 2008) and Conan Doyle
datasets (ConanDoyle-neg; Morante and Daele-
mans, 2012) are most commonly used for evalua-
tion. The latter was created for the shared task at
*SEM 2012 (Morante and Blanco, 2012), where
competing systems needed to predict both nega-
tion cues (linguistic expressions of negation) and
their corresponding scopes, i.e. the part of the utter-
ance being negated. Cues can be simple negation
markers (such as not or without), but may also con-
sist of multiple words (i.e. neither ... nor), or be
mere affixes (i.e. infrequent or clueless). In contrast
to other datasets, ConanDoyle-neg also annotates
negated events that are part of the scopes.

The analysis of negation is divided into two re-
lated sub-tasks, cue detection and scope resolu-
tion. While cue detection is mostly dependent on
lexical or morphological features, relating cues to
scopes is a structured prediction problem and will
likely benefit from an analysis of morpho-syntac-
tic or surface-semantic properties. The UiOs sys-
tem SHERLOCK (Lapponi et al., 2012), the win-
ner of the open track of the *SEM 2012 shared
task, uses morpho-syntactic parts of speech and
syntactic dependencies to classify tokens as either

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 14-24
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

we have never gone out without keeping a sharp watch |,

and no one could have escaped our notice . "

ann. 1: { } (cue) {

ann. 2: <cue> {

ann. 3: (eue){ }
labels: N N CUE E E CUE N N N N S O CUE N E N N N N SO

Figure 1: An example of how overlapping ConanDoyle-neg annotations are converted to flat sequences of labels
in SHERLOCK. In this example, an in-scope token is labelled with N, a cue with CUE, a negated event with E, a
negation stop with S, and an out-of-scope token with O. Illustration taken from Lapponi et al. (2017).

in-scope or out-of-scope using a conditional ran-
dom field (CRF). Another CRF further classifies
scope tokens as events, and a heuristic is applied to
distribute scope tokens to their respective cues. The
SHERLOCK system was subsequently used by Elm-
ing et al. (2013) to evaluate various dependency
conversions, and similarly served as one of three
reference ‘downstream’ applications in the 2017
Extrinsic Parser Evaluation initiative (EPE; Oepen
et al., 2017). The best results from this evaluation
define the state of the art in NR.

Deviating from the original *SEM 2012 setup,
Packard et al. (2014) simplified the task to only
evaluate the performance on finding scope tokens,
assuming gold-standard information about nega-
tion cues. Fancellu et al. (2016, 2018) contin-
ued this trend, additionally treating each negation
instance separately, and successfully used BiL-
STM (bidirectional Long Short-Term Memory re-
current neural networks; Hochreiter and Schmidhu-
ber, 1997). Recently, Sergeeva et al. (2019) used
pre-trained transformers (Vaswani et al., 2017),
namely BERT (Devlin et al., 2019), to further im-
prove performance, albeit on a derivative of the
original dataset (Liu et al., 2018). Using BERT
in a two-stage sequence-labelling approach on the
original ConanDoyle-neg corpus and other relevant
negation corpora, Khandelwal and Sawant (2020)
successfully improved previous results by a con-
siderable margin. The 2018 follow-up to the EPE
shared task (Fares et al., 2018) again used SHER-
LOCK to evaluate parsing performance, this time
restricting itself to participating systems in the co-
located 2018 CoNLL Shared Task on Universal
Dependency Parsing (Zeman et al., 2018).

3 Task and Data

We target the original *SEM 2012 shared task and
aim to predict both negation cues and their scopes.
We compare our approach with the baseline SHER-
LOCK system and the state-of-the-art systems iden-
tified through the EPE shared tasks.

15

3.1 Data

The negation data of *SEM 2012 consists of se-
lected Sherlock Holmes stories from the works of
Arthur Conan Doyle, and contains 3,644 sentences
in the training set, 787 sentences in the develop-
ment set, and 1,089 sentences in the evaluation set.
The corpus annotates a total of 1,420 instances of
negation. Several sentences contain two or more
instances of negation, while 4,294 sentences do not
contain any at all.

Negation instances are annotated as tri-partite
structures: Negation cues can be full tokens, multi-
word expressions, or affixal sub-tokens. For each
cue, its scope is defined as the possibly discon-
tinuous sequence of (sub-)tokens affected by the
negation. Additionally, a subset of in-scope tokens
can be marked as negated events (or states), pro-
vided that the sentence is factual and the events
in question did not take place. For sentences con-
taining multiple negation instances, their respective
scope and event spans may nest or overlap.

The systems submitted to the EPE 2017 and
2018 tasks work on ‘raw’, unsegmented text, and
apply different segmentation strategies. To evaluate
these systems in the context of negation resolution,
the gold-standard negation annotations have to be
retrofitted to each system’s output. Each system is
then tested against their own ‘personalized’ gold
standard. For more information on this projection
procedure, we refer to Lapponi et al. (2017).

3.2 Baseline System

As in the EPE shared tasks, our baseline is the
SHERLOCK system of Lapponi et al. (2012, 2017),
which approaches NR as a token-based sequence
labelling problem and uses a Conditional Random
Field (CRF) classifier (Lavergne et al., 2010). The
token-wise negation annotations contain multiple
layers of information. Tokens may or may not be
negation cues; they can be in or out of scope for
a specific cue; in-scope tokens may or may not be
negated events. Moreover, as already stated, mul-
tiple negation instances may be (partially or fully)

CUE

CUE

Je A

. an unmitigated scoundrel for whom there was neither pity nor excuse .

Figure 2: An example of how ConanDoyle-neg annotations are converted to a dependency-style graph structure.
We omit the special root node ry and mark roots instead with vertical arcs. The arcs are labelled for scope (S),

event (E), and multi-word-cue (M).

overlapping. Before presenting the CRF with the
annotations, SHERLOCK ‘flattens’ all negation in-
stances in a sentence, assigning a six-valued ex-
tended begin—inside—outside labelling scheme, as
indicated in Figure 1. After classification, hierar-
chical (overlapping) negation structures are recon-
structed using a set of post-processing heuristics.

The features of the classifier include different
combinations of token-level observations, such as
surface forms, part-of-speech tags, lemmas, and
dependency labels. In addition, SHERLOCK em-
ploys features encoding both token and dependency
distance to the nearest cue, together with the full
shortest dependency paths. In the EPE context,
gold-standard negation cues were provided as in-
put to SHERLOCK.!

4 Approach

In this section we define our graph-based encod-
ing of negation structures, and present our parsing
system and training procedure.

4.1 Negation Graphs

Instead of labelling each token sequentially with
cue, scope or event markers, we reformulate NR as
a parsing task, creating dependency-style negation
graphs with lexicalized nodes and bilexical arcs
i — j between a head ¢ and a dependent j as
target structures. This formulation allows us to
more naturally encode the relationship between
tokens and their cue(s), while being able to easily
differentiate between regular scopes and events.
An example for a negation graph is shown in
Figure 2. We adopt a convention from dependency
parsing and visualize negation graphs with their
nodes laid out as the words of the respective sen-
tence, and their arcs drawn above the nodes. When

'One main focus of the EPE task was the downstream eval-
uation of different syntactic representations; but the subtask of
cue detection is relatively insensitive to grammatical structure
(Velldal et al., 2012).

16

transforming negation annotations into graphs, we
mark negation cues ¢ by special arcs 7o — ¢ ema-
nating from an artificial root node ry. Scope and
event tokens are marked by appropriately labelled
arcs from their respective cue(s). For multi-word
cues, only the first cue token is assigned as a root,
while the remaining tokens are connected to the
first with arcs labelled M. Since we do not split
tokens into subtokens, we mark the full token con-
taining an affixal cue as root. The negated part of
the token is (by convention) annotated as an event,
and thus marked by an appropriately labelled loop.
The resulting graphs thus contain unconnected
nodes, multiple structural roots (dependents of the
artificial root node rg), loops, and nodes with mul-
tiple incoming arcs. Sentences that do not contain
any negations are represented by empty graphs.

4.2 Neural Model

With the translation of the negation annotation into
graphs, we can use parsers that learn how to jointly
predict cues and their respective scopes, avoiding a
cascade of classifiers and heuristics as in the SHER-
LOCK system. Specifically, we use a reimplemen-
tation of the neural parser by Dozat and Manning
(2018), which in turn is based on the architecture
of Kiperwasser and Goldberg (2016). The parser
learns to weigh all possible arcs, and predicts the
output graph simply as the collection of all arcs
with positive weights. At the heart of this parser is
a bidirectional recurrent neural network with Long
Short-Term Memory cells (BiLSTM; Hochreiter
and Schmidhuber, 1997). Given an input sequence
Z = x1,...,x, and corresponding word embed-
dings w;, the network outputs a sequence of con-
text-dependent embeddings ¢;:

—

Cly...,Cn = BILSTM(Wy, ..., w,)
We augment the input word embeddings w; with
additional part-of-speech tag and lemma embed-

dings, embeddings created by a character-based

LSTM, and 100-dimensional GloVe (Pennington
et al., 2014) embeddings. Based on the context-
dependent embeddings, two feedforward neural
networks (FNN) create specialized representations
of each word as a potential head and dependent:

hi =FNN,(&) d; = FNNg(¢;)

These new representations are then scored via a
bilinear model with weight tensor U':

score(hi, d;) = h, Ud;

The inner dimension of the tensor U corresponds to
the number of negation graph labels plus a special
NONE label indicating the absence of an arc, and
thus predicts arcs and labels jointly.

4.3 Adding External Graph Features

Similarly to SHERLOCK, our neural model is able
to process external morpho-syntactic or surface-
semantic analyses of the input sentence in the form
of dependency graphs. Inspired by Kurtz et al.
(2019), we extend the contextualized embeddings
that are computed by our parser by information
derived from the external graph. For this we use
three approaches: (i) attaching the sum of heads;
(77) scaled attention on the heads; and (zi¢) Graph
Convolutional Networks (Kipf and Welling, 2017).
In the following, we view the external graph in
terms of its n X n adjacency matrix A and the
contextualized embeddings as an n X d matrix C.

Sum of Heads The first method generalizes that
of Kurtz et al. (2019), who concatenate to each
contextualized embedding the contextualized em-
bedding of its head. This only works when the
graphs are trees, that is, when every node has one
incoming arc. When there is more than one incom-
ing arc, we instead sum up all respective contextual
embeddings. We express this as a matrix product

sumoh(A4, C) = AC .

Scaled Attention The second approach is in-
spired by Vaswani et al. (2017), who compute
the (scaled) dot product attention QK T between
a matrix of queries Q and a matrix of keys K,
and normalize it by a row-wise softmax function,
which yields probabilistic weights on potential val-
ues. Noting the similarity between this normalized
attention matrix and a probabilistic adj acency ma-
trix, we replace QK ¢ with the matrix A:

)

Vd

—

scatt(A, C') = softmax < c

17

Here, d is the size of the contextualized embed-
dings. In our case, where we merely want to ex-
tract features from a given graph, the matrix Ais
known and sparse; but the same scaled attention
model could also be used in a multi-task setup to
jointly learn to parse syntactico-semantic graphs
and negations, in which case A would be learned
and dense.

Graph Convolutional Networks Graph Convo-
Iutional Networks (GCNs; Kipf and Welling, 2017)
generalize convolutional networks to graph-struc-
tured data. While they were developed with graphs
much larger than our negation graphs in mind,
Marcheggiani and Titov (2017) showed their use-
fulness for semantic role labelling. With X0=C
at the first level, we compute, for each level [> 0, a
combined representation of heads (H), dependents
(D), and the nodes themselves (5), weighted by
layer-specific weight matrices Wt

X! = ReLU((/TWIZ{ v ATWE 4+ Wg)X'H)

When applying the next layer /, each node is up-
dated with respect to its representation X1 from
the previous layer, thus indirectly taking into ac-
count grandparents and grandchildren. As this
method is the only one that not only uses a node’s
head but also its dependents, we expect it to benefit
the most from external graph features.

5 Experiments

In this section we describe our experiments and
review our baselines, methodology, and reported
results.

5.1 Training

Our parser is trained with a softmax cross-entropy
loss using the Adam optimizer (Kingma and Ba,
2015) and mini-batching. The training objective
for our negation parsing system does not directly
match the official evaluation measures, but is in-
stead based on labelled per-arc Fy scores (i.e. the
harmonic mean of precision and recall), which mea-
sures the amount of (in)correctly predicted arcs and
labels. For model selection, we train for 200 epochs
and choose the model instance that performs best
on the development set.

Our network sizes, dropout rates, and training
parameters are shown in Table 1. Despite hav-
ing less than half as many trainable parameters
than the model by Dozat and Manning (2018), our

Network Embeddings 100
sizes Char LSTM 1@ 100
Char embedding 80
BiLSTM 3 @200
Arc/Label FNN 200
GCN Levels 2
Dropout Embeddings 20%
rates Char LSTM feedforward 30%
Char LSTM recurrent 30%
Char Linear 30%
BiLSTM feedforward 40%
BiLSTM recurrent 20%
Arc FNN 20%
Arc scorer 20%
Label FNN 30%
Label scorer 30%
Training Epochs 200
parameters ~ Mini-batch size 50
Adam S 0
Adam S 0.95
Learning rate 1-1073
Gradient clipping 5
Interpolation constant 0.025
L5 regularization 3.107°

Table 1: Network sizes, dropout rates, and training pa-
rameters of our neural models.

model is still prone to overfitting, partly due to the
rather small size of the training data. Hence we use
only slightly smaller dropout rates than Dozat and
Manning (2018). Following Gal and Ghahramani
(2016), we apply variational dropout sharing the
same dropout mask between all time steps in a se-
quence, and DropConnect (Wan et al., 2013; Merity
et al., 2017) on the hidden states of the BILSTM.

5.2 Evaluation Measures

Standard evaluation measures for the original
*SEM 2012 task include scope tokens (ST), scope
match (SM), event tokens (ET), and full negation
(FN) Fp scores. ST and ET are token-level scores
for in-scope and negated event tokens, respectively,
where a true positive is a correctly retrieved to-
ken of the relevant class (Morante and Blanco,
2012). FN is the strictest of these measures (and
the primary evaluation metric for the NR part of the
EPE shared task), counting as true positives only
perfectly retrieved full scopes, including an exact
match on negated events.

5.3 Baselines

In order to have a fair comparison with the previous
results of the 2017 and 2018 EPE shared tasks, we
evaluate on the ConanDoyle-neg data as processed
by the best-performing systems from the two edi-
tions. The best-performing system on the nega-

18

tion task of the 2017 edition of EPE, STANFORD-
PARI1S-06 (Schuster et al., 2017), uses enhanced
Universal Dependencies (v1) and data from the
Penn Treebank (Marcus et al., 1993), the Brown
Corpus (Francis and Kucera, 1985) and the GENIA
treebank (Tateisi et al., 2005). In contrast to this,
the best performing system for the 2018 edition,
TURKUNLP (Kanerva et al., 2018), only uses the
English training data provided by the co-located
UD parsing shared task. Both systems use the
parser and hyperparameters of Dozat et al. (2017),
the winning submission of the CoNLL 2017 Shared
Task on parsing Universal Dependencies.

In the overview paper for the 2018 EPE shared
task (Fares et al., 2018), the organizers report that
the version of the SHERLOCK negation system that
was used for EPE 2017 had a deficiency that could
leak gold-standard scope and event annotations into
system predictions, leading to potentially inflated
scores.” The EPE 2018 version of SHERLOCK
corrected this problem and added automated hy-
perparameter tuning, which Fares et al. (2018) sug-
gest largely offset the negative effect on overall
scores from the bug fix, at least when averaging
over all submissions. They did not, however, re-
run the EPE 2017 evaluation with the corrected
and enhanced version of SHERLOCK, leaving sub-
stantive uncertainty about current state-of-the-art
results. We address this problem by applying the
improved (i.e. 2018) version of the baseline sys-
tem, including the exact same tuning procedure
described by Fares et al. (2018), to the originally
best-performing STANFORD-PARIS dependency
graphs. In this replication study, we observe a large
(§ points FN Fy) drop in performance compared to
the originally reported results. While STANFORD-
PARIS still outperforms TURKUNLP, the margin
between the two systems is narrowed down to less
than 2 points FN F;.

5.4 Experiments

We report two sets of experiments. For all experi-
ments, we run each of our neural network models
10 times with different random seeds and choose
the best performing model with respect to perfor-
mance on the development set in terms of FN F;.

Gold-Standard Cues Even though our approach
can predict negation cues on its own, for our first
set of experiments, we follow the setup of the EPE
tasks and predict only scopes and events, adding

*This problem also applies to Elming et al. (2013).

Data Model

Extra

Development

Evaluation

SM

ST

ET

FN

SM

ST

ET

FN

SHERLOCK

80.43

88.82

71.64

61.60°

78.83

88.31

67.09

61.42

sumoh

STANFORD-PARIS
scatt

gcn

w/o syntax
with syntax
w/o syntax
with syntax
w/o syntax
with syntax

78.70
74.62
79.57
76.92
76.92
80.00

86.35
86.86
88.86
87.68
87.53
88.84

73.74
72.3
75.92
70.94
77.36
76.85

69.43
64.85
69.93
68.94
68.94
70.89*

78.54
75.19
78.24
77.34
77.04
78.54

89.62
88.74
89.35
88.96
88.99
89.71

62.10
63.87
59.74
63.32
66.86
65.00

62.15
57.68
58.45
62.15
61.05
64.27

SHERLOCK

77.38

87.19

72.36

59.91°

80.48

89.36

65.36

59.74

sumoh

TURKUNLP
scatt

gcn

w/o syntax
with syntax
w/o syntax
with syntax
w/o syntax
with syntax

79.14
76.47
80.85
80.43
78.26
78.26

87.36
87.28
88.5
88.76
87.31
88.76

78.26
73.73
75.24
73.93
74.75
76.70

71.85
66.92
70.89
68.44*
67.94
69.43

78.43
75.69
79.32
78.13
77.23
76.00

89.10
88.90
89.56
89.74
88.89
88.98

61.63
64.83
65.61
66.46
62.50
64.17

60.48
57.45
60.48
61.58
60.85
58.99

Table 2: Results of our NR parser on the STANFORD-PARIS and TURKUNLP versions of the ConanDoyle-neg
development and evaluation sets when gold-standard cues are provided. The numerically best results are shown
in bold. We compare our gcn with syntax model for STANFORD-PARIS and our scatt with syntax model for
TURKUNLP with the respective SHERLOCK models using bootstrap significance testing. Only the *-marked
measures are significantly different from their o-marked counterparts.

Data Model Development Evaluation
CUE SM ST ET FN CUE SM ST ET FN
Read et al. (2012) - - - - - 91.31 70.39 8237 67.02 57.63
Packard et al. (2014) - 77.80 82.40 - - 91.31 73.10 85.40 - -
nosyntax 91.76 73.76 86.57 71.96 65.69 90.98° 75.81 87.69 60.66 59.40
STANFORD-PARIS sumoh 91.62 74.10 85.63 6943 6339 91.05 68.64 86.66 59.74 52.58
scatt 91.51 76.16 8472 70.00 6642 9098 7225 86.09 6121 57.64
gen 9326 73.11 8422 7240 65.19 92.68* 73.83 86.89 63.69 58.07
nosyntax 9298 76.22* 85.61 71.11 66.42 90.71 72.09 86.92 59.88 55.18
TURKUNLP sumoh 9249 7345 8503 7535 6231 90.66 71.73 8791 60.06 53.19
scatt 92.54 76.60 8534 71.03 64.15 90.13 71.85 87.06 57.23 52.08
gcn 91.02 72.46° 8490 7349 63.15 9098 71.43 86.57 63.40 54.54

Table 3: Results of our NR parser on the STANFORD-PARIS and TURKUNLP versions of the ConanDoyle-neg
development and evaluation sets when cues are predicted. The numerically best results are shown in bold. We
test for significant differences between our gcn with syntax models for STANFORD-PARIS and TURKUNLP and
respective models using no additional inputs. Only the *-marked measures are significantly different from their

o-marked counterparts.

19

64
62

60

[0 S-P w/o syn
I S-Pwsyn
[0 T w/osyn
3 Twsyn

581

;

&6“
&

56

&

"3
& §

&

Figure 3: Boxplots visualizing the variance of perfor-
mance on the evaluation set for the systems using gold
cues. We compare the different methods using and not
using additional syntactic information.

62
604
581
561

=

544

;

6\6*‘
&

524
I Stanford-Paris
3 TurkuNLP

504

T
o
§

T
g

4
>
‘)b

<2
(’*’\\
(\0

Figure 4: Boxplots visualizing the variance of perfor-
mance on the evaluation set for the systems additionally
predicting cues. We compare the four models using no
syntax and using syntax with each of the three methods.

gold-standard cues as external graph features. Over-
lapping the gold-cue inputs with the additional
graph inputs is not optimal but avoids adding more
complexity to the model. Similar to SHERLOCK,
we handle affixal cues in post-processing, splitting
and classifying five known prefixes and one suffix
as cues, and the remainder as the negated event.
The results for these experiments are reported in
Table 2. On the STANFORD-PARIS version of the
evaluation data, our model with external syntactic
features via GCNs (gcn with syntax) outperforms
the SHERLOCK baseline by 2.85 FN F; points;
on the TURKUNLP version, our best model uses
syntactic features via scaled attention (scatt with
syntax), beating the baseline by 1.84 FN F; points.

Predicted Cues For the second set of experi-
ments, we also predict negation cues, and addi-
tionally report the F; for cues (CUE). In order to
put these results into perspective, we contrast them

20

with the winning system of the *SEM 2012 shared
task by Read et al. (2012), and also with the MRS
Crawler of Packard et al. (2014). The results for
these experiments are reported in Table 3. Our
best models for both versions of the evaluation data
are the ones that do not use external syntactic fea-
tures at all (no syntax), with FN F; scores of 59.40
(STANFORD-PARIS) and 55.18 (TURKUNLP), re-
spectively. The former result is 1.77 points higher
than the result reported by Read et al. (2012).

Significance Testing Given the rather small size
of the dataset, we follow the advice of Dror
et al. (2018) and test for signficance using the
bootstrap method (Berg-Kirkpatrick et al., 2012).
We compare our best-performing system for both
STANFORD-PARIS and TURKUNLP with the re-
spective SHERLOCK sytems, resampling the test
sets 109 times and setting our threshold to 5%, fol-
lowing standard methodology. For the second set
of experiments, where we additionally predict nega-
tion cues, we compare our best system to our sec-
ond-best system. We furthermore visualize the
variance of performance across all 10 systems on
the evaluation sets in Figures 3 and 4.

6 Discussion

In this section we discuss the results of our experi-
ments and place them in the broader context of the
research literature on negation resolution.

6.1 Gold Cues

We first discuss our results when using gold-stan-
dard cues, as in the EPE tasks.

Effect of Pre-processing Similar to the SHER-
LOCK baseline system, our system also performs
better with STANFORD-PARIS rather than with
TURKUNLP processed data (64.27 vs. 61.58
FN F;), even when no syntactic inputs are used
(62.15 vs. 60.48 FN Fp). The tokenization, part-
of-speech tagging and lemmatization done by
STANFORD-PARIS thus seem to better fit the NR
task, and have likely also benefitted from the larger
and more diverse data used during training.

Handling Additional Inputs The most efficient
method to handle gold cues at input time, it turns
out, is our simplest method, concatenating each
contextual token with the sum of its heads. A likely
explanation for this is that this method is able to
directly read off the gold-cue information. This

method however is clearly not able to handle ad-
ditional syntactic inputs (losing 4.47 FN F; points
for STANFORD-PARIS), motivating the use of ei-
ther of the more advanced techniques. Combining
STANFORD-PARIS syntactic trees with the GCN
clearly performs best here, but does not point to-
wards a general trend; the plots in Figure 3 rather
show that most of the systems perform similarly,
with the exception of the sum-of-heads method
when using additional syntactic inputs.

6.2 Predicted Cues

When we task our system to also predict cues, as
in *SEM 2012, our best system outperforms Read
etal. (2012) and Packard et al. (2014) on most mea-
sures. Our neural graph parsing approch is clearly
better at identifying the relevant scope tokens (ST),
due to its pairwise classification approach, respec-
tively gaining 5.32 and 2.29 points in FN F;. This
generally also results in better performance for
matching complete scopes (SM). The system does
however struggle with telling events and regular
scopes apart, and is clearly outperformed by Read
et al. (2012) on that measure (6.36 points ET F;
for STANFORD-PARIS no syntax). Our system dif-
ferentiates between scopes and events using arc
labels only, and might not have seen enough data to
sufficiently train the labelling part of the network.

One slightly surprising result is that, even though
our best systems for both the STANFORD-PARIS
and the TURKUNLP version of the evaluation data
use syntactic inputs when gold-standard cues were
provided, our best systems for also predicting cues
do not rely on syntactic inputs at all.

6.3 Significant Learning

While the boxplots in Figures 3 and 4 show the
same general trends as our particular systems in
Tables 2 and 3, they also illustrate the considerable
variance of performance between runs. Choosing
the final system with regards to performance on the
development sets may lead to state-of-the-art per-
formance on the evaluation sets—this is the case
for our best performing system using gold cues and
additional syntax processed by a GCN, which per-
forms more than two points of FN F; better than the
average system of its kind. However, we also see
examples to the opposite. Our system using gold
cues with scaled attention on STANFORD-PARIS
for example, performs more than two points FN Fy
worse than the average on the evaluation set, even
though it performs three points better on the devel-

21

opment set. Thus, at least in this study, good perfor-
mance on the development sets is not necessarily
and indication for good performance on the final
evaluation set. This notion is further reinforced by
the lack of significant difference in performance
of our best systems, compared to SHERLOCK. For
the STANFORD-PARIS version of the data, even
nearly three points of FN F; (64.27 vs. 61.42) do
not constitue a significant difference. The difficulty
to confidently analyse the results is also illustrated
by the somewhat erratic performance differences
across different settings and runs.

The NLP community has recently realized the
importance of proper testing in favour of simple
comparisons of benchmark scores (Gorman and
Bedrick, 2019). This becomes even more pro-
nounced when working with deep learning architec-
tures, where model selection is more complicated
(Moss et al., 2019) due to sensitivity to different
random seeds. When working with smaller datasets
such as ConanDoyle-neg, it is particularly impor-
tant to thoroughly analyse the results before claim-
ing that a new system improves the state of the art
(Dror et al., 2017).

7 Conclusion

We have introduced a novel approach to negation
resolution that remodels negation annotations into
dependency-style graph structures. These negation
graphs directly encode the pairwise cue—scope re-
lationships, and thus enable our neural network to
more easily learn them. We extended an already
powerful neural graph-parsing approach further to
additionally use arbitrary dependency graph struc-
tures as inputs. To validate our method, we revis-
ited the EPE 2017 and 2018 shared tasks and the
full *SEM 2012 shared task on negation resolution,
clearly outperforming each previously best system,
albeit none of our results is statistically significant.

We believe that our approach can be used to re-
structure other tasks as dependency-style graphs in
similar fashion, and thus reuse existing systems as
general purpose tools. Recasting the negation reso-
lution task as a graph-parsing problem allows us to
straightforwardly use a variety of such tools. With
most of these now using neural networks, we can
extend them to employ massive pre-trained models
such as BERT (Devlin et al., 2019) or ELMo (Pe-
ters et al., 2018). This would allow us to leverage
their general power into more specific tasks that
have only limited data available.

References

Taylor Berg-Kirkpatrick, David Burkett, and Dan
Klein. 2012. An Empirical Investigation of Statis-
tical Significance in NLP. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning, pages 995-1005, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484-490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20-30, Vancouver, Canada. Association for
Computational Linguistics.

Rotem Dror, Gili Baumer, Marina Bogomolov, and
Roi Reichart. 2017. Replicability Analysis for Natu-
ral Language Processing: Testing Significance with
Multiple Datasets. Transactions of the Association
for Computational Linguistics, 5:471-486.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The Hitchhiker’s Guide to Testing Sta-
tistical Significance in Natural Language Processing.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383-1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jakob Elming, Anders Johannsen, Sigrid Klerke,
Emanuele Lapponi, Hector Martinez Alonso, and
Anders Sggaard. 2013. Down-stream effects of tree-
to-dependency conversions. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 617-626, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Federico Fancellu, Adam Lopez, and Bonnie Webber.
2016. Neural Networks For Negation Scope Detec-
tion. In Proceedings of the 54th Annual Meeting of

22

the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 495-504, Berlin, Ger-
many. Association for Computational Linguistics.

Federico Fancellu, Adam Lopez, and Bonnie Webber.
2018. Neural Networks for Cross-lingual Negation
Scope Detection. arXiv:1810.02156 [cs].

Murhaf Fares, Stephan Oepen, Lilja @vrelid, Jari
Bjorne, and Richard Johansson. 2018. The 2018
Shared Task on Extrinsic Parser Evaluation. On
the downstream utility of English Universal Depen-
dency parsers. In Proceedings of the 22nd Confer-
ence on Natural Language Learning, page 22—33,
Brussels, Belgia.

W. Nelson Francis and Henry Kucera. 1985. Frequency
Analysis of English Usage: Lexicon and Grammar.
Journal of English Linguistics, 18(1):64-70.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoreti-
cally Grounded Application of Dropout in Recurrent
Neural Networks. In Proceedings of the 30th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’ 16, pages 1027-1035, Barcelona,
Spain. Curran Associates Inc.

Kyle Gorman and Steven Bedrick. 2019. We Need to
Talk about Standard Splits. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2786-2791, Florence,
Italy. Association for Computational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
Short-term Memory. Neural computation, 9:1735-
80.

Salud Maria Jiménez-Zafra, Roser Morante,
Maria Teresa Martin-Valdivia, and L. Alfonso
Urefia-Lépez. 2020. Corpora annotated with
negation: An overview. Computational Linguistics,
46(0):1-56. Early access.

Jenna Kanerva, Filip Ginter, Niko Miekka, Akseli
Leino, and Tapio Salakoski. 2018. Turku Neu-
ral Parser Pipeline: An End-to-End System for the
CoNLL 2018 Shared Task. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
133-142, Brussels, Belgium. Association for Com-
putational Linguistics.

Aditya Khandelwal and Suraj Sawant. 2020. Neg-
BERT: A transfer learning approach for negation
detection and scope resolution. In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 5739-5748, Marseille, France. Euro-
pean Language Resources Association.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313-327.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Robin Kurtz, Daniel Roxbo, and Marco Kuhlmann.
2019. Improving Semantic Dependency Parsing
with Syntactic Features. In Proceedings of the
First NLPL Workshop on Deep Learning for Natural
Language Processing, pages 12-21, Turku, Finland.
Linkdping University Electronic Press.

Emanuele Lapponi, Stephan Oepen, and Lilja @vrelid.
2017. EPE 2017: The Sherlock negation resolu-
tion downstream application. In Proceedings of the
2017 Shared Task on Extrinsic Parser Evaluation at
the Fourth International Conference on Dependency
Linguistics and the 15th International Conference
on Parsing Technologies, page 25 — 30, Pisa, Italy.

Emanuele Lapponi, Erik Velldal, Lilja @vrelid, and
Jonathon Read. 2012. UiO2. Sequence-labeling
negation using dependency features. In Proceedings
of the 1st Joint Conference on Lexical and Computa-
tional Semantics, page 319 —327, Montréal, Canada.

Thomas Lavergne, Olivier Cappé, and Francois Yvon.
2010. Practical very large scale CRFs. In Pro-
ceedings of the 48th Meeting of the Association for
Computational Linguistics, page 504 —513, Uppsala,
Sweden.

Qianchu Liu, Federico Fancellu, and Bonnie Webber.
2018. NegPar: A parallel corpus annotated for nega-
tion. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Diego Marcheggiani and Ivan Titov. 2017. Encoding
Sentences with Graph Convolutional Networks for
Semantic Role Labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 15061515, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and Optimizing LSTM
Language Models. CoRR, abs/1708.02182.

23

Roser Morante and Eduardo Blanco. 2012. *SEM
2012 Shared Task. Resolving the scope and focus
of negation. In Proceedings of the 1st Joint Confer-

ence on Lexical and Computational Semantics, page
265274, Montréal, Canada.

Roser Morante and Walter Daelemans. 2012.
ConanDoyle-neg: Annotation of negation cues
and their scope in Conan Doyle stories. In Pro-
ceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC’12),
pages 1563-1568, Istanbul, Turkey. European
Language Resources Association (ELRA).

Henry Moss, Andrew Moore, David Leslie, and Paul
Rayson. 2019. FIESTA: Fast IdEntification of State-
of-The-Art models using adaptive bandit algorithms.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2920-2930, Florence, Italy. Association for Compu-
tational Linguistics.

Stephan Oepen, Lilja @vrelid, Jari Bjoérne, Richard Jo-
hansson, Emanuele Lapponi, Filip Ginter, and Erik
Velldal. 2017. The 2017 Shared Task on Extrinsic
Parser Evaluation. Towards a reusable community
infrastructure. In Proceedings of the 2017 Shared
Task on Extrinsic Parser Evaluation at the Fourth In-
ternational Conference on Dependency Linguistics
and the 15th International Conference on Parsing
Technologies, page 1 — 16, Pisa, Italy.

Woodley Packard, Emily M. Bender, Jonathon Read,
Stephan Oepen, and Rebecca Dridan. 2014. Simple
negation scope resolution through deep parsing: A
semantic solution to a semantic problem. In Pro-
ceedings of the 52nd Meeting of the Association for
Computational Linguistics, page 69 —78, Baltimore,
MD, USA.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532-1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Jonathon Read, Erik Velldal, Lilja @vrelid, and
Stephan Oepen. 2012. UiOl. Constituent-based
discriminative ranking for negation resolution. In
Proceedings of the 1st Joint Conference on Lexi-
cal and Computational Semantics, page 310—318,
Montréal, Canada.

Sebastian Schuster, Eric Villemonte de la Clergerie,
Marie Candito, Benoit Sagot, Christopher Manning,
and Djamé Seddah. 2017. Paris and Stanford at EPE
2017: Downstream Evaluation of Graph-based De-
pendency Representations. In EPE 2017 - The First
Shared Task on Extrinsic Parser Evaluation, pages
47-59.

Elena Sergeeva, Henghui Zhu, Amir Tahmasebi, and
Peter Szolovits. 2019. Neural Token Representa-
tions and Negation and Speculation Scope Detec-
tion in Biomedical and General Domain Text. In
Proceedings of the Tenth International Workshop
on Health Text Mining and Information Analysis
(LOUHI 2019), pages 178-187, Hong Kong. Asso-
ciation for Computational Linguistics.

Gyorgy Szarvas, Veronika Vincze, Richdrd Farkas, and
Janos Csirik. 2008. The BioScope corpus: Anno-
tation for negation, uncertainty and their scope in
biomedical texts. In Proceedings of the Workshop
on Current Trends in Biomedical Natural Language
Processing, pages 38—45, Columbus, Ohio. Associa-
tion for Computational Linguistics.

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and
Jun’ichi Tsujii. 2005. Syntax Annotation for the GE-
NIA Corpus. In Companion Volume to the Proceed-
ings of Conference Including Posters/Demos and Tu-
torial Abstracts.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998-6008.

Erik Velldal, Lilja @vrelid, Jonathon Read, and
Stephan Oepen. 2012. Speculation and negation:
Rules, rankers, and the role of syntax. Computa-
tional Linguistics, 38(2):369—-410.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun,
and Rob Fergus. 2013. Regularization of Neu-
ral Networks Using Dropconnect. In Proceedings
of the 30th International Conference on Interna-
tional Conference on Machine Learning - Volume 28,
ICML’13, pages III-1058-111-1066, Atlanta, GA,
USA. JMLR.org.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1-21, Brussels, Belgium.
Association for Computational Linguistics.

24

Integrating Graph-Based and Transition-Based Dependency Parsers
in the Deep Contextualized Era

Agnieszka Falenska' and Anders Bjorkelund? and Jonas Kuhn!
! University of Stuttgart, Institute for Natural Language Processing
2 Lund University, Department of Astronomy and Theoretical Physics
{falenska, jonas}@ims.uni-stuttgart.de
anders.bjorkelund@thep.lu.se

Abstract

Graph-based and transition-based dependency
parsers used to have different strengths and
weaknesses. Therefore, combining the outputs
of parsers from both paradigms used to be the
standard approach to improve or analyze their
performance. However, with the recent adop-
tion of deep contextualized word representa-
tions, the chief weakness of graph-based mod-
els, i.e., their limited scope of features, has
been mitigated. Through two popular combi-
nation techniques — blending and stacking —
we demonstrate that the remaining diversity
in the parsing models is reduced below the
level of models trained with different random
seeds. Thus, an integration no longer leads
to increased accuracy. When both parsers
depend on BiLSTMs, the graph-based archi-
tecture has a consistent advantage. This ad-
vantage stems from globally-trained BiLSTM
representations, which capture more distant
look-ahead syntactic relations. Such repre-
sentations can be exploited through multi-task
learning, which improves the transition-based
parser, especially on treebanks with a high ra-
tio of right-headed dependencies.

1 Introduction

Dependency parsers can roughly be divided into
two classes: graph-based (Eisner, 1996; McDon-
ald et al.,, 2005) and transition-based (Yamada
and Matsumoto, 2003; Nivre, 2003). The two
paradigms differ in their approach to the trade-off
between access to contextual features in the out-
put dependency tree and exactness of search (Mc-
Donald and Nivre, 2007). The complementary
strengths of those paradigms have given grounds
to numerous diversity-based methods for integrat-
ing parsing models (Nivre and McDonald, 2008;
Sagae and Lavie, 2006, among others). To date,
the methods are commonly used for improving the

25

accuracy of single parsers', achieving robust pre-
dictions for the silver-standard resource prepara-
tion (Schweitzer et al., 2018), or as analysis tools
(de Lhoneux et al., 2019).

One of the most significant recent developments
in dependency parsing is based on encoding rich
sentential context into word representations, such
as BiLSTM vectors (Hochreiter and Schmidhuber,
1997; Graves and Schmidhuber, 2005) and deep
contextualized word embeddings (Peters et al.,
2018; Devlin et al., 2019). Including these rep-
resentations as features has set a new state of
the art for both graph-based and transition-based
parsers (Kiperwasser and Goldberg, 2016; Che
et al., 2018). Howeyver, it also brought the two ar-
chitectures closer. Kulmizev et al. (2019) showed
that after including deep contextualized word em-
beddings, the average error profiles of graph- and
transition-based parsers converge, potentially re-
ducing gains from combining them. On the other
hand, the authors also noticed that the underly-
ing trade-off between the parsing paradigms is still
visible in their results. Thus, it is an open question
to what extent the differences between the parsing
paradigms could still be leveraged.

In this paper, we fill the gaps left in understand-
ing the behavior of transition- and graph-based
dependency parsers that employ today’s state-of-
the-art deep contextualized representations. We
start from the setting of Kulmizev et al. (2019),
i.e., Kiperwasser and Goldberg’s (2016) seminal
transition-based and graph-based parsers extended
with deep contextualized word embeddings. We
show that, on average, the differences between
BiLSTM-based graph-based and transition-based
models are reduced below the level of differ-
ent random seeds. Interestingly, the diversity
needed for a successful integration vanishes al-

'See results from the CONLL 2018 shared task on depen-
dency parsing (Zeman et al., 2018)

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 25-39
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

3] [TB [scores: LA | RAm | SH | SVV]] { score arcyp) GBJ
F =
|
T

.T !
| |

Ty

T2
T

1
T j

Figure 1: Architectures of BiLSTM-based dependency
parsers employed in this work. Layers: [1] word repre-
sentations, [2] BiLSTMs, [3] multi-layer perceptron.

ready with BiLSTM feature representations and
does not change when deep contextualized embed-
dings are added.

We further consider treebank-specific differ-
ences between graph- and transition-based mod-
els. Through a set of carefully designed experi-
ments, we show that our graph-based parser has
an advantage when parsing treebanks with a high
ratio of right-headed dependencies. This advan-
tage comes from globally-trained BiLSTMs and
can be exploited by the locally-trained transition-
based parser through multi-task learning (Caru-
ana, 1993). This combination improves the per-
formance of the two parsing architectures and nar-
rows the gap between them without requiring ad-
ditional computational effort at parsing time.

2 Experimental Setup

2.1 Parsing Architecture

We re-implement the basic transition- and graph-
based architectures proposed by Kiperwasser and
Goldberg (2016) (denoted K&G) with a few
changes outlined below. We follow Kulmizev
et al. (2019) and intentionally abstain from ex-
tensions such as Dozat and Manning’s (2016) at-
tention layer to keep our experimental setup sim-
ple. This enables us to control for all relevant
methodological aspects of the architectures. Our
hypothesis is that adding more advanced mecha-
nisms would resemble adding contextualized word
embeddings, i.e., improve the overall performance
but not change the picture regarding parser combi-
nation. However, testing this hypothesis is orthog-
onal to this work.

All the described parsers are implemented with
the DyNet library (Neubig et al., 2017).2 We
provide details on used hyperparameters in Ap-
pendix A.

2The code is available for download on the first author’s
website.

26

Deep contextualized word representations.
The two most popular models of deep contex-
tualized representations are ELMo (Peters et al.,
2018) and BERT (Devlin et al.,, 2019). Both
models have been used with dependency parsers,
either for multi-lingual applications (Kondratyuk
and Straka, 2019; Schuster et al., 2019) or to im-
prove parsing accuracy (Che et al., 2018; Jawahar
etal., 2018; Lim et al., 2018). Recently, Kulmizev
et al. (2019) analyzed the influence of both of
the models on the K&G architecture and showed
that they give similar results, BERT being slightly
ahead. Since the scope of our experiments is to an-
alyze the influence of contextualized embeddings
on parser integration, and not to analyze differ-
ences between different embedding models, we
use ELLMo, which is more accessible.

ELMo representations encode words within the
context of the entire sentence. The representations
are built from a linear combination of several lay-
ers of BiILSTMs pre-trained on a task of language
modeling:

L
ELMO(21:0,4) =7 Y _ 8;BILSTMY, (211, %)
j=1

We use pre-trained ELMo models provided by
Che et al. (2018) and train task-specific parame-
ters s; and v together with the parser. The final
representations are combinations of L = 3 layers
and have dimensionality 1024.

Word representations. In both transition- and
graph-based architectures input tokens are repre-
sented in the same way (see level [1] in Figure 1).
For a given sentence with words [wi,...,w,]
and part-of-speech (POS) tags [t1,...,t,] each
word representation x; is built from concatenat-
ing: embedding of the word, its POS tag, Bi-
LSTM character-based embedding, and word’s
ELMo representation:

x; = e(w;)oe(t;) oBILSTMp, (w;) oELMo(x 1., 7)

Word embeddings are initialized with the pre-
trained fastText vectors (Grave et al., 2018) and
trained together with the model. The represen-
tations x; are passed to the BiLSTM feature ex-
tractors (level [2]) and represented by a vector
7 = BiLSTM(z1., 7).

Transition-based parser. The part of the ar-
chitecture that is specific to the transition-based

K&G parser is colored red in Figure 1. For ev-
ery configuration consisting of a stack, buffer, and
the current set of arcs, the parser builds a feature
set of three items: the two top-most items of the
stack and the first item on the buffer (denoted sg,
s1, and bg). Next, it concatenates their BILSTM
vectors and passes on to a multi-layer perceptron
(MLP, level [3] in Figure 1). The MLP scores all
possible transitions, and the highest-scoring one is
applied to proceed to the next configuration.

Our implementation (denoted TB) uses the arc-
standard transition system extended with the SWAP
transition (Nivre, 2009) and can thus handle non-
projective trees.> We use Nivre et al.’s (2009) lazy
SWAP oracle for training. Labels are predicted to-
gether with the transitions.

For analysis, we also use variants of TB trained
without BiLSTMs. In these cases, vectors x;
are passed directly to the MLP layer (similarly to
Chen and Manning (2014)), and the implicit con-
text encoded by the BILSTMs is lost. We compen-
sate for it by using Kiperwasser and Goldberg’s
(2016) extended feature set, which adds the em-
bedding information of eight additional tokens in
the structural context of the parser state.

Graph-based parser. The specific parts of the
graph-based K& G parser are highlighted in blue
in Figure 1. At parsing time, every pair of to-
kens (v, ;) yields a feature set {z;,z;}. The
BiLSTM representations are concatenated and
passed to an MLP to compute the score for an

arc x; LN x; for every possible dependency
label (bl (unlike the original K&G implementa-
tion, we predict labels together with the arcs). To
find the highest-scoring tree, we apply the Chu-
Liu-Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967). We denote this architecture GB.

In experiments where GB is trained without Bi-
LSTMs, we extend the feature set with surface
features known from classic graph-based parsers,
such as distance between head and dependent, and
words at the distance of 1 and 2 from heads and
dependents (McDonald et al., 2005).

3We performed multiple experiments within the K&G ar-
chitecture by differentiating transition-systems (e.g., remov-
ing SWAP, using the arc-hybrid system (Kuhlmann et al.,
2011), and adding the dynamic oracle (Goldberg and Nivre,
2012, 2013)), graph-decoders (testing Eisner’s (1996) algo-
rithm), feature sets (also extended feature set from Kiper-
wasser and Goldberg (2016)), and word representations. In
all the tested scenarios, the general picture was essentially
the same. Therefore, we present results only for the best-
performing configurations.

27

MTLSE T TmrLdy
[cB +18B |

(c) Multi-task
learning

(a) Blending

(b) Stacking

Figure 2: Schematic illustration of the integration
methods used in this work.

2.2 Integration Methods

Parser combination approaches can be divided
into two categories: methods that integrate base
parsers at prediction time and training time. We
use one well-established representative from each
of the categories, i.e., blending and feature-based
stacking, respectively. Additionally, for analysis
purposes, we combine the two parsers through
multi-task learning.

Blending (see Figure 2a), also known as re-
parsing (Sagae and Lavie, 2000), is a parsing-time
integration method. It consists of running basic
models in separation and combining their outputs
into one graph. Weights in this graph depend on
how many basic models predicted a particular arc.
Finally, a graph-based decoder is used to find the
maximum spanning tree in the combined graph.

In our implementation, we use the Chu-Liu-
Edmonds algorithm to find the final tree. For ev-
ery resulting arc, we select the most frequent la-
bel across all the labels previously assigned to it.
Blending needs at least three basic models to apply
the voting scheme. Therefore, we follow Kuncoro
et al. (2016) and train multiple instances of models
with random seeds and denote BLENDy, a combi-
nation of m xGB and n X TB parsers. For analysis,
we vary the ratio of TB and GB models while leav-
ing the total number of models constant at 6 for a
fair comparison.

Feature-based stacking (see Figure 2b) was in-
troduced by Nivre and McDonald (2008) and Mar-
tins et al. (2008). It involves running two parsers
in sequence so that the second (level-1) parser can
use the output of the first (level-0) parser as fea-
tures (denoted STACKISYED).

To generate training data for the level-1 parser,
we apply 10-fold cross-validation on the training
sets with the level-O0 parser. Then, we follow
Ouchi et al. (2014) and extract stacking features
from the level-0 parser’s predictions in the form

of supertags. More precisely, for every word
w;, we build its supertag by filling the template
label/hdir+hasLdep_hasRdep, where
label is the dependency relation, hdir denotes
relative head direction, and hasLdep/hasRdep
mark presence of left/right dependents. Such
supertags are then, similarly to POS tags, repre-
sented as embeddings and concatenated with other
representations to build x;. The dimensionality
and type of information encoded in the stacking
representations were determined in exploratory
experiments on the English development data and
left unchanged for other languages.

Multi-task learning (see Figure 2c) allows
combining the transition- and graph-based K&G
parsers by sharing their BiLSTM representations
(level [2] in Figure 1). We keep feature extraction
and MLP layers separate, and do not enforce any
agreement between the two decoders. Effectively
this means that training yields two parsers that can
be applied independently: one transition-based
(denoted MTLES) and one graph-based (MTLSE).
We use a straightforward MTL training pro-
tocol: for every sentence, we calculate the Bi-
LSTM representations z; and collect all local
losses from both tasks (TB and GB). Then, the
losses are summed and the model parameters are
updated through backpropagation. We note in
passing that this training protocol leaves many op-
tions for improvements, such as adding weights
to losses from different tasks (Shi et al., 2017b),
sharing representations on different levels of Bi-
LSTMs (Sggaard and Goldberg, 2016), or employ-
ing stack-propagation (Zhang and Weiss, 2016).
We abstain from such extensions as they are or-
thogonal to the central points of our analysis.

2.3 Data Sets and Preprocessing

We conduct experiments on a selection of
thirteen treebanks from Universal Dependen-
cies v2.4 (Nivre et al., 2019): Arabic (ar_padt),
Basque (eu_bdt), Chinese (zh_gsd), English
(en_ewt), Finnish (fi_tdt), Hebrew (he_htb), Hindi
(hi_hdtb), Italian (it_isdt), Japanese (ja_gsd), Ko-
rean (ko_gsd), Russian (ru_syntagrus), Swedish
(sv_talbanken), and Turkish (tr_imst). This selec-
tion was proposed by Kulmizev et al. (2019) and
varies in terms of language family, domain, and
amount of non-projective arcs.

We use automatically predicted universal POS
tags in all the experiments. The tags are assigned

28

using a CRF tagger (Mueller et al., 2013). We an-
notate the training sets via 5-fold jackknifing.

2.4 Evaluation and Analysis

We evaluate the experiments using Labeled At-
tachment Score (LAS).* We train models for 30
epochs and select the best model based on de-
velopment LAS. For the results on the test sets,
we follow Reimers and Gurevych’s (2018) recom-
mendation and report averages and standard devi-
ations from six models trained with different ran-
dom seeds. We test for significance using the
Wilcoxon rank-sum test with p-value < 0.05.

An analysis is carried out on the development
sets in order not to compromise the test sets. We
follow Kulmizev et al. (2019) and sample the same
number of sentences from every development set
(484 sentences since this is the size of the smallest
one). We then aggregate results from three mod-
els trained with different random seeds and present
the combined results.

3 Diversity-Based Integration

We start by evaluating the two integration meth-
ods (STACK and BLEND) and applying them to our
transition- and graph-based parsers (TB and GB).

Average results. The first column in Table 1
gives the average results. In the case of stacking,
the performance of combined models is almost the
same as that of the baseline models. Small im-
provements are noticeable for STACKSS vs. TB,
but they are statistically significant only for one
treebank. Comparing STACKSE vs. GB we even
notice a small average drop of 0.08 LAS. In the
case of blending, the method does provide big im-
provements over single baselines (BLEND§ vs. TB
and BLENDY vs. GB). However, those improve-
ments are not coming from integrating different
paradigms since BLEND3 achieves the same aver-
age performance as BLEND, which uses only GB.
There are two possible explanations for lack of
gains from integrating parsing paradigms: either
(1) in general, the neural models are simply not
capable of benefiting from such combination, or
(2) feature representations based on the BiLSTMs
and the deep contextualized representations bring
the architectures too close to each other for the in-
tegration to be beneficial. In Section 4, we inves-
tigate which of those two situations takes place.

“The percentage of tokens that received the correct head
and label.

avg. ar en eu fi he hi it ja ko ru sV tr zh
TB 84.60 82.59 86.61 79.96 86.75 8557 91.00 90.61 93.47 82.17 9030 86.52 63.94 80.27
STACKS: 8472 8259 86.72 80.35 86.38" 85947 91.19 90.83 93.32 81.95 90.60 86.65 64.18 80.71
GB 85.40 8295 8697 8221 87.16 86.55 91.58 91.18 9334 82.99 9090 87.09 66.19 8I1.11
STACKSE 8532 83.02 87.15 81.71 87.47 86.62 91.32" 9122 9339 82.62 90.83 8697 66.03 80.80
BLENDS 86.06 83.66 87.85 82.19 8825 8687 91.79 91.56 93.92 84.02 91.34 88.10 66.90 82.31
BLEND] 86.63 84.09 87.95 83.98 88.35 87.68 92.16 91.93 9397 8441 91.80 88.49 68.52 82.83
BLEND] 86.63 84.08 88.11 83.70 88.61 87.41 92.05 9195 9405 8431 91.85 88.67 6834 83.01

Table 1: Average (from six runs) parsing results (LAS) on test sets. T marks statistical significance compared to
single model baselines (p-value < 0.05). Corresponding standard deviations are provided in Table 4 in Appendix A.
Since blending already involves multiple models, we run it only once and do not test the results for significance.

Treebank-specific results. Next, we take a
closer look at the treebank-specific accuracy.
Comparing single baselines (TB vs. GB), we note
that GB has a clear advantage over TB. It surpasses
TB on twelve out of thirteen treebanks (all im-
provements are significant). We reproduce anal-
ysis from Kulmizev et al. (2019) and confirm that
this advantage is consistent across arcs of differ-
ent lengths, distances to root, and sentences with
different sizes (we provide corresponding plots in
Appendix A). Interestingly, the dominance of GB
over TB significantly differs across treebanks and
is especially prominent for more challenging ones,
e.g., with small amounts of training data or a high
level of non-projectivity. For instance, the largest
difference of 2.25 LAS is visible for Basque,
which is the treebank with the largest number of
non-projective arcs, and Turkish, which has the
smallest training dataset. Moreover, those are the
treebanks where STACK{S offers small improve-
ments (0.39 LAS and 0.24 LAS, respectively), but
both STACKSE and BLENDA cannot make use of
the diversity in predictions of the two models and
cause the accuracy to drop (comparing STACK{g
vs. GB and BLEND? vs. BLENDY). In the case
of non-neural parsers, a big gap between the per-
formance of a strong graph-based model and a
greedy transition-based model does not prevent
the former to learn from the latter (Faleriska et al.,
2015). Therefore, the questions arise where those
treebank-specific differences come from and why
integration methods cannot benefit from them. We
address these questions in Section 5.

4 Parsing Architectures and Diversity

In this section, we investigate which aspects of
the K& G architecture are responsible for no gains
from the integration. For this purpose, we run ab-
lation experiments and apply blending and stack-

29

ing on models trained with and without BiLSTMs
and with and without ELMo representations.

4.1 Feature-based Stacking

We perform stacking with different types of
level-0 information. Apart from the standard way,
in which TB is stacked on top of GB or vice versa
(denoted 0O; for other) we carry out two types of
control experiments: S (for self), where we stack
a model on itself, and G (for gold), where gold-
standard trees are used as level-0 predictions.

Oracle experiments. Figure 3a displays results
for stacking with different level-0 information. We
immediately see that scenario G, in which models
are stacked on gold-standard trees, exhibits almost
perfect performance. Regardless of the level-1
parser and employment of BiLSTMs and ELMo,
all models achieve accuracy higher than 95 LAS,
proving that they are capable of learning from the
stacking representations.

Influence of representations. Next, we con-
sider the models which were trained without Bi-
LSTMs and ELMo (left, lightest bars). Surpris-
ingly, for both TB (green) and GB (blue), small im-
provements can be noticed in the self-application
scenario S, which was not the case for non-neural
models (Martins et al., 2008; Faleniska et al.,
2015). One explanation for this is the diver-
sity of the models coming with random seeds,
which was less prominent in their non-neural ver-
sions (Reimers and Gurevych, 2017). However,
clearer improvements are visible in scenario O,
which combines models of different types. Both
STACK{GE and STACKSE surpass both of the sin-
gle baselines, proving that integration is beneficial
when BiLSTMs and ELMo are not used.
Considering the case where BiLSTMs are in-
cluded (middle) changes the picture. Self-

100 | |
-BILSTM _ ~ELMo
90 A
9]
< ‘]T‘
|
80 s
B STACKE?
B STACKS®
70 -
SOG SOG SOG SOG SOG SOG

(a) Stacking with different types of level-0 information:
S — self, 0 — other, G — gold.

100
mmm BLENDRYS
901, —-ELMo |
" -BILSTM
<
-
80
70 -
6 54 3 210 6 54 3 210 6 543 210
012 345 6 012 3456 012 3456

(b) Blending; top line — GB single model, bottom line — TB
single model.

Figure 3: Parsing accuracy (average LAS over thirteen treebanks on dev sets) for diversity-based integration meth-
ods when models are trained with or without BiLSTMs and with or without ELMo. Red lines mark the average

LAS of the single baseline models.

application behaves almost on par with stacking
the parsers on each other. The only modest im-
provement (amounting to 0.18 LAS on average)
occurs for STACK{3, but it is not enough to sur-
pass a single GB baseline.

As expected, adding ELMo (right, darkest bars)
results in big improvements comparing to the
models without these representations. However,
those improvements do not impact stacking re-
sults, and the picture regarding the integration of
the architectures stays the same.

4.2 Blending

Figure 3b presents results for blending with dif-
ferent ratios of TB and GB. We start by analyz-
ing models trained without BiLSTMs and ELMo
(left). We can observe a pattern we would ex-
pect from diverse models: (1) blending always im-
proves over the baselines (signified by red lines);
(2) combining models only of one sort (BLEN DY or
BLENDS) yields lower scores than when we intro-
duce more diversity into the combination; (3) the
best result is obtained by BLEND3, where the same
number of TB and GB models is used.

For the models that use BiLSTMs (middle),
the gains coming from blending are smaller. For
example, BLEND§ improves TB by 1.84 LAS,
whereas the corresponding improvement when no
BiLSTMs are used is 3.67 LAS. Interestingly, the
models show a different pattern when it comes to
diversity within the combination. The accuracy of
the blend increases with the number of GB models.
Although BLENDJ achieves the highest accuracy,
it surpasses BLENDQ by only 0.05 LAS. This sug-
gests that TB models do not bring enough diversity
into the combination, and the accuracy of BLEND
is mostly influenced by GB models.

30

Finally, for models that use ELMo (right), im-
provements over baselines are slightly smaller —
BLENDY improves GB by 1.34 LAS comparing to
1.59 LAS when no ELMo is used. However, the
picture regarding diversity is the same, and overall
performance depends on the number of GB models
and not the diversity among combined paradigms.

To conclude, we showed that the performance
of TB and GB models can be improved through
the traditional diversity-based approaches as long
as no BiLSTMs are used. Otherwise, the gains
from combination methods decrease considerably.
Adding ELMo representations improves the per-
formance of both of the models but has almost no
impact on the outcome of the integration.

5 Representations and Treebank-Specific
Diversity

In the previous section, we saw that BILSTMs mit-
igate average benefits from integration methods.
One explanation might be that when both TB and
GB use the same feature representations, the diver-
sity between them is much smaller, thus reducing
the gains the models could draw from each other.
However, when comparing treebank-specific re-
sults in Table 1, we noticed that in specific cases
the two baselines differ considerably. We now in-
vestigate where do those differences come from
and if they could be beneficial.

5.1 Representation Analysis

First, we take a closer look at information encoded
in representations learned by the transition- and
graph-based models.

IMPACT metric. We follow Gaddy et al. (2018)
and use derivatives to estimate how sensitive a par-

Average IMPACT

=V=' HEAD

==/r= OTHER

-10 0 10
Token position

-10

0
—-20

20

(a) TB

0

Token position

(b) GB

-10 0 10
Token position

(c) MTL

Figure 4: The average IMPACT of tokens on BiLSTM vectors with respect to the token position and the structural
(gold-standard) relation between them (heads vs. non-heads of the analyzed vector).

ticular part of the architecture is with respect to
changes in input. Specifically, we use our metric
IMPACT from Falenska and Kuhn (2019) that mea-
sures how every BiLSTM representation z; is in-
fluenced by every word representation x; from the
sentence. Intuitively, IMPACT can be thought of as
a percentage distributed over all words of the sen-
tence — the higher the percentage of x; the more it
influenced the representation of ;.

For every sentence from the development set
and every vector T; we calculate IMPACT values
of all words z; on z; and bucket those values ac-
cording to the distance between j and i. Figure 4
shows the average impact of tokens at particular
positions. We see the same two general patterns as
Gaddy et al. (2018): (1) closer words have larger
effects on the representations, and (2) even words
15 or more positions away influence the vectors.

Transition-based parser. For representations
trained with TB (Figure 4a) the difference in sig-
nals coming from heads and other tokens is bigger
on the left side than on the right side (see, e.g.,
positions —15 and 15). de Lhoneux et al. (2019)
provided an explanation for this and showed that
for greedy locally-trained models, the forward
LSTMs could be interpreted as rich history-based
features while the backward LSTMs could be
thought of as look-ahead features. Since the in-
formation to the right mostly (i.e., except for the
buffer front) comes from backward LSTMs, it
contains, as in the case of standard look-ahead fea-
tures, less structural relations.

Graph-based parser. Representations trained
together with GB (Figure 4b) show a slightly dif-
ferent pattern. Compared to TB, the impact of
heads is smaller for tokens closeby, but it deterio-

31

rates slower. Since this model is globally-trained,
the influence of heads does not depend on the side
— the plot is almost symmetrical, suggesting that
representations encode as much information about
syntactic relations on the left as on the right.

5.2 BiLSTMs Integration

Next, we investigate whether the observed dif-
ferences in the information encoded in BiLSTM
representations can explain the advantage of GB
over TB. We train new models where we share
those intermediate representations between the
two parsers through multi-task learning (MTL).
We hypothesize that if the advantage of GB stems
from global training and the influence it has on the
representations, then MTL will re-balance the rep-
resentations and, as a result, narrow the gap be-
tween the two models. We note in passing that
MTL is typically carried out on different tasks,
often with different training sets. However, it
is perfectly possible to consider graph-based and
transition-based dependency parsing as two sepa-
rate tasks trained on the same training set.

IMPACT analysis. Figure 4c displays the M-
PACT statistics for MTL models. The plot
shows that the BiLSTM representations draw
on the advantages from both locally trained TB
and globally-trained GB — the distribution has a
slightly stronger peak for closer words as in TB,
but flattens out more slowly as in GB. This effect
is particularly pronounced when comparing the far
right (look-ahead) of TB with the MTL distribution,
especially as heads become more influential.

Error analysis. To understand how the changes
in representations influence the parsing perfor-
mance, we break down the LAS by dependency

95 100k
—i— GB
—O0— TB

TB

901 - = MTLES |

I 60k
80 1

Recall
Bin size

I 40k

I 20k

8 -7 6 -5-4-3-2-112 3 45 6 78+
Head position

(a) Recall

100k
—4t— GB
—O0— TB

TB

901 MTLEE |

-

%
&

[60k

x
L

Precision
Bin size

[40k

3
ot

I 20k
70 1

8 -7 6 5-4-3-2-112 3 45 6 7 8+
Head position

(b) Precision

Figure 5: Dependency recall and precision relative to the head position on development sets.

length and head direction. Figure 5 shows the de-
pendency recall and precision of models with re-
spect to the positions of the heads.’

First, we compare TB (blue) with GB (green)
and observe that GB has a consistent advantage.
However, when comparing recall and precision,
we note an interesting difference. In terms of re-
call (Figure 5a), the plot is symmetrical and the
advantage of GB is roughly the same for heads on
the left and on the right side of the token. In terms
of precision (Figure 5b), both TB and GB behave
identically for heads on the left, but the perfor-
mance of TB drops faster for heads on positions
3 and more to the right.

Second, we analyze MTL{E (red). We notice
that sharing representations with GB does not in-
fluence TB’s recall or precision on heads on the
left, while for right-headed dependencies preci-
sion improves. The model catches up with GB’s
performance and starts deteriorating much later,
for heads on positions 6 and more to the right.

Treebank-specific improvements. Finally, we
look at the treebank-specific accuracy of the MTL
models. The two bottom rows in Table 2 show the
effects of MTL on GB. Sharing representations
between the two architectures has a small influ-
ence on GB, and on average, improves its perfor-
mance by 0.18 LAS. Although for few treebanks
bigger improvements can be seen, e.g., Chinese
(0.39 LAS) or Swedish (0.35 LAS), none of them
is statistically significant. Therefore, it is not clear

>Dependency recall is defined as the percentage of correct
predictions among gold standard arcs with head position p.
Precision is the percentage of correct predictions among all
predicted arcs. The definitions slightly differ from McDonald
and Nivre (2007), who looked at absolute arc lengths.

32

if those improvements come from the actual com-
bination of different parsing paradigms, or MTL
in this case acts as additional regularization, ulti-
mately reducing overfitting during training.

In the case of TB, the average performance
is improved through MTL by 0.42 LAS, with
statistically significant differences for four tree-
banks. The biggest gains are visible for the tree-
banks, where the difference between TB and GB
is greatest, such as Basque (0.94 LAS). Interest-
ingly, among the treebanks with the biggest im-
provements, we can notice Turkish (1.28 LAS)
and Chinese (0.52 LAS), which are the two tree-
banks with the greatest ratio of right-headed arcs
(62.58% and 71.86%, respectively). This result is
in line with the results of de Lhoneux et al. (2019),
who demonstrated that backward LSTMs are es-
pecially important for head-final languages.

To conclude, we saw that the advantage of GB
over TB stems from global training. The training
increases the impact of tokens (far) to the right as
compared to a locally trained TB model and trans-
lates into an improved prediction of right-headed
dependencies. Thus, the distance between the
two models is treebank-related and can be reduced
through integration methods such as MTL, espe-
cially when parsing more challenging treebanks.

6 Related Work

Traditional integration of dependency parsers.
Classical integration methods were initially in-
troduced to take advantage of differences in the
strengths of the component parsers. Such differ-
ences were usually the result of different parsing
paradigms, as in the case of feature-based stack-

avg. ar en eu fi he hi it ja ko ru sv tr zh
TB 84.60 82.59 86.61 79.96 86.75 8557 91.00 90.61 9347 82.17 90.30 86.52 63.94 80.27
MTLEE 85.02 82.55 86.97 80.90" 87.09 8590 91.297 90.97 93.45 8236 90.58 87.167 65227 80.79
GB 85.40 8295 86.97 8221 87.16 86.55 91.58 91.18 93.34 82.99 90.90 87.09 66.19 81.11
MTL?; 85.58 82.99 87.24" 82.55 87.52 86.68 91.71 91.31 9347 83.12 91.11 87.44 65.88 81.50

Table 2: Average (from six runs) parsing results (LAS) on test sets. T marks statistical significance compared to
single model baselines (p-value < 0.05). Corresponding standard deviations are provided in Table 5 in Appendix A.

ing, blending, or beam search-based transition-
based parsers with features strongly inspired by
graph-based models (Zhang and Clark, 2008;
Bohnet and Kuhn, 2012). However, combining
parsers that process input left-to-right and right-
to-left (Hall et al., 2007; Attardi and Dell’ Orletta,
2009), or even parsers and sequence labelers
(Faleniska et al., 2015), was also proposed. Blend-
ing was usually applied to a mixture of graph-
based and transition-based left-to-right and right-
to-left parsers (Sagae and Lavie, 2006; Surdeanu
and Manning, 2010; Bjorkelund et al., 2017,
among others). Moreover, in the case of stacking,
integrating two parsers of the same type gives at
most minor improvements (Martins et al., 2008).

Neural-specific ensemble dependency parsers.
Since neural network training can be sensitive to
initialization (Reimers and Gurevych, 2017), re-
cent ensemble dependency parsers are rather com-
bining models trained with different random seeds
than different paradigms. For example, out of 24
teams participating in the CoNLL 2018 Shared
Task on dependency parsing (Zeman et al., 2018),
five employed ensemble techniques. However, all
of them took advantage of either diversity coming
from random seeds or different languages.

Neural parsers of the same type can be com-
bined by taking the sum of their MLP scores
(Che et al., 2017), averaging softmax scores (Che
etal., 2018), or through re-parsing (Kuncoro et al.,
2016). The last authors also showed that such an
ensemble could be distilled into a single graph-
based parser. Finally, Shi et al. (2017b) used MTL
in a similar way to ours. They shared BiLSTMs
between three parsers to speed up their training
time. However, all the models where globally-
trained and the authors did not evaluate if the com-
bination improved their performance.

7 Discussion and Conclusion

In this paper, we investigated the recent advances
in dependency parsing from the perspective of the

33

traditional integration methods. These methods
are known for exploiting diversity in the strengths
and weaknesses of transition- and graph-based
parsing paradigms. We found out that when mod-
els use BiLSTMs, such diversity is on the level
of different random seeds. Adding deep contex-
tualized representations on top of BiLSTMs im-
proves the performance of both parsers but does
not change the picture regarding the integration.

Rich-feature sets used to be the advantage of the
transition-based parsers. Now that the parsers do
not need structural features (Falenska and Kuhn,
2019), the graph-based parsers have an advantage
that the locally-trained transition-based parsers
cannot make up for. Therefore, improving parsers
through combination methods is not as straightfor-
ward as it used to be. Such a combination has to
take into consideration the specificity of the tree-
bank and depend on whether accuracy or parsing
time is the priority. The greatest gains in accu-
racy can be obtained by blending multiple graph-
based models. However, the method comes with
the cumbersome overhead of running multiple pre-
dictors at application time. When speed is essen-
tial and the accuracy can be sacrificed (Gémez-
Rodriguez et al., 2017) greedy transition-based
parsers or even sequence labelers are the prefer-
able choices (Strzyz et al., 2019). In such cases,
alternative integration approaches such as multi-
task learning can boost the performance of locally-
trained models without requiring additional com-
putational effort at parsing time.

Introduction of BiLSTMs into dependency
parsers had another consequence, i.e., it enabled
the use of exact search algorithms for transition-
based parsers (Shi et al., 2017a; Gémez-Rodriguez
et al., 2018). Therefore, it is an interesting ques-
tion if the error profiles of such parsers are even
less distinguishable from the graph-based outputs.
We leave this question for future work.

Acknowledgments

This work was in part supported by the Deutsche
Forschungsgemeinschaft (DFG) via the SFB 732,
project D8. Anders Bjorkelund was funded by
AIR Lund Chest pain (VR; grant no 2019-00198).
We would like to thank the anonymous reviewers
for their comments. We also thank our colleagues
Ozlem Cetinoglu and Xiang Yu for many conver-
sations and comments on this work.

References

Giuseppe Attardi and Felice Dell’Orletta. 2009. Re-
verse Revision and Linear Tree Combination for De-
pendency Parsing. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 261-264, Boulder, Colorado.
Association for Computational Linguistics.

Anders Bjorkelund, Agnieszka Falenska, Xiang Yu,
and Jonas Kuhn. 2017. IMS at the CoNLL 2017
UD Shared Task: CRFs and Perceptrons Meet Neu-
ral Networks. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 40-51, Vancouver,
Canada. Association for Computational Linguistics.

Bernd Bohnet and Jonas Kuhn. 2012. The Best of
Both Worlds — A Graph-based Completion Model
for Transition-based Parsers. In Proceedings of the
13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 77—
87, Avignon, France. Association for Computational
Linguistics.

Richard Caruana. 1993. Multitask Learning: A
Knowledge-Based Source of Inductive Bias. In
Proceedings of the Tenth International Conference
on Machine Learning, pages 41-48. Morgan Kauf-
mann.

Wanxiang Che, Jiang Guo, Yuxuan Wang, Bo Zheng,
Huaipeng Zhao, Yang Liu, Dechuan Teng, and Ting
Liu. 2017. The HIT-SCIR System for End-to-End
Parsing of Universal Dependencies. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
52-62, Vancouver, Canada. Association for Compu-
tational Linguistics.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards Better UD Parsing:
Deep Contextualized Word Embeddings, Ensemble,
and Treebank Concatenation. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
55-64, Brussels, Belgium. Association for Compu-
tational Linguistics.

34

Dangi Chen and Christopher Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740-750. Association for Compu-
tational Linguistics.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On shortest
arborescence of a directed graph. Scientia Sinica,
14(10):1396-1400.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2016.
Deep Biaffine Attention for Neural Dependency
Parsing. CoRR, abs/1611.01734.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards B,
71(4):233-240.

Jason M. Eisner. 1996. Three New Probabilistic Mod-
els for Dependency Parsing: An Exploration. In
COLING 1996 Volume 1: The 16th International
Conference on Computational Linguistics.

Agnieszka Falefiska, Anders Bjorkelund, Ozlem
Cetinoglu, and Wolfgang Seeker. 2015. Stacking
or Supertagging for Dependency Parsing — What’s
the Difference? In Proceedings of the 14th Inter-
national Conference on Parsing Technologies, pages
118-129, Bilbao, Spain. Association for Computa-
tional Linguistics.

Agnieszka Falenska and Jonas Kuhn. 2019. The (Non-
)Utility of Structural Features in BILSTM-based De-
pendency Parsers. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 117-128, Florence, Italy. Associ-
ation for Computational Linguistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s Going On in Neural Constituency Parsers?
An Analysis. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
999-1010. Association for Computational Linguis-
tics.

Yoav Goldberg and Joakim Nivre. 2012. A Dynamic
Oracle for Arc-Eager Dependency Parsing. In Pro-
ceedings of COLING 2012, pages 959-976, Mum-
bai, India. The COLING 2012 Organizing Commit-
tee.

Yoav Goldberg and Joakim Nivre. 2013. Training De-
terministic Parsers with Non-Deterministic Oracles.
Transactions of the Association for Computational
Linguistics, 1:403-414.

Carlos Gémez-Rodriguez, lago Alonso-Alonso, and
David Vilares. 2017. How Important is Syntac-
tic Parsing Accuracy? An Empirical Evaluation on
Rule-Based Sentiment Analysis. Artificial Intelli-
gence Review, pages 1-17.

Carlos Gémez-Rodriguez, Tianze Shi, and Lillian Lee.
2018. Global Transition-based Non-projective De-
pendency Parsing. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2664—
2675, Melbourne, Australia. Association for Com-
putational Linguistics.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
Word Vectors for 157 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Alex Graves and Jirgen Schmidhuber. 2005. Frame-
wise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures.
Neural Networks, 18(5):602—-610.

Johan Hall, Jens Nilsson, Joakim Nivre, Giilsen
Eryigit, Bedta Megyesi, Mattias Nilsson, and
Markus Saers. 2007. Single Malt or Blended?
A Study in Multilingual Parser Optimization. In
Proceedings of the CoNLL Shared Task Session
of EMNLP-C oNLL 2007, pages 933-939, Prague,
Czech Republic. Association for Computational
Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Ganesh Jawahar, Benjamin Muller, Amal Fethi, Louis
Martin, Eric Villemonte de la Clergerie, Benoit
Sagot, and Djamé Seddah. 2018. ELMoLex: Con-
necting ELMo and Lexicon Features for Depen-
dency Parsing. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 223-237, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-

tions of the Association for Computational Linguis-
tics, 4:313-327.

Dan Kondratyuk and Milan Straka. 2019. 75 Lan-
guages, 1 Model: Parsing Universal Dependencies
Universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language

35

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779-2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Marco Kuhlmann, Carlos Gémez-Rodriguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 673682, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre.
2019. Deep Contextualized Word Embeddings
in Transition-Based and Graph-Based Dependency
Parsing - A Tale of Two Parsers Revisited. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
2755-2768, Hong Kong, China. Association for
Computational Linguistics.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an Ensemble of Greedy Dependency Parsers
into One MST Parser. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1744—1753, Austin, Texas.
Association for Computational Linguistics.

Miryam de Lhoneux, Miguel Ballesteros, and Joakim
Nivre. 2019. “Recursive Subtree Composition in
LSTM-Based Dependency Parsing”. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1566—1576, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

KyungTae Lim, Cheoneum Park, Changki Lee, and
Thierry Poibeau. 2018. SEx BiST: A Multi-Source
Trainable Parser with Deep Contextualized Lexical
Representations. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 143—152, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

André Filipe Torres Martins, Dipanjan Das, Noah A.
Smith, and Eric P. Xing. 2008. Stacking Depen-
dency Parsers. In Proceedings of the 2008 Con-
ference on Empirical Methods in Natural Language
Processing, pages 157-166, Honolulu, Hawaii. As-
sociation for Computational Linguistics.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online Large-Margin Training of De-
pendency Parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91-98. Association for
Computational Linguistics.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the Errors of Data-Driven Dependency Pars-
ing Models. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 122-131,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Thomas Mueller, Helmut Schmid, and Hinrich
Schiitze. 2013. Efficient Higher-Order CRFs for
Morphological Tagging. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 322-332. Association for
Computational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The Dynamic Neural Network Toolkit. CoRR,
abs/1701.03980.

Joakim Nivre. 2003. An Efficient Algorithm for Pro-
jective Dependency Parsing. In Proceedings of the
Eighth International Workshop on Parsing Tech-
nologies (IWPT, pages 149—160, Nancy, France.

Joakim Nivre. 2009. Non-Projective Dependency Pars-
ing in Expected Linear Time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
351-359. Association for Computational Linguis-
tics.

Joakim Nivre, Mitchell Abrams, Zeljko Agié, et al.
2019. Universal Dependencies 2.4. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (UFAL), Faculty of
Mathematics and Physics, Charles University.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An Improved Oracle for Dependency Parsing with
Online Reordering. In Proceedings of the 1lth
International Conference on Parsing Technologies
(IWPT’09), pages 73-76. Association for Computa-
tional Linguistics.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing Graph-Based and Transition-Based Dependency
Parsers. In Proceedings of ACL-08: HLT, pages
950-958, Columbus, Ohio. Association for Compu-
tational Linguistics.

Hiroki Ouchi, Kevin Duh, and Yuji Matsumoto. 2014.
Improving Dependency Parsers with Supertags. In
Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational

Linguistics, volume 2: Short Papers, pages 154—
158, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
22272237, New Orleans, Louisiana. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 338-348, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2018. Why Com-
paring Single Performance Scores Does Not Allow
to Draw Conclusions About Machine Learning Ap-
proaches. CoRR, abs/1803.09578.

Kenji Sagae and Alon Lavie. 2006. Parser Combina-
tion by Reparsing. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 129-132,
New York City, USA. Association for Computa-
tional Linguistics.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir
Globerson. 2019. Cross-Lingual Alignment of Con-
textual Word Embeddings, with Applications to
Zero-shot Dependency Parsing. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 1599-1613, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Katrin Schweitzer, Kerstin Eckart, Markus Girtner,
Agnieszka Falenska, Arndt Riester, Ina Rosiger, An-
tje Schweitzer, Sabrina Stehwien, and Jonas Kuhn.
2018. German Radio Interviews: The GRAIN Re-
lease of the SFB732 Silver Standard Collection. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Tianze Shi, Liang Huang, and Lillian Lee. 2017a.
Fast(er) Exact Decoding and Global Training for
Transition-Based Dependency Parsing via a Mini-
mal Feature Set. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 12-23. Association for Computa-
tional Linguistics.

Tianze Shi, Felix G. Wu, Xilun Chen, and Yao Cheng.
2017b. Combining Global Models for Parsing Uni-
versal Dependencies. In Proceedings of the CoNLL

2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 31-39, Van-
couver, Canada. Association for Computational Lin-
guistics.

Anders Sggaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 231—
235, Berlin, Germany. Association for Computa-
tional Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gémez-
Rodriguez. 2019. Viable Dependency Parsing as Se-
quence Labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717-723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Mihai Surdeanu and Christopher D. Manning. 2010.
Ensemble Models for Dependency Parsing: Cheap
and Good? In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 649—652, Los Angeles, Califor-
nia. Association for Computational Linguistics.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Sta-
tistical Dependency Analysis with Support Vector
Machines. In Proceedings of the Eighth Interna-
tional Conference on Parsing Technologies, pages
195-206, Nancy, France.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1-21, Brussels, Belgium.
Association for Computational Linguistics.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved Representation Learning for
Syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1557-1566, Berlin,
Germany. Association for Computational Linguis-
tics.

Yue Zhang and Stephen Clark. 2008. A Tale of Two
Parsers: Investigating and Combining Graph-based
and Transition-based Dependency Parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562—
571, Honolulu, Hawaii. Association for Computa-
tional Linguistics.

37

A Appendix

Word embedding dimension
POS tag embedding dimension
Character embedding dimension
Supertag embedding dimension
ELMo representation dimension
Hidden units in MLP

BiLSTM layers

BiLSTM dimensions

BiLSTM dropout

Character-based BiLSTM dimensions

a for word dropout
Trainer
Non-lin function

300
20
24
30
1024
100
2
125
0.33
100
0.25
Adam
tanh

Table 3: Hyperparameters for the parsers.

ar en eu fi he hi it ja ko ru sV
TB 0.089 0.184 0.297 0.162 0.250 0.169 0.201 0.213 0.432 0.116 0.153 0.571 0.495
STACKSs 0.145 0.180 0.212 0.176 0.136 0.093 0.136 0.158 0.288 0.042 0.209 0.406 0.200
GB 0.159 0.166 0314 0.216 0.226 0.130 0.159 0.108 0.414 0.064 0.174 0.280 0.261
STACK?; 0.131 0.143 0234 0.105 0.339 0.116 0.067 0.105 0.234 0.056 0.171 0.459 0.351
Table 4: Standard deviation for results in Table 1.
ar en eu fi he hi it ja ko ru sV tr zh
TB 0.089 0.184 0.297 0.162 0.250 0.169 0.201 0.213 0432 0.116 0.153 0571 0.495
MTLS; 0249 0.144 0325 0.385 0.368 0.134 0409 0.167 0239 0.078 0.167 0336 0.604
GB 0.159 0.166 0314 0216 0.226 0.130 0.159 0.108 0414 0.064 0.174 0.280 0.261
MTL{; 0225 0.058 0.170 0.237 0.356 0.081 0.298 0.157 0.319 0.087 0.152 0290 0425

Table 5: Standard deviation for results in Table 2.

38

Recall

Recall

90

(%]
< 80+

70 T

I 5k

Bin size

4k
3k
2k
1k

Figure 6: Average LAS relative to sentence length on development sets.

1-10 11-20

—p— (3B

180k

I 160k

I 140k

I 120k

I 100k

I 80k

I 60k

I 40k

I 20k

Arc length

(a) Recall

1ze

Bin s

21-30
Sentence length

Precision

31-40

50+

x
i

—p— GB

180k

I 160k

I 140k

I 120k

I 100k

I 80k

[60k

[40k

I 20k

4 5
Arc length

(b) Precision

Figure 7: The dependency recall and precision relative to arc length on development sets.

90

80 1

70 1

100k

I 80k

I 60k

I 40k

I 20k

Distance to Root

(a) Recall

Bin size

Precision

90 1

80 1

70 1

100k

I 80k

[60k

[40k

[20k

Distance to Root

(b) Precision

Figure 8: The dependency recall and precision relative to the distance to root on development sets.

39

1ze

Bin s

Bin size

Semi-supervised Parsing with Variational Autoencoding Parser

Xiao Zhang
Department of Computer Science
Purdue University
zhang923@purdue.edu

Abstract

We propose an end-to-end variational au-
toencoding parsing (VAP) model for semi-
supervised graph-based projective dependency
parsing. It encodes the input using continuous
latent variables in a sequential manner by deep
neural networks (DNN) that can utilize the
contextual information, and reconstruct the in-
put using a generative model. The VAP model
admits a unified structure with different loss
functions for labeled and unlabeled data with
shared parameters. We conducted experiments
on the WSJ data sets, showing the proposed
model can use the unlabeled data to increase
the performance on a limited amount of la-
beled data, on a par with a recently proposed
semi-supervised parser with faster inference.

1 Introduction

Dependency parsing captures bi-lexical relation-
ships by constructing directional arcs between
words, defining a head-modifier syntactic struc-
ture for sentences, as shown in Figure 1. De-
pendency trees are fundamental for many down-
stream tasks such as semantic parsing (Reddy
et al., 2016; Marcheggiani and Titov, 2017), ma-
chine translation (Bastings et al., 2017; Ding and
Palmer, 2007), information extraction (Culotta and
Sorensen, 2004; Liu et al., 2015) and question
answering (Cui et al., 2005). Recently, efficient
parsers (Kiperwasser and Goldberg, 2016; Dozat
and Manning, 2017; Dozat et al., 2017; Ma et al.,
2018) have been developed using various neural
architectures.

While supervised approaches have been very suc-
cessful, they require large amounts of labeled data,
particularly when neural architectures are used,
which usually are over-parameterized. Syntactic
annotation is notoriously difficult and requires spe-
cialized linguistic expertise, posing a serious chal-
lenge for low-resource languages. Semi-supervised

40

Dan Goldwasser
Department of Computer Science
Purdue University
dgoldwas@purdue.edu

pu

roo
nsub
/@\ advmo xcom /m\\‘

PRP$ NN RB VBZ VBG
My likes eating

PUNC

dog also sausage

Figure 1: A dependency tree: directional arcs represent
head-modifier relation between words.
parsing aims to alleviate this problem by combin-
ing a small amount of labeled data and a large
amount of unlabeled data, to improve parsing per-
formance on using labeled data alone. Traditional
semi-supervised parsers use unlabeled data to gen-
erate additional features in order to assist the learn-
ing process (Koo et al., 2008), together with differ-
ent variants of self-training (Sggaard, 2010). How-
ever, these approaches are usually pipe-lined and
error-propagation may occur.

In this paper, we propose Variational Autoen-
coding Parser, or VAP, extends the idea of VAE,
illustrated in Figure 3. The VAP model uses unla-
beled examples to learn continuous latent variables
of the sentence, which can be used to support tree
inference by providing an enriched representation.

We summarize our contributions as follows:

. We proposed a Variational Autoencoding Parser
(VAP) for semi-supervised dependency parsing;

. We designed a unified loss function for the pro-
posed parser to deal with both labeled and unla-
beled data.

. We show improved performance of the proposed
model with unlabeled data on the WSJ data
sets, and the performance is on a par with a re-
cently proposed semi-supervised parser (Corro
and Titov, 2019), with faster inference.

2 Related Work

Most dependency parsing studies fall into two
major groups: graph-based and transition-based

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 40-47
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

(Kubler et al., 2009). Graph-based parsers (Mc-
Donald, 2006) regard parsing as a structured predic-
tion problem to find the most probable tree, while
transition-based parsers (Nivre, 2004, 2008) treat
parsing as a sequence of actions at different stages
leading to a dependency tree.

While earlier works relied on manual feature
engineering, in recent years the hand-crafted fea-
tures were replaced by embeddings and deep neural
network architectures were used to learn represen-
tation for scoring structural decisions, leading to
improved performance in both graph-based and
transition-based parsing (Nivre, 2014; Pei et al.,
2015; Chen and Manning, 2014; Dyer et al., 2015;
Weiss et al., 2015; Andor et al., 2016; Kiperwasser
and Goldberg, 2016; Wiseman and Rush, 2016).

The annotation difficulty for this task, has also
motivated work on unsupervised (grammar in-
duction) and semi-supervised approaches to pars-
ing (Tu and Honavar, 2012; Jiang et al., 2016; Koo
et al., 2008; Li et al., 2014; Kiperwasser and Gold-
berg, 2015; Cai et al., 2017; Corro and Titov, 2019).
It also leads to advances in using unlabeled data for
constituent grammar (Shen et al., 2018b,a)

Similar to other structured prediction tasks, di-
rectly optimizing the objective is difficult when the
underlying probabilistic model requires marginal-
izing over the dependency trees. Variational ap-
proaches are a natural way to alleviate this diffi-
culty, as they try to improve the lower bound of the
original objective, and have been applied in sev-
eral recent NLP works (Stratos, 2019; Chen et al.,
2018; Kim et al., 2019b,a). Variational Autoen-
coder (VAE) (Kingma and Welling, 2014) is partic-
ularly useful for latent representation learning, and
has been studied in semi-supervised context as the
Conditional VAE (CVAE) (Sohn et al., 2015). Note
our work differs from VAE as VAE is designed for
tabular data but not for structured prediction, as
the input towards VAP is the sequence of sentential
tokens and the output is the dependency tree.

3 Graph-based Dependency Parsing

A dependency graph of a sentence can be regarded
as a directed tree spanning all the words of the
sentence, including a special “word”’—the ROOT-
to originate out. Assuming a sentence of length
[, a dependency tree can be denoted as 7 = (<
hi,mi >,...,< hj_1,m;_1 >), where h; is the
index in the sequence of the head word of the de-
pendency connecting the tth word m; as a modifier.

41

Our graph-based VAP parser is constructed
based on the following standard structured predic-
tion paradigm (McDonald et al., 2005; Taskar et al.,
2005). In inference, based on the scoring func-
tion Sp with parameter A, the parsing problem is
formulated as finding the most probable directed
spanning tree for a given sentence :

T* = argmaxSa(x, T),
TeT
where 7" is the highest scoring parse tree and T is
the set of all valid trees for the sentence x.
It is common to factorize the score of the entire
graph into the summation of its substructures—the
individual arc scores (McDonald et al., 2005):

2.

(h,m)eT

Sa(x, T)

I
sa(h,m) = Z sA(he, me),
t=1

where T represents the candidate parse tree, and
sa is a function scoring individual arcs. sa (h,m)
describes the likelihood of an arc from the head h
to its modifier m in the tree. Throughout this paper,
the scoring is based on individual arcs, as we focus
on first-order parsing.

3.1 Scoring Function Using Neural
Architecture

We used the same neural architecture as that in
Kiperwasser and Goldberg (2016)’s study. We first
use a bi-LSTM model to take as input u; = [py; €]
at position ¢ to incorporate contextual information,
by feeding the word embedding e; concatenated
with the POS tag embeddings p; of each word. The
bi-LSTM then projects u; as o;.

Subsequently a nonlinear transformation is
applied on these projections. Suppose the
hidden states generated by the bi-LSTM are
[0root, 01,09, ...,0¢,...,0), for a sentence of
length [, we compute the arc scores by introduc-
ing parameters Wy, W,,,, w and b, and transform
them as follows:

h—arc

T = Whoy; W, 04,

sa(h,m) = wT (tanh (=7 4 pm=are 4 b)),

m—arc
Ty

In this formulation, we first use two parameters
to extract two different representations that carry
two different types of information: a head seeking
for its modifier (h-arc) and a modifier seeking for
its head (m-arc). Then a nonlinear function maps
them to an arc score.

Root X4 Xt X1

Root | o The score of the (t, t-1) right arc

/
(

Set-1, 4

X1 0

0 |Sgt1)

X

g
\

The score of the (t-1, t) left arc

0

Xe-1

Figure 2: In this illustration of the arc scoring matrix,
each entry represents the (h(head) — m(modifier))

score.
Decoder ’

Encoder

(a) VAE (b) VAP

Figure 3: [Illustration of variational autoencoder
(VAE)(left) and variational autoencoding parser
(VAP)(right).

For a single sentence, we can form a scoring
matrix as shown in Figure 2, by filling each entry
in the matrix using the score we obtained. There-
fore, the scoring matrix is used to represent the
head-modifier arc score for all the possible arcs
connecting two tokens in a sentence (Zheng, 2017).
Using this scoring arc matrix, we build our graph-
based parser.

4 Variational Autoencoding Parser

VAP (illustrated in Figure 3b) is a semi-supervised
parser able to make use of unlabeled data in ad-
dition to labeled data, extending the idea of varia-
tional autoencoder (VAE, illustrated in Figure 3a)
to dependency parsing.

VAP learns, using both labeled and unlabeled
data, a continuous latent variables representation,
designed to support the parsing task by creating
contextualized token-representations that capture
properties of the full sentence. Typically, each
token in the sentence is represented by its latent
variable z;, which is a high-dimensional Gaussian
variable, to be aggregated as a group of latent vari-
ables z. This configuration ensures the continuous

42

latent variable retains the contextual information
from lower-level neural models to assist finding its
head or its modifier; as well as forcing the repre-
sentation of similar tokens to be closer. The latent
variable group z is modeled via P(z|x). In addi-
tion, we model the process of reconstructing the
input sentence from the latent variable through a
generative story P(x|z).

We adjust the original VAE setup in our semi-
supervised task by considering examples with la-
bels, similar to recent conditional variational for-
mulations (Sohn et al., 2015; Miao and Blunsom,
2016; Zhou and Neubig, 2017). We propose a full
probabilistic model for a given sentence &, with the
unified objective to maximize for both supervised
and unsupervised parsing as follows:

L,
0,

if T exists,

otherwise.

J =log Pg(x)PS(T|x), €= {

This objective can be interpreted as follows: if
the training example has a golden tree 7 with
it, then the objective is the log joint probability
Pp ,(T, x); if the golden tree is missing, then the
objective is the log marginal probability Py(x).
The probability of a certain tree is modeled by a
tree-CRF with parameters w as P, (7 |x). Given
the assumed generative process Py(x|z), directly
optimizing this objective is intractable, thus instead
we optimize its Evidence Lower BOund (ELBO):

\71ap = E

z2~Qg (z|)
— KL(Qg(z|2)[| Po(2))
te E [logPu(Tl2).
z2~Qg(z|)
We show J, is the ELBO of J in the appendix
Al
In
models,

[log Po(x|2)]

similar as
[log P (x|2)]

% 2o log Po(|z))
[log Py (T12)] by

practice,

E
z2~Qg(2[2)

by
E

VAE-style
is ap-

proximated

and

2~Q(2|@)
+ Zjvzl log P,(T|z;), where z; is the j-th
sample of [NV samples sampled from Qg (2z|x). At
prediction stage, we simply use u, rather than
sampling z.

4.1 Incorporating POS and External
Embeddings

In previous studies (Chen and Manning, 2014;
Dozat and Manning, 2017; Dozat et al., 2017;

Kiperwasser and Goldberg, 2016) exploring pars-
ing using neural architectures, POS tags and ex-
ternal embeddings have been shown to contain
important information characterizing the depen-
dency relationship between a head and a child.
Therefore, in addition to the variational autoen-
coding framework taking as input the randomly
initialized word embeddings, optionally we can
build the same structure for POS to reconstruct
tags and for external embeddings to reconstruct
words as well, whose variational objectives are
U, and U, respectively. Hence, the final varia-
tional objective can be a combination of three:
U = U, (The original ¢/ in Lemma A.1)+U, +U,
(or just U = U,, + U, if external embeddings are
not used).

5 Experiments

5.1 Experimental Settings

Data sets We compared our models’ perfor-
mance with strong baselines on the WSJ data set,
which is the Stanford Dependency conversion (De
Marneffe and Manning, 2008) of the Penn Tree-
bank (Marcus et al., 1993). We used the standard
section split: 2-21 for training, 22 for development
and 23 for testing.

To simulate the low-resource language environ-
ment, we used 10% of the whole training set as the
annotated, and the rest 90% as the unlabeled.

Input Representation and Architecture We
describe the details of the architecture as follows:
The internal word embeddings have dimension 100
and the POS embeddings have dimension 25. The
hidden layer of the bi-LSTM layer is of dimen-
sion 125. The nonlinear layers used to form the
head and the modifier representation both have 100
dimension. We also used separate bi-LSTMs for
words and POSs.

Training In the training phase, we usedd Adam
(Kingma and Ba, 2014) to learn all the parameters
in the VAP model. We did not take efforts to tune
models’ hyper-parameters and they remained the
same across all the experiments. To preventing
over-fitting, we applied the “early stop” strategy by
using the development set.

5.2 Semi-Supervised Dependency Parsing on
WSJ Data Set

We evaluated our VAP model on the WSJ data
set and compared the model performance with

43

other semi-supervised parsing models, including
CRFAE (Cai et al., 2017), which is originally de-
signed for dependency grammar induction but can
be adopted for semi-supervised parsing, and “differ-
entiable Perturb-and-Parse” parser (DPPP) (Corro
and Titov, 2019). To contextualize the results, we
also experiment with the supervised neural margin-
based parser (NMP) (Kiperwasser and Goldberg,
2016), neural tree-CRF parser (NTP) and the super-
vised version of VAP, with only the labeled data.
To ensure a fair comparison, our experimental set
up on the WSJ is identical as that in DPPP, using
the same 100 dimension skip-gram word embed-
dings employed in an earlier transition-based sys-
tem (Dyer et al., 2015). We show our experimental
results in Table 1.

Model UAS
DPPP(L) 88.79
DPPP(L+U) 89.50
CRFAE(L+U) 82.34
NMP(L) 89.64
NTP (L) 89.63
Self-training (L+U) | 87.81
VAP (L) 89.37
VAP (L+U) 89.49

Table 1: This table compares the model performance
on the WSJ data set with 10% labeled data. “L” means
only 10% labeled data is used, while “L+U” means
both 10% labeled and 90% unlabeled data are used.

As shown in this table, our VAP model is able
to utilize the unlabeled data to improve the overall
performance on that with only using labeled data
alone. Our VAP model performs slightly worse
than the NMP model, which we attribute to the
increased model complexity by incorporating ex-
tra encoder and decoders to deal with the latent
variable. However, our VAP model achieved com-
parable results on semi-supervised parsing as the
DPPP model, while our VAP model is simple and
straightforward without inferencing the parse tree
if it is unknown. Instead, the DPPP model has to
apply Monte Carlo sampling from the posterior of
the structure by using a “GUMBEL-MAX trick”
to approximate the categorical distribution at each
step, which is intensively computationally expen-
sive, in order to form a dependency tree of high
probability. Self-training using NMP with both
labeled and unlabeled data is also included as a
base-line, where the performance is deteriorated
without appropriately using the unlabeled data.

6 Conclusion

In this study, we presented Variational Autoencod-
ing Parser (VAP), an end-to-end parser, capable of
utilizing the unlabeled data together with labeled
data to improve the parsing performance, without
any external resources. The proposed VAP model
performs on a par with a recently published (Corro
and Titov, 2019) semi-supervised parsing system
on the WSJ data set, with faster inference, showing
its potential for low-resource languages.

References

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Proc.
of the Annual Meeting of the Association Computa-
tional Linguistics (ACL).

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Simaan. 2017. Graph
Convolutional Encoders for Syntax-aware Neural
Machine Translation. In Proc. of the Conference on
Empirical Methods for Natural Language Process-
ing (EMNLP).

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating Sentences from a Continuous
Space. In Proc. of the International Conference on
Learning Representation (ICLR).

Jiong Cai, Yong Jiang, and Kewei Tu. 2017. CRF Au-
toencoder for Unsupervised Dependency Parsing. In
Proc. of the Conference on Empirical Methods for
Natural Language Processing (EMNLP).

Danqgi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proc. of the Conference on Em-

pirical Methods for Natural Language Processing
(EMNLP).

Mingda Chen, Qingming Tang, Karen Livescu, and
Kevin Gimpel. 2018. Variational sequential labelers
for semi-supervised learning. In Proc. of the Confer-
ence on Empirical Methods for Natural Language
Processing (EMNLP).

Caio Corro and Ivan Titov. 2019. Differentiable
Perturb-and-Parse: Semi-Supervised Parsing with a
Structured Variational Autoencoder. In Proc. of the
International Conference on Learning Representa-
tion (ICLR).

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-
Seng Chua. 2005. Question Answering Passage Re-
trieval Using Dependency Relations. In Proc. of the
International Conference on Research and Develop-
ment in Information Retrieval (SIGIR).

44

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. In Proc. of the
Annual Meeting of the Association Computational
Linguistics (ACL).

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In Proc. of the International Conference
on Computational Linguistics (COLING).

Yuan Ding and Martha Palmer. 2007. Machine transla-
tion using probabilistic synchronous dependency in-
sertion grammars. In Proc. of the Annual Meeting of
the Association Computational Linguistics (ACL).

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proc. of the International Conference on
Learning Representation (ICLR).

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. In Proc. of the Annual Meeting of
the Association Computational Linguistics (ACL).

Yong Jiang, Wenjuan Han, and Kewei Tu. 2016. Un-
supervised Neural Dependency Parsing. In Proc. of
the Conference on Empirical Methods for Natural
Language Processing (EMNLP).

Yoon Kim, Chris Dyer, and Alexander Rush. 2019a.
Compound probabilistic context-free grammars for
grammar induction. In Proc. of the Annual Meeting
of the Association Computational Linguistics (ACL).

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kun-
coro, Chris Dyer, and Gabor Melis. 2019b. Unsuper-
vised recurrent neural network grammars. In Proc.
of the Annual Meeting of the North American Asso-
ciation of Computational Linguistics (NAACL).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. ArXiv.

Diederik P Kingma and Max Welling. 2014. Auto-
Encoding Variational Bayes. In Proc. of the In-
ternational Conference on Learning Representation
(ICLR).

Eliyahu Kiperwasser and Yoav Goldberg. 2015. Semi-
supervised dependency parsing using bilexical con-
textual features from auto-parsed data. In Proc. of
the Conference on Empirical Methods for Natural
Language Processing (EMNLP).

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional Istm feature representations. Transactions
of the Association for Computational Linguistics
(TACL).

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple Semi-supervised Dependency Parsing. In
Proc. of the Annual Meeting of the Association Com-
putational Linguistics (ACL).

Sandra Kubler, Ryan McDonald, Joakim Nivre, and
Graeme Hirst. 2009. Dependency Parsing. Morgan
and Claypool Publishers.

Zhenghua Li, Min Zhang, and Wenliang Chen.
2014. Ambiguity-aware ensemble training for semi-
supervised dependency parsing. In Proc. of the An-
nual Meeting of the Association Computational Lin-
guistics (ACL).

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou,
and Houfeng Wang. 2015. A Dependency-Based
Neural Network for Relation Classification. In Proc.
of the Annual Meeting of the Association Computa-
tional Linguistics (ACL).

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
Pointer Networks for Dependency Parsing. In Proc.
of the Annual Meeting of the Association Computa-
tional Linguistics (ACL). Association for Computa-
tional Linguistics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
Sentences with Graph Convolutional Networks for
Semantic Role Labeling. In Proc. of the Confer-
ence on Empirical Methods for Natural Language
Processing (EMNLP).

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: the penn treebank. Computa-
tional Linguistics.

Ryan McDonald. 2006. Discriminative learning and
spanning tree algorithms for dependency parsing.
Ph.D. thesis, University of Pennsylvania.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proc. of the Annual Meeting of
the Association Computational Linguistics (ACL).

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In Proc. of the Conference on
Empirical Methods for Natural Language Process-
ing (EMNLP).

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop
on Incremental Parsing: Bringing Engineering and
Cognition Together.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics.

Joakim Nivre. 2014. The inside-outside recursive neu-
ral network model for dependency parsing. In Proc.
of the Conference on Empirical Methods for Natural
Language Processing (EMNLP).

45

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An
effective neural network model for graph-based de-
pendency parsing. In Proc. of the Annual Meeting of
the Association Computational Linguistics (ACL).

Siva Reddy, Oscar Tackstrom, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming Dependency
Structures to Logical Forms for Semantic Parsing.
Transactions of the Association for Computational
Linguistics (TACL), pages 127-140.

Yikang Shen, Zhouhan Lin, Chin wei Huang, and
Aaron Courville. 2018a. Neural language modeling
by jointly learning syntax and lexicon. In Proc. of
the International Conference on Learning Represen-
tation (ICLR).

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2018b. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
Proc. of the International Conference on Learning
Representation (ICLR).

Anders Sggaard. 2010. Simple semi-supervised train-
ing of part-of-speech taggers. In Proc. of the Annual
Meeting of the Association Computational Linguis-
tics (ACL).

Kihyuk Sohn, Xinchen Yan, and Honglak Lee. 2015.
Learning structured output representation using
deep conditional generative models. In Proc. of the
Conference on Advances in Neural Information Pro-
cessing Systems (NIPS).

Karl Stratos. 2019. Mutual Information Maximiza-
tion for Simple and Accurate Part-Of-Speech Induc-
tion. In Proc. of the Annual Meeting of the North
American Association of Computational Linguistics

(NAACL).

Toshiyuki Tanaka. 1999. A Theory of Mean Field
Approximation. In Proc. of the Conference on Ad-
vances in Neural Information Processing Systems
(NIPS).

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and
Carlos Guestrin. 2005. Learning structured predic-
tion models: A large margin approach. In Proc. of
the International Conference on Machine Learning
(ICML).

Kewei Tu and Vasant Honavar. 2012. Unambiguity reg-
ularization for unsupervised learning of probabilis-
tic grammars. In Proc. of the Conference on Em-
pirical Methods for Natural Language Processing
(EMNLP).

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proc. of the Annual

Meeting of the Association Computational Linguis-
tics (ACL).

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. In Proc. of the Conference on Em-
pirical Methods for Natural Language Processing
(EMNLP).

Xiaoqing Zheng. 2017. Incremental graph-based neu-
ral dependency parsing. In Proc. of the Conference
on Empirical Methods for Natural Language Pro-
cessing (EMNLP).

Chunting Zhou and Graham Neubig. 2017. Multi-
space variational encoder-decoders for semi-
supervised labeled sequence transduction. In
Proc. of the Annual Meeting of the Association
Computational Linguistics (ACL).

46

A Appendix

A.1 ELBO of LAP’s Original Ojective
Given an input sequence x, we prove that Jj,, is
the ELBO of 7:

Lemma A.1l. [, is the ELBO (evidence lower
bound) of the original objective J, with an input
sequence .

Denote the encoder () is a distribution used to ap-
proximate the true posterior distribution Py (z|x),
parameterized by ¢ such that) encoding the input
into the latent space z.

Proof.

log Py(z) Py, (T |z) =log Py(z) + €log P (T |z)
N—— T
Po(x)

u
=10 | Qulele)g oy
log Po(e|=)]
Qg(z|x)
s %
log P(al=)

V

=z E
z2~Q¢(2|x)

E
z2~Qg(z|x)

E
z2~Qg(2|)

—KL (Q¢(2]2)[|Po(2)) ,
(ELBO of traditional VAE)
=elog P,,(T|x)

zelog/Pw(T|z)Q¢(z|a:)dz

E
z2~Qy(2|x)

E [log P, (T|2)].
z~Qg(2])

=clog [P, (T|z)]

>e€

Combining U/ and £ leads to the fact:

U+L> E

z2~Qg (2|x)
—KL(Qg(z[2)[| Po(2))

+e€ E [lOg Pw(T|z)] = u7lap
z2~Qg(z|T)

[log P (x|2)]

A.2 Mean Field Approximation and
Annealing

Directly calculating the the auxiliary posterior
Q¢(z|x) is difficult due to the complex model
structure with deep neural networks, thus we used a
mean field approximation (Tanaka, 1999) together
with the conditional independence assumption by

47

assuming Qg (z|x) = Hf‘,=1 Q¢ (2t|2¢) to compute
it. Similarly, the generative model Py(x|z), acting
as a decoder parameterized by 6, tries to regenerate
the input z; at time step ¢ given the latent variable
zt, assuming Py (x|z) = Hi:l Py(x¢|2t). The en-
coder and the decoder are trained jointly using the
traditional variational autoencoder framework, by
minimizing the KL divergence between the approx-
imated posterior and the true posterior.

We parameterize the encoder Qg (2¢|;) in two
steps: First a bi-LSTM is used to obtain a non-
linear transformation h; of the original x;; then
two separate MLPs are used to compute the mean
M., and the variance agt. The generative story
Py(x|2;) follows such parameterization: we used
a MLP of two hidden layers in-between to take
z¢ as the input, and predict the word (or POS tag)
over the vocabulary, such that the reconstruction
probability can be measured.

Following traditional VAE training paradigms,
we also apply the “re-parameterization” trick
(Kingma and Welling, 2014) to circumvent the
non-differentiable sampling procedure to sample
z; from the Qg (2¢|x). Instead of directly sample
from N (p-,, 02,), we form z; = ., + € © o2, by
sampling € ~ N(0,I). In addition, to avoid hin-
dering learning during the initial training phases,
following previous works (Chen et al., 2018; Bow-
man et al., 2016), we anneal the temperature on the
KL divergence term from a small value to 1.

A.3 Empirical Bayesian Treatment

From an empirical Bayesian perspective, it is bene-
ficial to estimate the prior distribution directly from
the data by treating prior’s parameters part of the
model parameters, rather than fixing the prior using
some certain distributions. Similar to the approach
used in the previous study (Chen et al., 2018), LAP
also learns the priors from the data by updating
them iteratively. We initialize the priors from a
standard Gaussian distribution A/(0, I), where I is
an identity matrix. During the training, the current
priors are updated using the last optimized poste-
rior, following the rule:

m5(z) =) QY ' (z[z)P(),

where P(x) represents the empirical data distribu-
tion, and k the iteration step. Empirical Bayesian
is also named as “maximum marginal likelihood”,
such that our approach here is to marginalize over
the missing observation as a random variable.

Memory-bounded Neural Incremental Parsing for Psycholinguistic
Prediction

Lifeng Jin and William Schuler
Department of Linguistics
The Ohio State University, Columbus, OH, USA
{jin, schuler}@ling.osu.edu

Abstract

Syntactic surprisal has been shown to have an
effect on human sentence processing, and can
be calculated from prefix probabilities of gen-
erative incremental parsers. Recent state-of-
the-art incremental generative neural parsers
are able to produce accurate parses and sur-
prisal values, but have unbounded stack mem-
ory, which may be used by the neural parser
to maintain explicit in-order representations of
all previously parsed words, inconsistent with
results of human memory experiments. In con-
trast, humans seem to have a bounded work-
ing memory, demonstrated by inhibited per-
formance on word recall in multi-clause sen-
tences (Bransford and Franks, 1971), and on
center-embedded sentences (Miller and Isard,
1964). Bounded statistical parsers exist, but
are less accurate than neural parsers in predict-
ing reading times. This paper describes a neu-
ral incremental generative parser that is able
to provide accurate surprisal estimates and can
be constrained to use a bounded stack. Results
show that accuracy gains of neural parsers
can be reliably extended to psycholinguistic
modeling without risk of distortion due to un-
bounded working memory.

1 Introduction

Syntactic surprisal has been shown to have an ef-
fect on human sentence processing, and can be cal-
culated from prefix probabilities of generative in-
cremental parsers (Hale, 2001; Levy, 2008), mak-
ing it a useful baseline predictor when looking for
effects of other factors, like limits of memory or
attention. Recent work in generative neural net-
work parsing (Dyer et al., 2016; Hale et al., 2018)
has shown that generative parsers based on neural
networks are more accurate than earlier statistical
generative parsers, and can be used for surprisal
calculation. Although a typical shift-reduce neural
network parser like that used by Hale et al. (2018)

48

and Crabbé et al. (2019) may be successful in pre-
dicting brain imaging data, the depth of its stack
memory, the model component where past pre-
dicted items are faithfully stored, can be as long as
the whole derivational history of the parse (Kun-
coro et al., 2018). This potentially sentence-length
stack may be used by the neural parser to main-
tain explicit in-order representations of all previ-
ously parsed words. In contrast, humans seem to
have a bounded working memory, demonstrated
by inhibited performance on word recall in multi-
clause sentences (Bransford and Franks, 1971),
and on center-embedded sentences (Miller and Is-
ard, 1964)." Explicit storage of this long parsing
history may improve parsing accuracy, but it also
risks distorting the predictions of the model when
used as a statistical control in psycholinguistic ex-
periments.

Left-corner parsers (Rosenkrantz and Lewis,
1970; Johnson-Laird, 1983) have been argued to
provide human-like limits on working memory,
because the stack memory requirements of this
kind of parser do not grow unboundedly in lin-
guistically common cases of left- or right recur-
sion, only in linguistically rare cases of center re-
cursion. For example, a left corner parser would
require only one memory element to process the
right recursive sentence, ‘The dog chased the cat
that ate the rat that nibbled the malt,” but would re-
quire three elements to process the center recursive

!Specifically, Bransford and Franks (1971) found that
subjects were not reliably able to recall word-order informa-
tion such as whether sentences were in passive or active voice
following exposure to sentence stimuli, and Miller and Isard
(1964) found that subjects were not able to understand sen-
tences with deeply nested center-embedded structures, such
as:

(1) The cart [gc the horse [gc the man bought] pulled] broke.

as easily as non-center-embedded control sentences, despite
being composed of familiar rules.

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 48—61
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

sentence, ‘The rat that the cat that the dog chased
ate nibbled the malt,” consistent with findings that
humans have more difficulty understanding the lat-
ter sentence. Left-corner parsers also define a
fixed set of probabilistic decisions at each word,
which naturally paces the surprisal measures pro-
duced by the model. Unfortunately, existing left-
corner parsers (van Schijndel et al., 2013) are sta-
tistical rather than neural, and are therefore sub-
stantially less accurate than state-of-the-art neural
network parsers.

This paper therefore defines a neural-network
left-corner parser with bounded stack memory for
parsing and psycholinguistic prediction. Experi-
ments described in this paper show that this gener-
ative left-corner neural network parser is compet-
itive with incremental generative parsers that use
unbounded stack memory in a parsing task, and
outperforms statistical memory-bounded genera-
tive left-corner parsers both in parsing accuracy
and in fitting human behavioral data on two dif-
ferent datasets, consistent with the conclusion that
accuracy gains of neural parsers can be reliably ex-
tended to psycholinguistic modeling without risk
of distortion due to unbounded working memory.

2 Related work

Incremental generative constituent parsers are able
to process sentences in time order and provide psy-
cholinguistically predictive measures like syntac-
tic surprisal and entropy reduction (Levy, 2008;
Hale, 2001, 2006), which in turn are used in psy-
cholinguistic experiments for probing effects of
syntax on behavioral data (Demberg and Keller,
2008; Demberg et al., 2012; van Schijndel and
Schuler, 2015). Statistical incremental parsers
like ones proposed by Roark (2001) and van
Schijndel et al. (2013) are based on context-
free grammars. The Roark (2001) parser builds
syntactic structures top-down incrementally and
has been used in studies for calculating surprisal
(Demberg and Keller, 2008; Roark et al., 2009;
Frank, 2009). Left-corner parsers (Rosenkrantz
and Lewis, 1970; Johnson-Laird, 1983) are often
used to model limits on center embedding (Ab-
ney and Johnson, 1991; Gibson, 1991; Resnik,
1992; Stabler, 1994; Lewis and Vasishth, 2005).
van Schijndel et al. (2013) proposed an incremen-
tal parser that takes working memory constraints
into account, and is able to produce probabilis-
tic measures as well as predictions about working

49

memory operations (van Schijndel and Schuler,
2015). Demberg et al. (2013) propose a parser
which is also able to produce prefix probabilities
for tree-adjoining grammars. All of these statis-
tical parsers lag behind state-of-the-art parsers in
parsing accuracy, because of psycholinguistic con-
straints like incrementality and because they use
less expressive statistical models.

State-of-the-art constituency parsers generally
are neural network models (Choe and Charniak,
2016; Dyer et al., 2016; Kitaev and Klein, 2018).
Dyer et al. (2016) propose a generative neural
model for top-down incremental parsing but use
it only as a reranker for a discriminative parser.
Extensions to the Dyer et al. (2016) model allow
the parser to do in-order tree traversal (Liu and
Zhang, 2017; Kuncoro et al., 2018).2 However,
the in-order transition system has a bias towards
left children of constituents, which is not desir-
able when the model is used to calculate prefix
probabilities. This issue was addressed by using
word-synchronous beam search (Stern et al., 2017;
Hale et al., 2018) or variable sized beam search
(Crabbé et al., 2019) and successfully predict brain
imaging data. However, all of these parsers do
not limit the number of stack elements the parser
has direct access to at any timestep, which in
some cases can be equal to number of deriva-
tional decisions made up to the current timestep.
This behavior of unbounded stack does not match
what we know about human working memory
and is undesirable for calculating predictors like
probabilistically-weighted emdedding depth (Wu
et al., 2010). The model described in this paper
avoids these problems by using a left-corner tran-
sition system, which uses a bounded pushdown
store and a fixed set of probabilistic decisions per
word. The bounded stack memory not only more
closely implements human working memory lim-
its in a model designed to calculate cognitive pre-
dictors, other work (Jin et al., 2018) shows that
it also helps limit search space for unsupervised
grammar acquisition.

2Kuncoro et al. (2018) calls the in-order tree traversal a
left-corner traversal. In order to avoid confusion, we refer
to it as in-order tree traversal, and save the name left-corner
traversal for the Johnson-Laird (1983) formulation, which
traverses trees from left to right with a bounded stack.

16

t4

pulled broke

_

Figure 1: Example of a parse tree for the sentence
the cart the horse pulled broke. Time step indices are
marked inside the derivation fragment built in that time
step. A and B nodes are the top and the rightmost node
of each derivation fragment. Note that ¢3 has two sep-
arate derivation fragments, which indicates that at 73
there are two sets of A and B nodes on the stack. At
each timestep, A and B nodes of the lowest derivation
fragment will be predicted. If they have already been
predicted or they do not exist, then the decision will be
NULL. POS tags for terminals are omitted.

3 Incremental left corner transition
system with bounded working memory

This paper introduces a neural left-corner tran-
sition system for incremental constituency pars-
ing with minimal working memory requirements.
This system defines a fixed set of parser decisions
at each time step. Following these parsing de-
cisions, the parser incrementally generates each
word in a sentence and the syntactic structures as-
sociated with that word, in time order. Because
the parser needs space on the stack only when
there is center-embedding in the sentence, this
transition system uses much less stack memory
than other shift-reduce transition systems (Kun-
coro et al., 2018), modeling the psycholinguis-
tic phenomenon that center-embedding is rare and
hard for humans to process.

3.1 Types of nodes in left-corner parsing

A left-corner parser maintains a pushdown store
of one or more derivation fragments A/B, each of
which consists of a top node of category A lack-
ing a bottom node of category B yet to come.
The parser generates each word in a sentence at
each time step, and then makes predictions about
the top nonterminal category of the current deriva-

50

Step | Stack Decision
[] GENERATE-the
1 [the] pIA-NP
[NP/NP T] PJB-NULL
[NP/NP 1] GENERATE' -cart
2 [NP] PIA-NP
[NP/NP T] piB-RC
[NP/RC] GENERATE-the
3 [NP/RC the] piA-NP
[NP/RC NP/NP T] | pPiB-NULL
[NP/RC NP/NP L] | GeneraTE -horse
4 [NP/RC NP] PJA-NULL
[NP/RC T] PIB-NULL
[NP/RC L] GENERATE -pulled
5 [NP] PJIA-S
[S/S T] PJB-NULL
[S/S L] GENERATE' -broke
6 [S] PJA-NULL
[T] piB-T
[]

Table 1: Parser decisions and stack states for the sen-
tence “the cart the horse pulled broke” shown in Fig-
ure 1 using the simple left-corner transition system. It
shows that the stack grows only when there is a new
center embedded clause within the clause being pro-
cessed.

tion fragment and the bottom rightmost unfinished
nonterminal category. This process uses stored
states only within center-embedded structures, re-
flecting the difficulty of center-embedding for hu-
mans. For example, in processing the sentence
The cart the horse pulled broke (see Figure 1), in
timestep 2 immediately after the word cart is gen-
erated, the derivation fragment is NP/RC, shown
in the figure with an orange-yellow striped plate.
The top nonterminal category, or the A category,
of this derivation fragment is NP and the bottom
rightmost unfinished nonterminal category, or the
B category, is RC. At 13 when a center-embedded
structure appears, a new derivation fragment is
created and stored in the stack memory, making ¢3
a timestep with two derivation fragments: NP/RC
and NP/NP.

3.2 Parser decisions

Figure 2 defines the set of parser decisions that the
parser must make at each time step. They consist
of the following:

GENERATE: First a word must be generated given
the current state of the parser and pushed onto the
stack. There are two rules associated with GENER-
ATE decisions, and they have different stack config-
urations when the push operation happens. If the
stack has a derivation fragment X/Y at its head,

then the word is pushed onto the top of the stack
without further operation (GENERATE-w). If the top
of the stack has a fragment followed by a L sign,
then the word is first merged with the bottom node
Y and then the merged Y node is merged with X.
In the end only the top node X remains (GENERATE’-
w). The parser deterministically decides which
rule to use based on the state of the stack.

pJA: Next a nonterminal top node must be
projected onto the head of the stack. The set of
possible top nodes include all the nonterminal cat-
egories in the training data X as well as a spe-
cial category NuLL. The pia-x decision projects
a nonterminal top node X together with a place-
holding bottom node with the same category onto
the stack, and appends the stack with a T sign. pJa-
~NuLL merges the final node Y on the stack, which
is often a terminal, with the closest bottom node,
and appends the T sign to the stack.

pjB: Finally a nonterminal bottom node must
be projected onto the head of the stack. The set of
possible bottom nodes includes all the nonterminal
categories in the training data X as well as a special
category NULL and discourse level category T. The
PJB-X decision merges the last bottom node Y to the
bottom node with the predicted category X. pia-
NULL changes the T sign to the L sign at the head
of stack.

Table 1 shows how the sentence in Figure 1 is
parsed with this left-corner transition system. The
state of the stack in the parser in the beginning
is implicitly [T/T], which represents the top-level
discourse structure which has a top node of T and
bottom node of T. We omit this initial fragment
in the table for brevity. After parsing the whole
sentence, the state of the parser will be [], again
omitting the top level discourse nodes.

The relationship between a parse tree and a se-
quence of decisions generated by the transition
system is bijective. Trees produced with this sys-
tem are all binary-branching.

3.3 Use of stack memory

Stack memory depth increases only when a left
nonterminal child of a right child is generated
(Schuler et al., 2010) as a center-embedded struc-
ture is generated. In the current transition system,
the piB decision at the previous time step (PiB;_;)
and the pia decision at the current time step (pia,)
together decide how depth of a parse will change:

e if PiB,_; = NULL and piA, = NULL, then the

51

GENERATE-W ‘[0__[}‘;'717)(_/‘7‘1;,_11%1_],
GENERATE -W [ETO_ X)/(,Yz —i_’l l]]
PJA-X [O'['§/ X iT]’ -
PJA-NULL l[g_' _Ilf” lz]J
PJB-X | 7 ('TZ_/ZYD-JZ]i]
PJB-nuLL {g §;¥ I: H

Figure 2: The generative incremental left-corner tran-
sition system. Adding a buffer to the system yields a
discriminative transition system.

depth of the sentence will decrease by 1.

e if PIB,_; # NULL and PJA; # NULL, then the
depth of the sentence will increase by 1.

¢ in all other cases, the depth remains the same
as the previous time step.

The depth of the stack memory for a parse is
closely related to the well-formedness of a parse.
As Figure 1 shows, a valid parse starts at depth
0, stays at larger depths during parsing the sen-
tence, and returns to depth O at the end of the
sentence. The figure also shows that the depth
of the stack memory only increases when a cen-
ter embedding is being parsed at #3. The average
stack memory depth for the transition system in
these parsing experiments is 2, which means that
on average there are 4 tree nodes in stack memory,
much smaller than 12 which is the average num-
ber of items for the top-down system used in Hale
et al. (2018). This shows that the left-corner tran-
sition system makes much more parsimonious use
of stack memory than a typical shift-reduce sys-
tem. The left-corner model evaluated in the exper-
iments also applies bounding to the stack memory
and uses a relatively liberal maximum depth of 5
derivation fragments (10 tree nodes), reflecting the
fact that remembering more than 10 items faith-
fully at once is highly unlikely in sentence pro-
cessing due to working memory limits in humans.

There are two sets of constraints for different
use cases for the parser to prune parses on the
beam.? The basic set only drops a parse when the

3Please see the supplemental materials for details.

parse reaches depth O before the end of the sen-
tence. This set is used by the parser when psy-
cholinguistic measures are needed. The extended
set provides information to the parser about the
length of the sentence currently parsing, guiding
the parser to drop parses with stack memory too
deep or too shallow while parsing. Because this
set provides some forward context, it is only used
when the parser is used to find best parses in lin-
guistic evaluation.

4 Parsing model

This section defines a memory-bounded neural in-
cremental generative parser as a generative proba-
bility model for surprisal calculation using the pro-
posed left-corner transition system. In the descrip-
tion below, all LSTMs are stack-LSTMs (Dyer
et al., 2016) with coupled input and forget gates
(Greff et al., 2017) and all FFs are feed-forward
neural networks.

Surprisal at a word w;, is defined as the negative
log of the probability of that word given its preced-
ing words w;_,—; under some model 8. This can be
computed by marginalizing over the final hidden
state of a sequence:

Zq, Po(g: wi.1)
s Zq,w, PB(QI Wl..t)
(1)
then decomposing the marginalized term into a
recurrence of marginalized transition-observation
probabilities:

—log Pg(w; [wy 1) = —1lo

Po(giwi.0) =) Powi a1 1) - Pol@i1 wii1)
qr-1

2)

using Pg(gowo) = 1 for some start-of-sentence
word wy and initial state gg.

The hidden states g; of the model described in
this paper consist of:

cell and hidden vectors ¢;, h; € R” for a word
LSTM,

a preterminal decision p; € C over category
labels C,

a top decision a; € CU{L} over labels and
null results L,

a bottom decision b, € CU{L
null results,

} over labels and

a top vector af € R" for each depth d €
{1..D},

52

e a bottom vector b? € R” for each depth d €
{1..D}, and

e cell and hidden vectors ¢;, h; €
sion LSTM.

R" for a deci-

Probabilities for observing a word and transition-
ing to a new hidden state at each time step ¢, given
a hidden state at the previous time step —1, can
then be decomposed into terms for each individ-
ual decision and resulting vector:

Pwiechy prabral-Pbl-P e hjle, 1 h_pal-Pbl-Pe_ h_)
= P(wle;~1 hy- Ial Db,] {)C; P l)
- Ple/hjleo h_pal-Pbl-Pel b wy)
- P(pleoihioyal-Pbl-Pel b wieh)
“ P(ajlehpa-Pb-P e W wiehy p)
* P(b;le;—1 hy—y at1]Dbt1 IDc[(o wieihy pray)
- P(a)Ple i hal-Pb-Pel b wieh prab)
 P(bPle,-i heyal PP W wie by prasbral-P)
- P(c, h,|c,,1h,,1a};10b} Pe W weeh; pasbral-Pbl-P)
3)

The probability of observing a word depends on
bounded representations of the store, the decision
sequence and the word sequence:

1..D w1..D
P(W[| at_l bl 1 C/ h;—l Cr—1 h[_l) =

Sw, SOoFtMax(FFa, [q,—1,h)_,h, 1 1) (4)

where ¢; is a Kronecker delta vector, consisting of
a one at element i and zeros elsewhere, and q; is a
summary of the current stack:

q, = LSTMgy,[a;,b;,...,a”,b] 1.

6))

This probability term defines a distribution over
GENERATE decisions.

The probability of a cell and hidden vector of
the word LSTM is deterministic given the pre-
ceding operations, and is modeled as an indicator
equal to one when the vectors are as defined by the
corresponding LSTM model, zero otherwise:

1.D1..D ./ ’
P(e by | a7 b, 1 -1 ht_1 ¢-1hyw) =

[[Ct, h; = LSTMg, [¢;—1, h—1; W,]]],
where:
wi=FFg, [e.€],E SortMax(FFq,, [qi-1.h-1.h)_e.¢/ 1)1 (7)

and e, = E” ¢, is a trained word embedding, and
e; = E”¢,, is a pre-trained word embedding.

Similarly for the cell and hidden states of the de-
cision LSTM:

AW 1.D\1..D v ’
Ple;hy la; by ey hy ¢ hywy) =

[/, h; = LSTMg,[¢/_;,h/_;;m,q 1], (8)

where m,_; is a trainable embedding for the deci-
sion made at timestep ¢t — 1. Note that there are
three timesteps for m corresponding to three de-
cisions, compared to one timestep for w. Figure
3 shows an illustration of how the model works
to predict the GENERATE-the decision at timestep 3
in Table 1. In the illustration, the decision LSTM
takes all previous decisions mj, my, ..., and gen-
erates a hidden state h’, which represent the deci-
sion history (Equation 8). The word LSTM takes
the words which have already been generated, and
produces a hidden state h, which represents the
word history (Equation 6). The stack composer
composes all top and bottom categories on the
stack represented by the vectors, and produces the
representation of the stack (Equation 5). Finally,
all three representations of different kinds of infor-
mation are processed by the GENERATE feedforward
network FFy,,, which makes a prediction about
which word is next (Equation 4). Other decisions
are made in a similar fashion as shown below.

The probability of a preterminal category deci-
sion depends on a bounded representation of the
word sequence at the current time step, and a
bounded representation of the decision sequence
and the store at the previous time step, and the
trained and untrained pre-trained word embed-
dings:

1.D w1..D ./ ’
P(pileimrhpa, 2 by e iy wiehy) =

6ptTSOFTMAX(FFHP[hlv h;_17 ql—],eh e;]) (9)

This term defines a distribution over preterminal
(part of speech) decisions.

The probability of a top category decision de-
pends on a bounded representation of the word se-
quence at the current time step and a bounded rep-
resentation of the decision sequence and the store
at the previous time step:

P(a; | emihera-bl-P e, hl_ woeh p) =
84, ' SoFtMax(FFy, [h;, h/,q,-1 1) (10)
This term defines a distribution over pja decisions.

The probability of a bottom category decision
depends on a bounded representation of the word

53

Decision LSTM

—»|LSTM,,, h, -

m,; / m, \
GENERATE-the PJA-NP
Word LSTM the
—»| LSTMy, h,—— M]
* e —
w, W, > FF«‘)VV
the cart
Stack composer
—>| LSTl\/IgQ q2 —_—
a,! bsl
NP | RC

d=1

Figure 3: The model makes the prediction for the Gen-
ERATE-the decision at timestep 3 in Table 1.

sequence at the current time step and decision se-
quence including the current top decision and the
store at the previous time step:

P | ¢i-1hiy 3,1;'? btl;'f) C;_l h;_l wiechy pray) =

b, ' SortMax(FFg, [h,, h)_ <, q,—11) (11)
where c;_'s, h;—.s = LSTMg,, [¢;_,,h]_,; 04,]1s the
result of adding the bottom decision to the deci-
sion LSTM. This term defines a distribution over
PIB decisions.

The probability of a top vector is deterministic
given the preceding operations, and is modeled as
an indicator function equal to one when the vec-
tors are as defined by a set of LSTMs over depen-
dent top and bottom store vectors, depending on
the previous bottom category and current top cat-
egory decisions:

P@/-Ple 1 hyy atljf) brl;'{) C;—l h;—l we e hy pras by)=
[a%'=al"]-¢;, if b1=L,a=L
[ad =LSTMy,, [weal | Ed, 107 if boi=La#L

s (12)
Ha;i:a;i_lﬂ,tpd_ if b1 #L,a;=1L

[ad*! =LSTMyy, [WeE 6y 04,1 if br#LartL

where d = argmaxd{af’_ | # 0} is the previous store
depth, and ¢ = [a;-""! = a-0-! a?*1-P = 0] isa
maintenance constraint on stores. These stack op-
erations related to the top category are illustrated
in Figure 5 in the appendix.

The probability of a bottom vector is also de-
terministic and modeled as an indicator function
equal to one when the vectors are as defined by
a set of LSTMs over dependent top and bottom
store vectors, depending on the previous bottom
category and current top category decisions:

h’

1.Dy_—
t—1 "1)=

wrehy prasbra;

P(b,l”D|cr—l h;_ al-D b,l;'f) 4

-1 ¢

[b?! =LSTMyy, [wiad bd-l

i—1Pi—1 E Ot IRZ7 8

if b1 =La=1
[b9=E 6y,] v (13)
1A =LSTMy,, [wi.b? | Ey,]

Hb;hl =E 6brﬂ'wd+l

if by 1=L,a;#1

if b1 #L,a,=1

if b_1#L,a,#L

where d = argmax {a | # 0} is the previous store
depth, and g = [b}-~! = b-4~1 pd*+!-D = 0] is
a maintenance constraint on stores.

Finally, the probability of a cell and hidden vec-
tor of the decision LSTM is also deterministic and
modeled as an indicator equal to one when the vec-
tors are as defined by the corresponding LSTM
model, zero otherwise:

d
—

P(c; hjle,-1 h—1al-Pbl-Pe by

1.D pl..Dy—
=1 "1 bt)=

wr e hy pra; by a
[} h/=LSTMgy [¢,_ 154,05 1] (14)

4.1 Training and Parsing

The proposed model here is a generative model
for sequence prediction with no forward context,
therefore ideally it should be trained with a struc-
tured training scheme (Weiss et al., 2015). How-
ever since it is expensive to search a wide beam
in training with a neural network, this model uses
a two-stage training scheme. The model is first
trained to minimize a cross-entropy loss objective
with an [, regularization term, defined by:

Lo(wi.r q1.7) = —logPg(wi.r q1.7) + %H@HZ
(15)
where Py(wi.7 q1.7) = [1; Po(wr q: 1 q1-1), and A is
an [, regularization strength hyper-parameter.
Training with the local cross-entropy objective
quickly leads to overfitting, because the left-corner
parsing decisions can be ambiguous at early parts
of the sentence, and the objective drives the model

54

to make such decisions perfectly by memoriz-
ing the training data. This model therefore stops
the cross-entropy training when parsing perfor-
mance starts to decrease on a development set,
and switches to use the REINFORCE algorithm
(Williams, 1992; Le and Fokkens, 2017) to fine-
tune the model with sequence level supervision.
The loss becomes:*

, A
Lowi.rqi.1) = §||9||2 - By ~Po 1w
(F(q, 7-q1.1) — b)logPe(q; 7 Iwi.T) (16)

Powi.r 4| 1)
gy PowiT q1.1)’
function from gold and hypothesized decision se-

quences to parsing F-scores, and b is a global run-
ning average of F scores of all sampled trees.

After the model is trained, the parser uses beam
search to find the approximate best parse. A
large beam width is desirable because it provides
more accurate parses and straightforward ways to
calculate psycholinguistic measures like surprisal
which requires marginalization.

where Py(q] ,|wi.r) = Fisa

5 Experiments

A first set of experiments compare the linguistic
accuracy of the bounded neural parser to other
generative incremental parsers using bracketing
F1 scores on the Penn Treebank (Marcus et al.,
1994). A second set of experiments then compare
the psycholinguistic accuracy of the bounded neu-
ral parsing model against an equivalently bounded
non-neural parsing model by regressing syntac-
tic surprisal derived from each model to self-
paced reading times from the Natural Stories Cor-
pus (Futrell et al., 2018) and eye-tracking fixa-
tion durations of newspaper article reading from
the Dundee Eye-tracking Corpus (Kennedy et al.,
2003).

The neural parser used in all experiments is
trained on Sections 02 - 21 of the Wall Street Jour-
nal part of the Penn Treebank. Hyper-parameters
of the parser are tuned on the development set,
WSIJ Section 22. The cross-entropy objective is
used for about 9 epochs before accuracy on the
development set starts to decrease, with stochas-
tic gradient descent (SGD) using initial learning
rate = 0.1 and gradually decreasing the learning

“4This term does not include p, because preterminal (POS)
decisions are soft, and F scores provide no supervision to

POS tagging accuracy. To increase efficiency in sampling,
GENERATE decisions are not sampled.

102290 - Natural Stories

—102300+

—1023104

—102320+

Loglikelihood

—102330- —32330

—102340

—32332

Dundee: first-pass

Dundee: go-past

—39716
—39718+
—39720+
—39722+

—39724 4 *ok

T T T T
Baseline Baseline Baseline Baseline
+vS13 +Neural +Both

T T T T
Baseline Baseline Baseline Baseline
+vS13 +Neural +Both

T T T T
Baseline Baseline Baseline Baseline
+vS13 +Neural +Both
Model

Figure 4: Goodness of fit of the regression model with different surprisal values calculated by the incremental
left-corner parser in van Schijndel et al. (2013) and the incremental neural parser to human reading times and eye
tracking data. Likelihood ratio tests are conducted to obtain p values. ** : p < I X107, ™ : p < 1x 1073, *: p <

1 x 1072, ns: p > 0.05.

rate to be 0.001, and 1 = 1 x 107°. Training
then switches to the REINFORCE objective until
the parser reaches the maximum F1 score (about 3
epochs), with SGD using learning rate = 5 x 1073
and 1 = 1 x 107>, Using REINFORCE adds 0.3
F1 points on the development set. The pretrained
English word embeddings are from Liu and Zhang
(2017). Dropout is applied to input to all layers.

Experiments first evaluate model performance
on Section 22 of WSJ as the development set and
Section 23 as the test set for linguistic accuracy
evaluation with a beam width of 2000. These ex-
periments use the extended set of constraints for
parsing WSJ for efficiency. This evaluation reports
EVALB F scores on both datasets. Trees in the
training set are binarized with left-branching con-
stituents and the unary nodes are removed from
gold trees following van Schijndel et al. (2013).

The trained model then is used to calculate sur-
prisal for sentences in the Natural Stories Corpus
and the Dundee Corpus for psycholinguistic accu-
racy evaluation. These experiments only use the
exploratory set of both corpora. Corpus cleaning
follows van Schijndel and Schuler (2013). The
parser uses the basic set of constraints to parse
the Natural Stories and Dundee corpora, only re-
jecting parses that would lead to premature termi-
nation of the parsing process while doing beam
search, with width 2000.

5.1 Linguistic accuracy evaluation

A linguistic accuracy evaluation compares the per-
formance of the bounded neural parser with the
published results of generative incremental parsers
that are able to calculate psycholinguistic pre-
dictors. These experiments first compare pars-
ing scores of the current parser on the develop-

55

Model F,

dev test
memory-bounded parsers
Demberg et al. (2013) - 78.7
Roark (2001) - 85.7
van Schijndel et al. (2013) - 87.8
this work 90.1 89.5
memory-unbounded parsers
Hale et al. (2018) 91.3 -

Table 2: Parsing results (%) on development data,
WSIJ section 22 and test data, WSJ section 23 for
memory-bounded and unbounded generative incre-
mental parsers.

ment set of WSJ with results reported in Hale
et al. (2018) in Table 2. Results show that there
is a 1.2 point difference between this parser and
the parser used in Hale et al. (2018). This de-
crease may be attributable to the bounded stack
losing information about past parsing decisions.
Table 2 also shows labeled bracketing F1 scores
of the current parser compared with other genera-
tive incremental parsers widely used for calculat-
ing surprisal predictors, especially van Schijndel
et al. (2013) which is the previous state-of-the-art
memory-bounded generative incremental parser,
on the test set. The neural parser is more accurate
than all of the published results of the memory-
bounded parsers.

5.2 Psycholinguistic accuracy evaluation

The psycholinguistic accuracy of the parser is
evaluated by comparing surprisal predictors cal-
culated by the neural left-corner model against

surprisal predictors from the statistical left-corner
parser of van Schijndel et al. (2013), which is the
memory-bounded generative incremental parser
with current state-of-the-art linguistic accuracy.
This evaluation uses linear mixed effects models
in Ime4° to regress to both reading time (how long
a word is read) data in the Natural Stories Cor-
pus and first-pass (how long a word is first fixated)
and go-past (how long before a subsequent word
is fixated) fixation durations in the Dundee Cor-
pus, with all four combinations of the neural psy-
cholinguistic (referred to as Neural) and van Schi-
jndel et al. (2013) (referred to below as vS13) sur-
prisal predictors in a diamond ANOVA.® All the
models also have random intercepts for subject-
sentence interaction and word, and random by-
subject slopes for all fixed effects. Since this eval-
uation uses ablative testing to determine whether
a fixed effect significantly improves the fit of a
model compared to that model without that fixed
effect, all models also include random slopes for
all fixed effects, even if that particular fixed effect
is not used in that model.

Psycholinguistic evaluation results are shown
in Figure 4 in terms of model fit to human be-
havioral data. Results show that surprisal val-
ues derived from the bounded neural parser ex-
plain behavioral data better than the bounded sta-
tistical parser. First, the results show that the
neural parser produces more human-like surprisal
values than the vS13 parser in all three exper-
iments. This is shown by the fact that adding
vS13 to a model which already has Neural (Base-
line+Both vs. Baseline+Neural) yields no signif-
icant improvement in model fit. The other com-
parison in which Neural surprisal values are added
on top of vS13 surprisal values (Baseline+Both
vs. Baseline+vS13) also shows this effect, because
significant improvement in model fit is observed.
Second, both surprisals derived from memory-
bounded generative incremental parsers signifi-
cantly increase model fit, showing that surprisal
is a reliable predictor of both reading times and
fixation durations, but in all three experiments, the
results show that Baseline+Neural achieves much
better model fit to the data than Baseline+vS13
with larger loglikelihood improvements compared
to Baseline.

Shttps://cran.r-project.org/web/packages/Ime4/index.html
SPlease see the supplemental materials for detailed inde-
pendent variable description and Imer formulae.

56

6 Conclusion

This paper proposes a new incremental left-corner
transition system that can calculate surprisal and
other psycholinguistic predictors, and a new neu-
ral generative incremental parser to use this tran-
sition system to do memory-bounded incremental
generative parsing. Experiments described in this
paper show that this generative left-corner neu-
ral network parser is competitive with incremental
generative parsers that use unbounded stack mem-
ory in a parsing task, and outperforms statistical
memory-bounded generative left-corner parsers
both in parsing accuracy and in fitting human be-
havioral data on two different datasets, showing
that accuracy gains of neural parsers can be reli-
ably extended to psycholinguistic modeling with-
out risk of distortion due to unbounded working
memory.

References

Steven P Abney and Mark Johnson. 1991. Memory Re-
quirements and Local Ambiguities of Parsing Strate-
gies. J. Psycholinguistic Research, 20(3):233-250.

J D Bransford and J J Franks. 1971. The Abstraction of
Linguistic Ideas. Cognitive Psychology, 2:331-350.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as Language Modeling. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Benoit Crabbé, Murielle Fabre, and Christophe Pallier.
2019. Variable beam search for generative neural
parsing and its relevance for the analysis of neuro-
imaging signal. In EMNLP-IJCNLP, pages 1150—
1160. Association for Computational Linguistics.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193-210.

Vera Demberg, Frank Keller, and Alexander Koller.
2013. Incremental, Predictive Parsing with Psy-
cholinguistically Motivated Tree-Adjoining Gram-
mar. Computational Linguistics, 39(4):1025-1066.

Vera Demberg, Asad B Sayeed, Philip J Gorinski, and
Nikolaos Engonopoulos. 2012. Syntactic surprisal
affects spoken word duration in conversational con-
texts. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 356-367.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent Neural Net-
work Grammars. Proceedings of the 54th Annual

Meeting of the Association for Computational Lin-
guistics, 3(2013).

Stefan Frank. 2009. Surprisal-based comparison be-
tween a symbolic and a connectionist model of sen-
tence processing. Proceedings of the 31st annual
conference of the cognitive science society, pages
1139-1144.

Richard Futrell, Edward Gibson, Harry J . Tily, Idan
Blank, Anastasia Vishnevetsky, Steven Piantadosi,
and Evelina Fedorenko. 2018. The Natural Stories
Corpus. In Proceedings of the 1l1th International
Conference on Language Resources and Evaluation,
Paris, France.

Edward Gibson. 1991. A computational theory of hu-
man linguistic processing: Memory limitations and
processing breakdown. Ph.D. thesis, Carnegie Mel-
lon.

Klaus Greff, Rupesh K Srivastava, Jan Koutnik,
Bas R Steunebrink, and Jurgen Schmidhuber. 2017.
LSTM: A Search Space Odyssey. IEEE Transac-
tions on Neural Networks and Learning Systems,
28(10):2222-2232.

John Hale. 2001. A probabilistic earley parser as a psy-
cholinguistic model. In Proceedings of the Second
meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
technologies, pages 1-8.

John Hale. 2006. Uncertainty about the rest of the sen-
tence. Cognitive Science, 30(4):643—672.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan R. Brennan. 2018. Finding Syntax in Hu-
man Encephalography with Beam Search. In Pro-
ceedings of the 56st Annual Meeting of the Associa-
tion for Computational Linguistics.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690—-696,
Sofia, Bulgaria.

Lifeng Jin, William Schuler, Finale Doshi-Velez, Tim-
othy A Miller, and Lane Schwartz. 2018. Unsu-
pervised Grammar Induction with Depth-bounded
PCFG. Transactions of the Association for Compu-
tational Linguistics (TACL).

Philip N Johnson-Laird. 1983. Mental models: To-
wards a cognitive science of language, inference,
and consciousness. Harvard University Press, Cam-
bridge, MA, USA.

Alan Kennedy, James Pynte, and Robin Hill. 2003.
The Dundee Corpus. In Proceedings of the 12th Eu-
ropean conference on eye movement.

57

Nikita Kitaev and Dan Klein. 2018. Constituency Pars-
ing with a Self-Attentive Encoder. In Proceedings of
the 56st Annual Meeting of the Association for Com-
putational Linguistics.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs Can Learn Syntax-Sensitive Dependencies
Well, But Modeling Structure Makes Them Better.
In Proceedings of the 56st Annual Meeting of the
Association for Computational Linguistics, pages 1—
11.

Minh Le and Antske Fokkens. 2017. Tackling Er-
ror Propagation through Reinforcement Learning: A
Case of Greedy Dependency Parsing. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
volume 1, pages 677-687.

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition, 106(3):1126-1177.

Richard L Lewis and Shravan Vasishth. 2005. An
activation-based model of sentence processing as
skilled memory retrieval. Cognitive Science,
29(3):375-419.

Jiangming Liu and Yue Zhang. 2017. In-Order
Transition-based Constituent Parsing. Transactions
of the Association for Computational Linguistics.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert Maclntyreand Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The Penn Treebank: Annotating predicate
argument structure. In Proceedings of the ARPA
Human Language Technology Workshop.

George A. Miller and Stephen Isard. 1964. Free re-
call of self-embedded english sentences. Informa-
tion and Control, 7(3):292-303.

Philip Resnik. 1992. Probabilistic tree-adjoining gram-
mar as a framework for statistical natural language
processing. In Proceedings of the Fourteenth Inter-
national Conference on Computational Linguistics,

pages 418-424, Nantes, France.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249-276.

Brian Roark, Asaf Bachrach, Carlos Cardenas, and
Christophe Pallier. 2009. Deriving lexical and
syntactic expectation-based measures for psycholin-
guistic modeling via incremental top-down parsing.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Langauge Processing, pages
324-333.

D J Rosenkrantz and P M Lewis. 1970. Deterministic
left corner parsing. In 11th Annual Symposium on
Switching and Automata Theory (swat 1970), pages
139-152.

Marten van Schijndel, Andy Exley, and William
Schuler. 2013. A Model of Language Processing as
Hierarchic Sequential Prediction. Topics in Cogni-
tive Science, 5(3):522-540.

Marten van Schijndel and William Schuler. 2013. An
Analysis of Memory-based Processing Costs using
Incremental Deep Syntactic Dependency Parsing. In
Proceedings of the Workshop on Cognitive Modeling
and Computational Linguistics, pages 37-46.

Marten van Schijndel and William Schuler. 2015. Hi-
erarchic syntax improves reading time prediction.
In Proceedings of Human Language Technologies:
The 2015 Annual Conference of the North American
Chapter of the ACL, pages 1597-1605. Association
for Linguistics.

William Schuler, Samir AbdelRahman, Tim Miller, and
Lane Schwartz. 2010. Broad-coverage parsing using
human-Like memory constraints. Computational
Linguistics, 36(1):1-30.

Edward Stabler. 1994. The finite connectivity of lin-
guistic structure. In Perspectives on Sentence Pro-
cessing, pages 303-336. Lawrence Erlbaum.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef-
fective Inference for Generative Neural Parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Langauge Processing.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured Training for Neural Net-
work Transition-Based Parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing,
pages 323-333.

Ronald J Williams. 1992. Simple Statistical Gradient-
Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8(3-4):229-256.

Stephen Wu, Asaf Bachrach, Carlos Cardenas, and
William Schuler. 2010. Complexity Metrics in an
Incremental Right-corner Parser. In Proceedings of
the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1189-1198.

A Ilustration for the stack operations
for the top category

Figure 5 shows the four kinds of stack manipu-
lations for the top category described in Equation
12. The stack manipulations for the bottom cate-
gory are similar to those illustrated here. At each
depth of the stack, there are top and bottom cate-
gories, as well as vectors representing them. Fig-
ure 5 only shows stack depths with non-empty ele-
ments, as well as the stack depth the parser is cur-
rently at. Because Equation 12 only deals with the
top category, only top categories are shown in the

58

illustration. For all operations, the current work-
ing depth is 2. When both the bottom decision at
the previous timestep b,_; and the top decision at
the current time step a; are NULL, the parser returns
to the stack depth above, copying the top category
atl_ , and its vector atl_1 from the stack at the pre-
vious timestep to the new stack, shown in Figure
5.1. If the bottom category is NULL, but the top cat-
egory at the current timestep is predicted to be a
real category, the parser copies the categories from
the stack depths above and generates a new vector
a,2 for the newly predicted top category a, using the
top category from the depth above atz_ |» the cur-
rent word w, and the embedding of the predicted
top category a; as input to LSTMy,, , shown in Fig-
ure 5.2. If the bottom category from the previous
timestep is not NULL, but the current top category
is NULL, the parser copies top categories from all
depths into the new stack, shown in Figure 5.3. Fi-
nally, if the bottom category and the top category
are not NULL, the parser first copies all top cate-
gories and vectors, and then generates a new em-
bedding af’ using the current word w, and the cat-
egory embedding of the new top category for the
top category a; in the stack depth below the cur-
rent depth, creating a new derivational fragment,
shown in Figure 5.4.

|

|-

l.ifp,,=Landa, = L

a,'—— —|— -4 »al
at-ll — 1 1T atl
d=1 d=1
d=2 d=2
stack at t-1 stack at t

2.ifb, ;= Landa,# L

——|LSTMy, |——> a?
/ [N N
w, Ej,
a,l—— —|— 4 »a
a,'——|H— | 4!
d=1 d=1
a> a
a,’ a?
d=2 d=2
stack at t-1 stack at t

|~

3.ifb, ,#Landa,= L

a,'|—— —|— -} »a/

- EH-HeT]
d=1 d=1

a’l———|—-4»a2

FH- T
d=2 d=2

stack at t-1 stack at t

4.ifb, ,# Landa,# L

——+|LSTMy — 2,

1 X \
W, |
a,|—— —|— 4 »al
EH-HT
d=1 d=1
a, — — —— 1 - a’
a ’——|-— P a2
d=2 d=2 7
a’ = <
a}
d=3 d=3
stack at t-1 stack at t

Figure 5: The stack operations for the top categories described in Equation 12.

59

B Constraint sets for parsing

There are two sets of constraints for different use
cases for the parser to prune parses on the beam.

Basic set is the set of constraints used when
psycholinguistic measures are needed. It includes
two constraints: the first p7a must not be NuLL, and
all parses with d = 0 are removed from the beam
while parsing.

Extended set is the set of constraints used
when searching for a best parse. It guarantees that
all parses on the beam to be valid parses. Let n
be the length of the sentence, d the depth at the
current time step and o be the offset of the current
word at i to the end of the sentence, we can use
the following constraints to ensure well-formed
parses:

1. if d = 0 — 1, then both p1a; and priB; must be
NULL.

if d =1 and o > 1, then p1a; and piB; cannot
be NULL at the same time.

. if d = 0 — 2, if constraint 2 is also true, then
PJA; and PiB; cannot be both NuLL and both X,
otherwise piA; and piB; cannot be both x.

The parser with the extended set can be seen as
the parser with the basic set and a wider beam if it
is used for getting the best parse. If a parse is at
the top of the beam with the extended set, then it
will be also at the top of beam with the basic set
provided that it is not lost in beam search and a
better one is not found due to using a wider beam.

Hyper-parameter Value
LSTM layer 2
Word embedding dim 80
English pretrained word embedding dim | 100
POS tag embedding dim 48
Decision embedding dim 50
Stack-LSTM input dim 256
Stack-LLSTM hidden dim 256
Dropout 0.3
Feed-forward layer 2

Table 3: Hyper-parameters of the model used in the
evaluations.

60

C Hyperparameters

Table 3 shows the hyperparameters the model use
for all experiments. These values are tuned on the
development set.

D Imer formulae for psycholinguistic
experiments

The following sections record the Imer formulae
for all psycholinguistic experiments mentioned in
the paper. The independent variables included in
all models are: word length (wlen), unigram prob-
ability (unigram) and 5-gram forward probability
of the current word given the preceding context
(fwprobSsurp). All independent variables are cen-
tered and scaled before being added to each model.
The 5-gram probabilities are interpolated 5-grams
computed over the Gigaword corpus using KenLM
(Heafield et al., 2013). Regressions to eye track-
ing data also include word position (wdelta) as
well as whether the previous word was fixated
on (prevwasfix). For regressing to go-past dura-
tions, one-position spillover measures for unigram
(unigramS1) and 5-gram forward probability (fw-
probSsurpS1) are also added.

D.1 Natural stories

The Imer formula for regression to reading times
in the Natural Stories Corpus is:

log(reading times) ~ z.(wlen) + z.(unigram) +
z.(fwprob5surp) + z.(neuralsurp) + z.(vssurp) +
(1 + z.(wlen) + z.(unigram) + z.(fwprobSsurp) +
z.(neuralsurp) + z.(vssurp) | subject) + (1 | word)
+ (1 | sentid:subject).

The difference between four evaluated models
is whether each surprisal variable is used as a fixed
effect or not. This is true for all the experiments.

D.2 Dundee: first pass

The Imer formula for regression to first pass fixa-
tion durations in the Dundee Corpus is:

log(first pass fixation duration) ~ z.(sentpos)
+ z.wlen) + z.(wdelta) + z.(prevwasfix) +
z.(fwprob5Ssurp) + z.(cumfwprobSsurp) +
z.(totsurp) + z.(cumtotsurp) + z.(totsurpNeural)
+ (I + z.(sentid) + z.(sentpos) + z.(wlen) +
z.(wdelta) + z.(prevwasfix) + z.(fwprob5Ssurp)
+ z.(cumfwprobSsurp) + z.(vssurp) +
z.(cumtotsurp) + z.(neuralsurp) | subject) +
(1| word) + (1 | sentid).

D.3 Dundee: go past

The Imer formula for regression to go past fixation
durations in the Dundee Corpus is:

log(go past fixation duration) ~ z.(wlen)
+ z.(wdelta) + z.(prevwasfix) + z.(unigram)
+ z.(unigramS1) + z.(cumfwprobSsurp) +
z.(cumfwprobSsurpS1) + z.(totsurpNeural) +
z.(totsurp) + (1 + z.(wlen) + z.(wdelta) +
z.(prevwasfix) + z.(unigram) + z.(unigramS1) +
z.(cumfwprobSsurp) + z.(cumfwprobSsurpS1) +
z.(neuralsurp) + z.(vssurp) | subject) + (1 | word)
+ (1| sentid:subject)

61

Obfuscation for Privacy-preserving Syntactic Parsing

Zhifeng Hu**

Serhii Havrylov®

Ivan Titov®” Shay B. Cohen®

#School of Computer Science, Fudan University, Shanghai 201203, China
©School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
“ILLC / FNWI, University of Amsterdam, Amsterdam 1098XG, Netherlands

zfhul6@gmail.com, s.havrylov@ed.ac.uk
ititov@inf.ed.ac.uk, scohen@inf.ed.ac.uk

Abstract

The goal of homomorphic encryption is to en-
crypt data such that another party can operate
on it without being explicitly exposed to the
content of the original data. We introduce an
idea for a privacy-preserving transformation
on natural language data, inspired by homo-
morphic encryption. Our primary tool is ob-
fuscation, relying on the properties of natural
language. Specifically, a given English text is
obfuscated using a neural model that aims to
preserve the syntactic relationships of the orig-
inal sentence so that the obfuscated sentence
can be parsed instead of the original one. The
model works at the word level, and learns to
obfuscate each word separately by changing
it into a new word that has a similar syntac-
tic role. The text obfuscated by our model
leads to better performance on three syntactic
parsers (two dependency and one constituency
parsers) in comparison to an upper-bound ran-
dom substitution baseline. More specifically,
the results demonstrate that as more terms are
obfuscated (by their part of speech), the sub-
stitution upper bound significantly degrades,
while the neural model maintains a relatively
high performing parser. All of this is done
without much sacrifice of privacy compared
to the random substitution upper bound. We
also further analyze the results, and discover
that the substituted words have similar syntac-
tic properties, but different semantic content,
compared to the original words.

1 Introduction

We consider the case in which there is a powerful
server with NLP technology deployed on it, and a
set of clients who would like to access it to get out-
put resulting from input text taken from problems
such as syntactic parsing, semantic parsing and ma-
chine translation. In such a case, the server models

* Work done at the University of Edinburgh.

62

S
NP VP

‘ /\
PN

| v NP

John pho‘ned D N
Paul scaired tf‘ze terro‘rists
t%e chilgren
Figure 1: An example of a sentence (words on top)

and an obfuscated version of the sentence (words at bot-
tom), both having identical syntactic structure. The ob-
fuscated sentence hides the identity of the person who
performs the action and the action itself.

may have been trained on large amounts of data,
yielding models that cannot be deployed on the
client machines either for efficiency or licensing
reasons. We ask the following question: how can
we use the NLP server models while minimizing
the exposure of the server to the original text? Can
we exploit the fact we work with natural language
data to reduce such exposure?

Conventional encryption schemes, including
public-key cryptography which is the one widely
used across the Internet, are not sufficient to answer
this question. They encrypt the input text before
it is transferred to the server side. However, once
the server decrypts the text, it has full access to it.
This might be unacceptable if the server itself is
not necessarily trustworthy.

The cryptography community posed a similar
question much earlier, in the 1970s (Rivest et al.,
1978) with partial resolutions proposed to solve it
in later research (Sander et al., 1999; Boneh et al.,
2005; Ishai and Paskin, 2007). These solutions al-

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 62—72
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

low the server to perform computations directly on
encrypted data to get the desired output without
ever decrypting the data. This cryptographic proto-
col is known as homomorphic encryption, where a
client encrypts a message, then sends it to a server
which performs potentially computationally inten-
sive operations and returns a new data, still en-
crypted, which only the client can decipher. All
of this is done without the server itself ever be-
ing exposed to the actual content of the encrypted
input data. While solutions for generic homomor-
phic encryption have been discovered, they are ei-
ther computationally inefficient (Gentry, 2010) or
have strong limitations in regards to the depth and
complexity of computation they permit (Bos et al.,
2013).

In this paper, we consider a softer version of ho-
momorphic encryption in the form of obfuscation
for natural language. Our goal is to identify an effi-
cient function that stochastically transforms a given
natural language input (such as a sentence) into an-
other input which can be further fed into an NLP
server. The altered input has to preserve intra-text
relationships that exist in the original sentence such
that the NLP server, depending on the task at hand,
can be successfully applied on the transformed data.
There should be then a simple transformation that
maps the output on the obfuscated data into a valid,
accurate output for the original input. In addition,
the altered input should hide the private semantic
content of the original data.

This idea is demonstrated in Figure 1. The task
at hand is syntactic parsing. We transform the input
sentence John phoned the terrorists to the sentence
Paul scared the children — both of which yield iden-
tical phrase-structure trees. In this case, the named
entity John is hidden, and so are his actions. In
the rest of the paper, we focus on this problem for
dependency and constituency parsing.

We consider a neural model of obfuscation that
operates at the word level. We assume access to
the parser at training time: the model learns how to
substitute words in the sentence with other words
(in a stochastic manner) while maintaining the high-
est possible parsing accuracy. This learning task
is framed as a latent-variable modeling problem
where the obfuscated words are treated as latent.
Direct optimization of this model turns out to be
intractable, so we use continuous relaxations (Jang
et al., 2016; Maddison et al., 2017) to avoid explicit
marginalization.

63

client server

0

-

eavesdropper

Figure 2: General setting illustration (figure adapted
from Coavoux et al. 2018). An NLP client encrypts
an z into y through obfuscation and y is sent to an
NLP server. The NLP server (potentially even a legacy
one) does not need to be modified to de-obfuscate
y. An eavesdropper (a possibly malicious channel lis-
tener) only has access to y which is needed to be de-
obfuscated to gain any information about .

Our experimental results on English demonstrate
that the neural model performs better than a strong
random-based baseline (an upper bound; in which
a word is substituted randomly with another word
with the same part-of-speech tag). We vary the
subset of words that are hidden and observe that
the higher the obfuscation rate of the words, the
harder it becomes for the parser to retain its accu-
racy. Degradation is especially pronounced with
the random baseline and is less severe with our
neural model. The improved results for the neural
obfuscator come at a small cost to the accuracy
of the attacker aimed at recovering the original
obfuscated words. We also observe that the neu-
ral obfuscator is effective when different parsers
or even different syntactic formalisms are used in
training and test time. This relaxes the assumption
that the obfuscator needs to have access to the NLP
server at training time. Our results also suggest that
the neural model tends to replace words with ones
that have similar syntactic properties.

2 Homomorphic Obfuscation of Text

Our problem formulation is rather simple, demon-
strated in generality in Figure 2. Let 7 be some
natural language task, such as syntactic parsing,
where X is the input space and Z is the output
space. Let fr: X — Z be a trained decoder that
maps zx to its corresponding structure according
to 7. Note that f is trained as usual on labeled
data. Given a sentence r = x1 - - - Tp, WE aim to
learn a function that stochastically transforms x

into y = y1 - - - y,, such that fr(x) is close, if not
identical, to f7(y), or at the very least, we would
like to be able to recover fr(x) from fr(y) using
a simple transformation.

To ground this in an example, consider the case
in which 7 is the problem of dependency pars-
ing and Z is the set of dependency trees. If we
transform a sentence x to y in such a way that it
preserves the syntactic relationship between the in-
dexed words in the sentences, then we can expect
to easily recover the dependency tree for = from a
dependency tree for y.

Note that we would also want to stochastically
transform x into a y in such a way that it is hard to
recover a certain type of information in x from y
(otherwise, we could just set y <— x). Furthermore,
we are interested in hiding information such as
named entities or even nouns and verbs. In our
formulation, we also assume that the sentence x
comes with a function ¢(x) that maps each token in
the sentence with its corresponding part-of-speech
tag (predicted using a POS tagger).

3 Neural Obfuscation Model

In this section we describe the neural model used to
obfuscate the sentence. We note that the model has
to be simple and efficient, as it is being run by the
obfuscating party. If it is more complicated than
parsing the text, for example, then the obfuscating
party might as well directly parse the text.!

3.1 The Main Model

Our model operates by transforming a subset of
the words in the sentence into new words. Each of
these words is separately transformed in a way that
maintains the sentence length after the transforma-
tion. Let = be the original sentence x = x1 - - -
and let y be the output, y = y; - - - y»,. From a high-
level point of view, we have a conditional model:

n

p(y ’ .’L‘,Q) - Hp<yi ‘ (IZ,@)

i=1

)

The selection of words to obfuscate depends on
their part of speech (POS) tags — only words that
are associated with specific POS tags from the set
P are obfuscated under our model. Let ¢; be the

'In the general case, there is a caveat to this statement. It
might be the case that the training cost for the server’s model
is high, and that the model is proprietary. In that case, even
if the model can be run on the client side, it might not be
possible to do so.

64

POS tag of the ith word in the sentence. In our
basic model, we apply a bidirectional Long Short-
Term Memory network (BiLSTM) to the sentence
to get a latent representation h; for each word x;
(see Section 3.2).

We assume conditional independence between
the sequence z; - - - x;_1%;41 - - T, and y; given
h; (which is a function of), and as such, our
probability distribution p(y; | x, #) is given by:

p(yi =y |xi, hi,0) =

I ;¢ Py=um
py ti€ePyecVy\{z} @2
0 otherwise.

Here, V), is the set of word types appearing at
least once with tag ?; in the training set, and p, is
predicted with a softmax function, relying on the
BiLSTM state ;. More specifically, we define p,
as follows:

exp(w;yhi)

by =
Zy’evti,y’izi eXp(wZ,y/ hi)

)

where w; ,, € R1024 are vectors of parameters as-
sociated with every tag-word pair (¢t,y), y € V.
Note that the above probability distribution never
transforms a word x; to an identical word if ¢; € P.
This is a hard constraint in our model.

3.2 Embedding the Sentence

The BiLSTM that encodes the sentence requires an
embedding per word, which we create as follows.
We first map each token z; to three embedding
channels e¥, k € {1,2,3}. The first channel is
a randomly initialized embedding for each part-
of-speech tag. Its dimension is 100. The second
channel is a pre-trained GloVe embedding for the
corresponding token. The vector €3 is a character-
level word embedding (Kim et al., 2016) which first
maps each character of the word into an embedding
vector of dimension 100 and then uses unidimen-
sional convolution over the concatenation of the
embedding vectors of each character. Finally, max-
pooling is applied to obtain a single feature. This
process is repeated with 100 convolutional kernels
so that e? € R0,

The three embedding channels {e}, €?, 3} are
then concatenated and used in the BiLSTM en-
coder. We use a three-layer BiLSTM with Bayesian
dropout (Gal and Ghahramani, 2016). The hidden
state dimensionality is 512 for each direction.

4 Training

In our experiments, we focus on obfuscation for the
goal of syntactic parsing. We assume the existence
of a conditional parsing model po(z | x) where
z is a parse tree and x is a sentence. This is the
base model which is trained offline, and to which
we have read-only access and cannot change its
parameters. As we will see in experiments, the
obfuscator can be trained using a different parser
from the one used at test time (i.e. from the one
hosted at the NLP server).

Let (M, z), ... (2™, 2(") be a set of train-
ing examples which consists of sentences and their
corresponding parse trees. Considering Eq. 1, we
would be interested in maximizing the following
log-likelihood objective with respect to 6:

Lo=) log (Zp(y | 2%, 0)po(21 | y)) :
=1 Yy

This objective maximizes the log-likelihood of
the parsing model with respect to the obfuscation
model. Maximizing the objective L is intractable
due to summation over all possible obfuscations.
We use Jensen’s inequality” to lower-bound the
cost function Ly by the following objective:

L= ply|=",0)logpo(z" | y)

=1 y
= ZEpCIx(”,G) [logpo(z(i) | y)} ,
=1

Intuitively, the objective function maximizes the
accuracy of an existing parser while using as an
input the sentences after their transformation. Note
that the accuracy is measured with respect to the
gold-standard dependency parse tree.® This is pos-
sible because the sentence length of the original
sentence and the obfuscated sentence are identical,
and the mapping between the words in each version
of the sentence is bijective.

To encourage stochasticity, we also tried includ-
ing an entropy term that is maximized with respect

2Jensen’s inequality states that for a non-negative ran-
dom variable Z and its probability distribution g it holds that
log(E,[Z]) > Eq[log Z].

In principle, we may not need access to gold-standard
annotation when training the obfuscator. Instead, we could
train the model to agree with the parser predictions for the
original sentence, i.e. z(*) = arg max, po(z|z(").

65

to 0 in the following form:

Hy(0,)) = -2 _p(y | z9,0)logp(y | =19, 0).
Yy

However, in our final experiments we omitted that
term because (a) it did not seem to affect the model
stochasticity to a significant degree; (b) the perfor-
mance has become very sensitive to the entropy
weight \.

While we can estimate the objective £ using
sampling, we cannot differentiate through samples
to estimate the gradients with respect to the ob-
fuscator parameters 6. In order to ensure end-to-
end differentiabilty, we use a continuous relaxation,
the Gumbel-Softmax estimator (Jang et al., 2016;
Maddison et al., 2017), and the reparamterization
trick (Kingma and Welling, 2014; Rezende et al.,
2014).

More formally, the i-th token is represented by
the random variable with categorical probability
distribution Cat(p;) that has support V;,. To sam-
ple the word we first draw uj ~ Uniform(0, 1)
and transform it to the Gumbel noise g
— log(—log(ug)), then we calculate

as the sampled discrete choice of substitution from
Vs, and

arg max|gy + log(p; 1)

y' = onehot
keEVy,

_exp((gr + log(pik) /7))

S exp (g +log(piw)/T))
as the “relaxed” differentiable proxy for this choice,
where 7 denotes the temperature. When it ap-
proaches 0, the vector (y1, ..., y‘vti|) is close to
a one-hot vector sampled from the given categori-
cal distribution.*

We use the Straight-Through version of the esti-
mator (Bengio et al., 2013): the discrete sampled
choice is fed into the parser in the forward com-
putation but the relaxed differentiable surrogate
is used when computing partial derivatives on the
backward pass.

During the training of our neural model, the
parser only backpropagates the gradient from the
objective of maximizing the parsing accuracy (i.e.
minimum cross-entropy loss of the correct head
and label for each word), and hence its parameters
are always fixed and are not updated during the
optimization.

Yk

*“In practice, we anneal the temperature from 1.0 to 0.5
over the course of training.

5 Attacker Approaches

We test the efficiency of our obfuscation model by
developing two independent attacker models. Their
goal is to recover the original words by inspecting
only the obfuscated sentence. The attacker models
may have access to all data that the parser and the
obfuscator models were trained and developed on.
This is perhaps unlike other scenarios in which the
training set is assumed to be inaccessible to any
attacker.

We note that ideally, we would want to show that
our obfuscation model retains privacy universally
for any attacker. However, this is quite a difficult
task, and we follow Coavoux et al. (2018) in pre-
senting two strong attackers which may represent
possible universal attackers.

In our attacker experiments, we assume that it is
known which words in the sentence are obfuscated.
As such, the results we provide for attacking our
obfuscation are an upper bound. In practice, an
attacker would also have to identify which words
were substituted for new words, which may lead to
a small decrease in its accuracy.

5.1 Trained Attacker

Our first attacker works by first encoding the ob-
fuscated sentence with a BILSTM network. We
then try to predict original words by using a feed-
forward neural network on each of the hidden rep-
resentations obtained from the encoder model. The
architecture is identical to that of the obfuscation
model (see Section 3.1), with the only difference
that there is a softmax over the entire vocabulary V
instead of restricting it to V4, \ {z;}, as in Eq. 2.

5.2 Pretrained Attacker

In addition to a trained attacker, we also use a
conditional language model, BERT (Devlin et al.,
2019).° BERT is based on the Transformer model
of Vaswani et al. (2017), and uses a bidirectional
encoder to obtain “contextual” embeddings for
each word in a given sentence. We use the BERT
model by masking out each obfuscated word, and
then predicting the masked word similar to the
“masked language task’ that is mentioned by De-
vlin et al. (2019). This means that the embed-
dings in each position are fed into a softmax func-

tion to predict the missing word. We use the
We use the implementation available at

https://github.com/huggingface/

pytorch-pretrained-BERT.

66

bert-base-uncased model among the avail-
able BERT models.

We note that this attacker is not trained by us.
Its main weakness is that it is trained on the non-
obfuscated text. However, its strength is that it is
trained on large amounts of data (we use the model
that is trained on 3.3 billion tokens). In addition, in
some settings that we consider the obfuscation of
the sentence is done in such a way that much of the
context by which we predict the obfuscated word
remains intact.

6 Experiments

In this section, we describe our experiments with
our obfuscation model. We first describe the exper-
imental setting and then turn to the results.®

6.1 Experimental Setting

In our experiments, we test the obfuscation model
on two parsers. The first parser is used during
the training of our model. This is the bi-affine de-
pendency parser developed by Dozat and Manning
(2017). To test whether our obfuscation model also
generalizes to syntactic parsers that were not used
during its training, the constituency parser that is in-
cluded in the AllenNLP software package (Gardner
etal., 2018) was used.’

For our dependency parser, we follow the canon-
ical setting of using pre-trained word embedding,
1D convolutional character level embedding and
POS tag embedding, each of 100 dimensions as
the input feature. We also use a three-layer bi-
directional LSTM with Bayesian dropout (Gal and
Ghahramani, 2016) as the encoder. We use the bi-
affine attention mechanism to obtain the prediction
for each head, and also the prediction for the edge
labels.

We use the English Penn Treebank (PTB; Mar-
cus et al. 1993) version 3.0 converted using Stan-
ford dependencies for training the dependency
parser. We follow the standard parsing split for
training (sections 01-21), development (section
22) and test sets (section 23). The training set por-
tion of the PTB data is also used to train our neural
obfuscator model.

We also create a spectrum over the POS tags to
decide on the set P for each of our experiments (see
Section 3.1). This spectrum is described in Table 1.

®Qur code is available at https://github.com/
ichn-hu/Parsing-Obfuscation.
"We used version 0.8.1.

1 | Category description | P;

1 | Named entities NNP, NNPS

2 | Nouns NN, NNS

3 | Adjectives JI, JJR, JIS

4 | Verbs VB, VBN, VBD,
VBZ, VBP, VBG

5 | Adverbs RB, RBR, RBS

Table 1: A spectrum of part-of-speech tags to obfus-
cate. In the jth experiment, we set P = U!_, P;.

Let the ith set in that table be P; for i € [5]%. In
our jth experiment, j € [5], we obfuscate the set
P = U!_,P;. This spectrum of POS tags describes
a range from words that are highly content-bearing
for privacy concerns (such as named entities) to
words that are less of a privacy concern (such as
adverbs).

We compare our model against a (privacy) upper-
bound baseline which is found to be rather strong.
With this baseline, a word x with a tag t € P is
substituted with another by a word that appeared
with the same tag in the training data from the set
V,. The substituted words are uniformly sampled.
This random baseline serves as an upper bound
for the privacy level achieved, not a lower bound.
Randomly substituting a word with another makes
it difficult to recover the original word. However,
in terms of parsing accuracy, as we see below, there
is a significant room for improvement over that
baseline. There are words, which when substituted
by other group of words, yield altogether better
parsing accuracy.

We evaluate the model through three different
principal metrics. The first metric is the accuracy of
the parser (Unlabeled Attachment Score or Labeled
Attachment Score, depending on the context”), the
second is the mean reciprocal rank (MRR) of the
attacker on the relevant method. With each of the
attacker methods, we obtain a distribution g over
the possible true outputs recovered from the obfus-
cated word. We use this distribution to calculate
the MRR, the average inverse rank of the correct
word according to q. More precisely, the score we
calculate is:

8For an integer k, we denote by [k] the set {1, ..., k}.

The unlabeled/labeled distinction refers to whether the
label of the edge in the dependency tree is taken into account
when computing the accuracy.

67

N
100 1
MRR = —
N

— ;]

i=1
where r; € N is the rank of the ith word (in the
whole corpus) according to ¢ (the distribution over
possible output words for that word).!? The re-
sult we report is attacker error, or 100 — MRR
(the higher it is, the more privacy is maintained).
Finally, we also report the ratio between the accu-
racy of the parser'! and the accuracy of an attacker
(MRR). This metric provides a way to measure

the amount of accuracy we gain for each point of
accuracy .

units.
breach

All neural experiments were run on a single
GeForce GTX 1080 Ti GPU. The time to run each
of the experiments was in the range of 13.3 hours
to 25.2 hours.

privacy we lose, in the form of

6.2 Results with Dependency Parsing

In our first set of experiments, we compare the
random substitution model to the neural model of
obfuscation on the dependency parsing model that
was used during training. As is seen in Table 2(a),
both the neural model and the random model, with
their substitutions, do not significantly harm the
accuracy of the parser for the first three experiments
(corresponds to rows in the table). However, as the
number of obfuscated words increases (with the
categories of verbs and adverbs), the accuracy of
the parser significantly drops, significantly more
for the random model than the neural model.

The attacker error is in the range of the 70%—
80% for all experiments. As expected, the random
model, given its inherent unpredictability, makes it
more difficult for the attacker to identify the origi-
nal words. That leads to the ratio between accuracy
and intrrusion level often being better with the ran-
dom model. In general, it also seems that the BERT
attacker gives similar results to the trained attacker
for the random baseline, and worse results with the
neural model. Finally, it is evident that as we obfus-
cate more terms, the attacker’s accuracy decreases,
with the BERT attacker consistently outperforming
the trained attacker.

We next turn to inspect the problem of depen-
dency parsing without a parser that was trained

!"Note that we have a multiplier of 100 in our MRR score
definition. This deviates from the standard definition of this
score.

"'The accuracy is labeled attachment score in the case of
dependency parsing.

(a)

Random (baseline) Neural model
Obf. terms trained | BERT trained | BERT
acc(UL) [prv ratio prv ratio acc(UL) | prv ratio prv ratio
.| Named ent. 94.1 93.0 683 297 669 284|943 929 684 298 664 281
& | +Nouns 93.7 929 70.7 320 703 3.15 | 941 924 69.7 311 694 3.08
3 +Adjectives | 93.1 924 719 331 723 336|936 917 705 3.17 70.1 3.13
.Qg’ +Verbs 852 804 68.1 267 802 430|873 787 653 252 781 399
g +Adverbs | 864 78.7 672 263 812 460 | 8.6 766 642 247 775 394
No obf. 95.0/93.5 (U/L)
& Named ent. 919 89.7 683 290 669 278|922 90.1 684 292 664 274
< | +Nouns 91,5 892 707 312 703 3.08 | 91.5 894 69.7 3.02 694 299
& +Adjectives | 90.8 885 719 323 723 328 | 912 89.0 705 3.09 70.1 3.05
% +Verbs 782 753 681 245 802 395|822 794 653 237 781 375
= +Adverbs | 76.7 735 672 234 812 4.08 | 820 789 642 229 775 3.64
< ["No obf. 94.2/92.6 (UIL)
(b)
Random (baseline) Neural model
Obf. terms trained | BERT trained | BERT
acc(F1) prv ratio prv ratio | acc(Fi;) prv ratio prv ratio
% | Named ent. 924 68.3 291 669 279 92.5 684 293 664 275
§ +Nouns 88.2 70.1 295 703 297 89.0 69.7 294 694 2091
a. | +Adjectives 86.8 719 3.09 723 313 88.1 70.5 299 70.1 295
E +Verbs 79.2 68.1 248 80.2 4.00 82.5 653 238 78.1 377
5 +Adverbs 76.8 672 234 812 4.09 79.5 642 222 775 353
Z | No obf. 93.7

Table 2: (a) Results of parsing accuracy and attacker error for two different dependency parsers. “acc” denotes
accuracy (Unlabeled Attachment Score/Labeled Attachment Score for the dependency parsers), “prv” denotes the
attacker error (trained attacker and BERT attacker as described in Section 5.1 Section 5.2) and “ratio” is the ratio
between the parser accuracy and the attacker error. Two parsers are considered: a parser that participates in the
obfuscation model optimization (top part), and offline-trained parsers from the AllenNLP for dependency (bottom
part). Two obfuscation models are considered: neural (Section 3.1) and a random baseline. “No obf.” are parsing
results without obfuscation. See Table 1 for a description of each category of obfuscation terms.. Note that the
categories are expanded in the cumulative fashion: e.g., “+Adjectives” refers to the union of named entities, nouns
and adjectives. “acc” and “prv” are better when they are higher. (b) Results of parsing accuracy and attacker error
for the AllenNLP constituency parser. “acc” denotes accuracy (F; PARSEVAL). The constituency parser does not
participate in the obfuscation model optimization. The results demonstrate how quickly the parsers degrade when
more terms obfuscated with the random baseline, while retaining a much higher accuracy with the neural system
(acc. column).

with the neural obfuscation model (bottom part of parsing. While the ratio between accuracy and
Table 2(a)). We see similar trends there as well, privacy is slightly better for the random model,
in which the first three experiments give a reason- there is a significant drop in performance for the
able performance for both the neural and the ran- fourth and fifth experiments when comparing the
dom model with a significant drop in performance = random model to the neural model.

for the two experiments that follow. We also see

that the differences between the neural obfuscation 6.4 Analysis of Syntactic Preservation

model and the random model are smaller (though
still significant), pointing to the importance of us-
ing the dependency model during the training of
the neural model.

Table 3 presents five sentences and their obfuscated
versions both by the neural model and the random
model. In general, when we inspected the results
for the two models, we found that the neural model
tends to replace words by others that have a func-
tional syntactic role that is closer to the original.
Table 2(b) describes the results for constituency For example, in the examples we present, was is
parsing with the AllenNLP constituency parser as replaced with were and n’t is replaced with not.
described in Section 6.1. The results point to a The random model, however, does not adhere to
similar direction as was described for dependency any syntactic similarity between the original word

6.3 Results with Constituency Parsing

68

original | I do n't feel very ferocious

random | I liberalize Usually spin firsthand undistinguished
neural | I have not choose even Preliminary

POS PRP VBP RB VB RB 1

original | Individuals can always have their hands slapped
random | drugstores can secretly galvanize their persons hurt
neural | brokerages can even get their QOutflows vetoed
POS NNS MD RB VB PRP$ NNS VBN
original | Analysts do n’t see it that way
random | carpenters merge unilaterally undertake it that wind
neural | brokerages have not choose it that direction
POS NNS VBP RB VB PRP DT NN
original | The device was replaced

random | The admiral echoed blunted

neural | The insulation were vetoed

POS DT NN VBD VBN

original | “ That was offset by strength elsewhere
random | “ That produced flawed by professionalism near

neural | “ That were vetoed by direction even

POS “ DT VBD VBN IN NN RB

Table 3: Example of five sentences obfuscated with the random and neural models. Words in italics are the
ones being substituted (or the substitutes). The obfuscated terms are named entities, nouns, adjectives, verbs and

adverbs.

and its substituted version beyond them having
been seen in the training data with the same part-
of-speech tag.

To further test whether the neural model pre-
serves other syntactic similarities between the orig-
inal and obfuscated sentences, we took all verbs
from Propbank (Kingsbury and Palmer, 2002) and
created a signature for each one: the list of argu-
ment types it can appear with. For example, the sig-
nature for yield is 01,012, which means that “yield”
appears with two frames in Propbank, one with two
arguments and the other with three arguments. We
then calculated for each verb'? that appears in the
original sentence the overlap between its signature
and the signature of the verb in the obfuscated sen-
tence (neural or random). This overlap is counted
as the size of the intersection of the frame signa-
tures of the two verbs. For example, the signature
of advocate might be 012 while the signature of
affect is 012,01. Therefore, their overlap is 1.

"2The verbs were lemmatized first using the WordNet lem-
matizer available in NLTK.

69

There was a stark difference between the two av-
erages of the overlap sizes. For the random baseline
model, the average was 1.46 (over 5,680 tokens)
and for the neural model the average was 1.80. The
difference between these two averages is statisti-
cally significant with p-value < 0.05 in a one-sided
t-test.

7 Related Work

There has been a significant increase in interest in
the topic of privacy in the NLP community in re-
cent years. For example, Reddy and Knight (2016)
focused on obfuscation of gender features from so-
cial media text, while Li et al. (2018), Coavoux
et al. (2018) and Elazar and Goldberg (2018) fo-
cused on the removal of private information from
neural representations such as named entities and
demographic information. Unlike the latter work,
we are interested in preserving the privacy of the
inputs themselves, while requiring no extra work
from deployed NLP software which processes these

inputs. Marujo et al. (2015), for example, perform
multi-document summarization on an approximate
version of the original documents.

Differential privacy (Dwork, 2008) which aims
to protect the privacy of information contained in
a dataset has also been actively researched. Re-
cent research brings differential privacy into natu-
ral language processing, for example, the work by
Fernandes et al. (2019) that targets the removal of
authorship identity in a text classification dataset.

With homomorphic encryption being a long-
standing important topic in cryptography, it has
also made its way into the field of privacy in ma-
chine learning, particularly in terms of designing
neural networks which enable homomorphic op-
erations over encrypted data (Hesamifard et al.,
2017; Bourse et al., 2018). For example, Gilad-
Bachrach et al. (2016) designed a fully homomor-
phic encrypted convolutional neural network that
was able to solve the MNIST dataset with practical
efficiency and accuracy. The scheme of direct ho-
momorphic encryption (Brakerski et al., 2014) is
constrained by the multiplication depth degree in
the circuit, which makes deep models intractable.
Other schemes were developed in recent years
(Cheon et al., 2017; Fan and Vercauteren, 2012;
Dathathri et al., 2018), but achieving satisfactory
performance is still a challenge. To the best of
our knowledge, no prior work has demonstrated
that homomorphic encryption could be directly ap-
plied to the design of recurrent neural networks or
discrete tokens as input.

8 Conclusions

We presented a model and an empirical study for
obfuscating sentences so that the obfuscated sen-
tences transfer syntactic information from the orig-
inal sentence. Our neural model outperforms in
parsing accuracy a strong random baseline when
many of the words in the sentence are obfuscated.
In addition, the neural model tends to replace words
in the original sentence with words which have a
closer syntactic function to the original word than
a random baseline.

Acknowledgments

The authors thank Marco Damonte and the anony-
mous reviewers for feedback and comments on a
draft of this paper. This research was supported by
a grant from Bloomberg, an ERC Starting Grant
BroadSem 678254 and the Dutch National Science

70

Foundation NWO VIDI grant 639.022.518.

References

Yoshua Bengio, Nicholas Léonard, and Aaron C.
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. CoRR, abs/1308.3432.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. 2005.
Evaluating 2-dnf formulas on ciphertexts. In The-
ory of Cryptography Conference, pages 325-341.
Springer.

Joppe W. Bos, Kristin E. Lauter, Jake Loftus, and
Michael Naehrig. 2013. Improved security for a
ring-based fully homomorphic encryption scheme.
In Cryptography and Coding - 14th IMA Interna-
tional Conference, IMACC 2013, Oxford, UK, De-
cember 17-19, 2013. Proceedings, pages 45-64.

Florian Bourse, Michele Minelli, Matthias Minihold,
and Pascal Paillier. 2018. Fast homomorphic eval-
uation of deep discretized neural networks. In Ad-
vances in Cryptology - CRYPTO 2018 - 38th An-
nual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceed-
ings, Part I, volume 10993 of Lecture Notes in
Computer Science, pages 483-512. Springer.

Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. 2014. (leveled) fully homomorphic en-
cryption without bootstrapping. TOCT, 6(3):13:1-
13:36.

Jung Hee Cheon, Andrey Kim, Miran Kim, and
Yong Soo Song. 2017. Homomorphic encryption for
arithmetic of approximate numbers. In Advances in
Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryp-
tology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I, volume
10624 of Lecture Notes in Computer Science, pages
409-437. Springer.

Maximin Coavoux, Shashi Narayan, and Shay B. Co-
hen. 2018. Privacy-preserving neural representa-
tions of text. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, Brussels, Belgium, October 31 - November 4,
2018, pages 1-10. Association for Computational
Linguistics.

Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim
Laine, Kristin E. Lauter, Saeed Maleki, Madanlal
Musuvathi, and Todd Mytkowicz. 2018. CHET:
compiler and runtime for homomorphic evaluation
of tensor programs. CoRR, abs/1810.00845.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association

for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171-4186. Association for Computa-
tional Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Cynthia Dwork. 2008. Differential privacy: A survey
of results. In Theory and Applications of Models of
Computation, 5th International Conference, TAMC
2008, Xi’an, China, April 25-29, 2008. Proceedings,
volume 4978 of Lecture Notes in Computer Science,
pages 1-19. Springer.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial
removal of demographic attributes from text data. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages 11—
21. Association for Computational Linguistics.

Junfeng Fan and Frederik Vercauteren. 2012. Some-
what practical fully homomorphic encryption. JACR
Cryptol. ePrint Arch., 2012:144.

Natasha Fernandes, Mark Dras, and Annabelle Mclver.
2019. Generalised differential privacy for text docu-
ment processing. In Principles of Security and Trust
- 8th International Conference, POST 2019, Held
as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, vol-
ume 11426 of Lecture Notes in Computer Science,
pages 123-148. Springer.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-

ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Informa-
tion Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain, pages 1019-
1027.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke Zettlemoyer.
2018. Allennlp: A deep semantic natural language
processing platform. CoRR, abs/1803.07640.

Craig Gentry. 2010. Computing arbitrary functions of
encrypted data. Commun. ACM, 53(3):97-105.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine,
Kristin E. Lauter, Michael Naehrig, and John Werns-
ing. 2016. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy.
In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR

71

Workshop and Conference Proceedings, pages 201—
210. JMLR.org.

Ehsan Hesamifard, Hassan Takabi, and Mehdi
Ghasemi. 2017. Cryptodl: Deep neural networks
over encrypted data. CoRR, abs/1711.05189.

Yuval Ishai and Anat Paskin. 2007. Evaluating branch-
ing programs on encrypted data. In Theory of Cryp-
tography, 4th Theory of Cryptography Conference,
TCC 2007, Amsterdam, The Netherlands, Febru-
ary 21-24, 2007, Proceedings, volume 4392 of Lec-
ture Notes in Computer Science, pages 575-594.
Springer.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with Gumbel-Softmax.
CoRR, abs/1611.01144.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA., pages 2741-
2749.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Paul R. Kingsbury and Martha Palmer. 2002. From
treebank to propbank. In Proceedings of the Third
International Conference on Language Resources
and Evaluation, LREC 2002, May 29-31, 2002, Las
Palmas, Canary Islands, Spain. European Language
Resources Association.

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards robust and privacy-preserving text represen-
tations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 2: Short Papers, pages 25-30. Association
for Computational Linguistics.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous re-
laxation of discrete random variables. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guistics, 19(2):313-330.

Luis Marujo, José Portélo, Wang Ling, David Martins
de Matos, Jodao P Neto, Anatole Gershman, Jaime
Carbonell, Isabel Trancoso, and Bhiksha Raj. 2015.
Privacy-preserving multi-document summarization.
arXiv preprint arXiv:1508.01420.

Sravana Reddy and Kevin Knight. 2016. Obfuscating
gender in social media writing. In Proceedings of
the First Workshop on NLP and Computational So-
cial Science, NLP+CSS@EMNLP 2016, Austin, TX,
USA, November 5, 2016, pages 17-26. Association
for Computational Linguistics.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and
approximate inference in deep generative models.
In Proceedings of the 31th International Confer-
ence on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, volume 32 of JMLR Work-
shop and Conference Proceedings, pages 1278—
1286. IMLR.org.

Ronald L Rivest, Len Adleman, Michael L Dertouzos,
et al. 1978. On data banks and privacy homo-
morphisms. Foundations of secure computation,
4(11):169-180.

Tomas Sander, Adam Young, and Moti Yung. 1999.
Non-interactive cryptocomputing for nc/sup 1. In
40th Annual Symposium on Foundations of Com-
puter Science (Cat. No. 99CB37039), pages 554—
566. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998-6008.

72

Tensors over Semirings for Latent-Variable Weighted Logic Programs

Esma Balkir!

Daniel Gildea?

Shay B. Cohen'!

"ILCC, School of Informatics, University of Edinburgh
?Department of Computer Science, University of Rochester

esma.balkir@ed.ac.uk
gildealcs.rochester.edu scohen@inf.ed.ac.uk

Abstract

Semiring parsing (Goodman, 1999) is an ele-
gant framework for describing parsers by us-
ing semiring weighted logic programs. In this
paper we present a generalization of this con-
cept: latent-variable semiring parsing. With
our framework, any semiring weighted logic
program can be latentified by transforming
weights from scalar values of a semiring to
rank-n arrays, or tensors, of semiring val-
ues, allowing the modeling of latent variables
within the semiring parsing framework. Semir-
ing is too strong a notion when dealing with
tensors, and we have to resort to a weaker
structure: a partial semiring.! We prove that
this generalization preserves all the desired
properties of the original semiring framework
while strictly increasing its expressiveness.

1 Introduction

Weighted Logic Programming (WLP) is a declara-
tive approach to specifying and reasoning about dy-
namic programming algorithms and chart parsers.
WLP is a generalization of bottom-up logic pro-
gramming where proofs are assigned weights by
combining the weights of the axioms used in the
proof, and the weight of a theorem is in turn cal-
culated by combining the weights of all its possi-
ble proof paths. The combinatorial nature of this
procedure makes weighted logic programs highly
suitable for specifying dynamic programming algo-
rithms. In particular, Goodman (1999) presents an
elegant abstraction for specifying and computing
parser values based on WLP where the values could
be drawn from any complete semiring. This gener-
alizes the case of Boolean decision problems, prob-
abilistic grammars with Viterbi search and other
quantities of interest such as the best derivation or

'Our definition of a partial semiring is slightly different
than those in the abstract algebra literature e.g. Steenstrup
(1985).

73

the set of all possible derivations. It is then possi-
ble to derive a general formulation of inside and
outside calculations in a way that is agnostic to the
particular semiring chosen.

Latent variable models have been an important
component in the NLP toolbox. The central as-
sumption in latent variable models is that the corre-
lations between observed variables in the training
data could be explained by unobserved, hidden vari-
ables. Latent variables have been used with gram-
mars such as Probabilistic Context-Free Grammars
(PCFGs), where each node in the parse tree is rep-
resented using a vector of latent state probabilities
that further extend the expressiveness of the gram-
mar (Matsuzaki et al., 2005).

The approach of adding latent variables to formal
grammars have proven to be a fruitful one: in the
context of PCFG parsing, Matsuzaki et al. (2005)
show that latent variable PCFGs (L-PCFGs) per-
form on par with models hand-annotated with lin-
guistically motivated features. Cohen et al. (2013)
report that on the Penn Treebank dataset, L-PCFGs
trained with either EM or a spectral algorithm pro-
vide a 20% increase in F1 over PCFGs without
latent states. Gebhardt (2018) shows that the bene-
fits of latent variables are not limited to PCFGs by
successfully enriching both Linear Context-Free
Rewriting Systems and Hybrid Grammars with la-
tent variables, and demonstrates their applicability
on discontinuous constituent parsing.

Given the usefulness of latent variables, it would
be desirable to have a generic inference mechanism
for any latent variable grammar. WLPs can repre-
sent inference algorithms for probabilistic gram-
mars effectively. However, this does not trivially
extend to latent-variable models because latent vari-
ables are often represented as vectors, matrices and
higher-order tensors, and these taken together no
longer form a semiring. This is because in the
semiring framework, values for deduction items

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 73-90
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

and for rules must all come from the same set, and
the semiring operations must be defined over all
pairs of values from this set. This does not al-
low for letting different grammar nonterminals be
represented by vectors of different sizes. More
importantly, it does not allow for a rule’s value
to be a tensor whose dimensionality depends on
the rule’s arity, as is generally the case in latent
variable frameworks.

In this paper we start with a broad interpreta-
tion of latent variables as tensors over an arbitrary
semiring. While a set of tensors over semirings
is no longer a semiring, we prove that if the set
of tensors have certain matching dimensions for
the set of grammar rules they are assigned to, then
they fulfill all the desirable properties relevant for
the semiring parsing framework. This paves the
way to use WLPs with latent variables, naturally
improving the expressivity of the statistical model
represented by the underlying WLP. Introducing
a semiring framework like ours makes it easier to
seamlessly incorporate latent variables into any exe-
cution model for dynamic programming algorithms
(or software such as Dyna, Eisner et al. 2005, and
other Prolog-like/WLP-like solvers).

We focus on CFG parsing, however the same
latent variable techniques can be applied to any
weighted deduction system, including systems for
parsing TAG, CCG and LCFRS, and systems for
Machine Translation (Lopez, 2009). The methods
we present for inside and outside computation can
be used to learn latent refinements of a specified
grammar for any of these tasks with EM (Dempster
et al., 1977; Matsuzaki et al., 2005), or used as
a backbone to create spectral learning algorithms
(Hsu et al., 2012; Bailly et al., 2009; Cohen et al.,
2014).

2 Main Results Takeaway

We present a strict generalization of semiring
weighted logic programming, with a particular fo-
cus on parser descriptions in WLP for context-free
grammars. Throughout, we utilize the correspon-
dence between axioms and grammar rules, deduc-
tive proofs and grammar derivations, and derived
theorems and strings.

We assume that axioms/grammar rules come
equipped with weights in the form of tensors over
semiring values. The main issue with going from
semirings to tensors over semiring values is that
these weights need to be well defined in that any

74

valid derivation should correspond to a sequence
of well defined semiring operations. For CFGs, we
give a straightforward condition that ensures this
is the case. This essentially boils down to making
sure that each non-terminal corresponds to a fixed
vector space dimension. For example, if A corre-
sponds to a space of d; dimensions, B to ds and C'
to ds, then arule A — B C would have a tensor
weight in do X d3 X dj.

As long as the weights are well defined, the stan-
dard definitions for the value of a grammar deriva-
tion and a string according to a semiring weighted
grammar extend to the case of tensors of semirings.
Weighted logic programming provides the means
to declaratively specify an efficient algorithm to
obtain these values of interest. In line with Sikkel
(1998) and Goodman (1999) we present precise
conditions for when a partial-semiring WLP de-
scribes a correct parser.

The value of the WLP formulation of parsing
algorithms is that it provides a unified fashion in
which dynamic programming algorithms can be
extracted from the program description. This relies
on the ability of a WLP to decompose the value
of a proof to a combination of the values of the
sub-proofs. Specifically, given a derivation tree,
a WLP description automatically provides algo-
rithms for calculating the inside and outside values.
We provide analogous algorithms for calculating
the inside and outside values for partial-semiring
WLPs. Our outside formulation addresses the non-
commutative nature of tensors themselves, and
could be extended to cases where the underlying
semiring is non-commutative using the techniques
presented by Goodman (1998).

3 Related Work

“Parsing as deduction” (Pereira and Warren, 1983)
is an established framework that allows a number of
parsing algorithms to be written as declarative rules
and deductive systems (Shieber et al., 1995), and
their correctness to be rigorously stated (Sikkel,
1998). Goodman (1999) has extended the pars-
ing as deduction framework to arbitrary semirings
and showed that various different values of interest
could be computed using the same algorithm by
changing the semiring. This led to the develop-
ment of Dyna, a toolkit for declaratively specifying
weighted logic programs, allowing concise imple-
mentation of a number of NLP algorithms (Eisner
et al., 2005).

The semiring characterization of possible values
to assign to WLPs gave rise to the formulation of a
number of novel semirings. One novel semiring of
interest for purposes of learning parameters is the
generalized entropy semiring (Cohen et al., 2008)
which can be used to calculate the KL-divergence
between the distribution of derivations induced by
two weighted logic programs. Other two semir-
ings of interest are expectation and variance semir-
ings introduced by Eisner (2002) and Li and Eisner
(2009). These utilize the algebraic structure to effi-
ciently track quantities needed by the expectation-
maximization algorithm for parameter estimation.
Their framework allows working with parameters
in the form of vectors in R™ for a fixed n, coupled
with a scalar in R>. The semiring value of a path
is roughly calculated by the multiplication of the
scalars and (appropriately weighted) addition of
the vectors. This is in contrast with our framework
where weights could be tensors of arbitrary rank
rather than only vectors, and the values of paths are
calculated via tensor multiplication.

Finally, Gimpel and Smith (2009) extended the
semiring framework to a more general algebraic
structure with the purpose of incorporating non-
local features. Their extension comes at the cost
that the new algebraic structure does not obey all
the semiring axioms. Our framework differs from
theirs in that under reasonable conditions, tensors
of semirings do behave fully like regular semirings.

4 Background and Notation

Our formalism could be used to enrich any WLP
that implements a dynamic programming algo-
rithm, but for simplicity, we follow Goodman
(1999) and focus our presentation on parsers with
a context-free backbone.’

4.1 Context-free Grammars

Formally, a Context-Free Grammar (CFG) is a 4-
tuple (N, 3, R, S). The set of N denotes the non-
terminals which will be denoted by uppercase let-
ters A, B etc., and S is a non-terminal that is the
special start symbol. The set of X denotes the ter-
minals which will be denoted by lowercase letters
a, b etc. R is the set of rules of the form A — «
consisting of one non-terminal on the left hand side

’Note that given a grammar G' in a formalism F and a
string «, it is possible to construct a CFG grammar ¢(G, w)
from G and « (Nederhof, 2003). This construction is possible
even for range concatenation grammars (Boullier, 2004) which
span all languages that could be parsed in poly-time.

75

(lhs), and a string @ € (N U X)* on the right hand
side (rhs). We will use a = (5 if 8 could be de-
rived from « with the application of one grammar
rule. We will say that a sentence o € X1 could
be derived from the non-terminal A if o could be
generated by starting with A and repeatedly apply-
ing rules in R until the right hand side contains
only terminals, and denote this as A = o. We will
denote the language that a grammar G defines by
L(G) = {o|S = o}

CFG derivations can naturally be represented as
trees. We will use the notation (r : T ...T}) to
represent a tree that has the node r as its root and
T1, ..., Ty as its direct subtrees. We will use D¢
to denote the set of all derivation trees that can be
constructed with the grammar G, and D¢ (o) for
all valid derivation trees that generate the sentence
oinG.

4.2 Semirings

A semiring is an algebraic structure similar to a
ring, except that it does not require additive in-
Verses.

Definition 1. A semiring is a set S together with
two operations + and X, where + is commutative,
associative and has an identity element 0. The op-
eration of X is associative, has an identity element
1 and distributes over +.

The set of non-negative integers together with
the usual x,+,0, 1 is a semiring, and so are proba-
bility values in [0, 1]. Booleans {TRUE, FALSE}
also form a semiring with x : =V, + := A, 0 :=
FALSE and 1 := TRUE.

There are a few less common semirings that pro-
vide useful values in parsing. The Viterbi semiring
calculates the probability of the best derivation.
It has values in [0, 1], + := max and x,0,1 as
standard. The Derivation forest, Viterbi derivation
and Viterbi n-best semirings calculate the set of
all derivations, the best derivation and the n-best
derivations respectively. Unlike the previous ex-
amples, the x operation of these semirings is not
commutative. In general, if the X operation in a
semiring is commutative, we refer to it as a com-
mutative semiring, and otherwise it is referred to as
non-commutative. For precise definitions and de-
tailed descriptions of these semirings see Goodman
(1999).

4.3 Weighted Logic Programming

A logic program consists of axioms and inference
rules that could be applied iteratively to prove
theorems. Inference rules are expressed in the
form AL24% where A . .. A, are antecedents from
which B can be concluded. Axioms are inference
rules with no antecedents.

One way to express dynamic programming al-
gorithms such as CKY is as logic programs. This
approach takes the point of view of parsing as de-
duction: terms consist of grammar rules and items
in the form of [i, A, j] that correspond to the in-
termediate entries in the chart. Grammar rules are
taken to be axioms, and the description of the parser
is given as a set of inference rules. These can have
both grammar rules and items as antecedents and
an item as the conclusion. A logic program in this
form includes a special designated goal item that
stands for a successful parse.

Continuing with the example of CKY, consider
the procedural description for how to obtain a chart
item from smaller chart items if we have the rule
A — B C in the grammar:

chart[i,A, j] := chart[i, A, j] V
(charti, B, k] A chart[k,C, j])

The corresponding inference rule in a logic pro-
gram would be:

A5 BC [i,Bk]

[, A, j]

[k, C,]

Note that in the inference rule above, A — B C
is a rule template with free variables A, B, C. In
general, the terms in inference rules can contain
free variables, however for a logic program to de-
scribe a valid dynamic algorithm, every free vari-
able in the conclusion of an inference rule must
appear in its antecedents as well.

A weighted logic program is a logic program
where terms are assigned values from a semiring.
When paired with semiring operations, inference
rules provide the description of how to compute
the value of the conclusion given the values of the
antecedents. The result of an application of a par-
ticular inference rule is the semiring multiplication
of all the antecedents. The value of a term B is
then calculated as the semiring sum of values ob-
tained from inference rules that have B as their the
conclusion.

76

4.4 Semiring Parsing

In the context of parsing, Goodman (1999) presents
a framework where a grammar GG comes equipped
with a function w that maps each rule in G to
a semiring value. Then, a grammar derivation
string E' consisting of the successive applications
of rules ey,...,e, is defined to have the value
Ve(E) [T, w(e;), and the value of a sen-
tence o € L(G) is defined as Vg = Z§=1 Va(Ej)
where F1, Es, ..., E; are the derivations of o in
G.

A parser specification is given in the form of a
weighted logic program, referred to as item-based
description. From these, the value of a derivation
D is calculated recursively as follows:

V(D) = {

where [] is the semiring product.
Let inner(x) represent the set of all derivation
trees headed by the item z. Then the value of z is:

> V(D)

Deinner(x)

w(D) if D is arule
[T, V(Dy) if D= (b: Dy,...,Dp)

V(z)

where) is the semiring addition. The value of a
sentence is then equal to inner(goal).

Given the definitions of value according to the
grammar and the parser, Goodman (1999) provides
a theorem for conditions of correctness:

Theorem 4.1. (Goodman 1999, Theorem 1, infor-
mal) An item-based description I is correct if for
every grammar (G there exists a one-to-one corre-
spondence between the grammar and item deriva-
tions, and these derivations get the same value
regardless of weight function used.

One caveat with calculating based on item-based
derivations is that there is an ordering of items: we
cannot compute the value of an item unless the
values of all its children are computed already. For
this, Goodman (1999) assumes that each item is
assigned to a bucket so that if an item b depends
on a, then bucket(a) < bucket(b). If a bucket
depends on itself, then it is considered a special
looping bucket. For all the formulas we present
in this the main paper we assume that the items
belong to non-looping buckets. The formulas for
looping buckets are provided in Appendix B.

For an item z, calculating its value might require
summing over exponentially many derivation trees.

To address this, it is possible to provide a general
formula that efficiently computes the inner value
for an item (Goodman 1999, Theorem 2):

aaaaaaa

The other important value associated with an
item x is its outside value Z(x), which is the sum
of values of derivation trees, modified so that x is
removed with all its subtrees. This value is comple-
mentary to the inside values V'(z) (Goodman 1999,
Theorem 4):

Viz)x Z(x)= Y V(D)C(D,xz)

D a derivation

where C'(D, z) is the count of the occurrences of
item z in derivation D.

Z(x) can likewise be calculated using a recur-
sive formula if the values are from a commutative
semiring (Goodman 1999, Theorem 5):

j—1 k
Z@x)= Y Z0)x][V(@e)x [] V()
3,01 ,..,0K,b St i=1 1=j+1

wandx:aj

4.5 Tensor Notation

We use the term tensor to refer to an n-dimensional
array of semiring values. We use S to denote a
semiring and A, B etc. to denote tensors. The
element A € S®1x®2%--Xn wi]l denote that A
is a rank-n tensor of values drawn from S, with
the ith rank having dimension a;. The entry in
index k1,..., k, will be denoted with subscripts
Ak

yhn*

S Latent-variable Parsing as Tensor
Weighted Logic Programs

For semiring parsing to work for latent-variable
models it should allow weights to be vectors, matri-
ces and tensors. In this section we present a frame-
work that generalizes that of Goodman (1999), and
is able to capture tensors over semirings as weights.
Note that this includes scalars as a special case.

5.1 Semiring Operations

The main reason why tensors over semirings are
not semirings is that with tensor weights, & and
® become partially defined — not all elements can
naturally be added or multiplied to any other ele-
ment anymore. We refer to these structures as par-
tial semirings. With some reasonable constraints,

77

we show that @ and ® obey the semiring axioms
in cases that are relevant for the semiring parsing
framework.

Let S be the chosen underlying semiring, +, X
to be the semiring operations and 0, 1 be the ad-
ditive and multiplicative identity of the semiring
respectively. The set of possible weights are de-
fined as {S#**dn} for n € N, and d; € N for
all # < n. @ is a partial addition that is defined
on two tensors A, B € S%1%-Xdn a5 long as the
dimensions of each of their ranks match. Then, the
addition is defined component-wise:

(A©B)iy, i, = Aiy i, +Biy i

The additive identity is now a class of tensors,
one for each unique list of tensor dimensions. The
additive identity for any A € S%*-Xdn ig the
tensor Z € ST **dn with 0 in every entry.

Multiplication is defined as the contraction of an
index between two tensors with arbitrary number
of ranks. Specifically, we consider the family ® .,
which contracts the kth rank of the first tensor with
the [th rank of the second tensor. This is only
defined if the two ranks to be contracted have the
same dimension, as follows:

(A O [k;1] B) UyeesTk— 150155011,
Ji415Imstk+415-+5tn
=3 (i, j)Ai.in X B;

]1»~~-7j’m’
U, J1

where ¢ is the identity function that is equal to 1
if 7, = j; and O otherwise. Note that the ranks
corresponding to B which are not contracted over
go in between the ranks of A, replacing where the
contracted rank of A was. We will use ®; as a
shorthand of ®;.1), and in cases where j =1 =1,
we will omit the subscript on ® altogether.

More generally, we will allow multiplication op-
erations that contract multiple consecutive dimen-
sions. A ®T’k;l B will denote contracting rank k
of A with rank [of B, rank £ + 1 of A with rank
{4+ 1 of B and so forth until rank k£ +r — 1 of A
and [+ r — 1 of B. Formally:

(A ®1[nky” B) il:"'vik717j1"“}jl717 =

jl+r:"~7jm’ik+'m"~77f'n

r—1
E H(;(%k—l—pv]l-i—p) Ail,w:inB]’l:me
Uyeesllpr—1 \P=0
JlyeeosJltr—1

We will use the notation A ®* B as a shorthand
for A @ **A) B if rank(A) < rank(B) and
A @m@k(B) B otherwise.

To make the presentation clearer, we will also
use the notation X ® [A41, As, ..., Ag] to denote
contraction of A; with the first rank of X, Ao
with the second and so forth. In other words
X ®[A,...,Ap]is equivalent to X ®,, A, @p—1
An_1... 1 Ay

The multiplicative identity for A € S%1%:-xdn
and ®y, is the identity matrix I € S% <% where the
diagonal entries are the multiplicative identity from
the underlying semiring, and the non-diagonals
are the additive identity. For A € S%*-*dn apd
®}, the multiplicative identity is a rank-2r tensor
Ic Sdkx...xd;ﬂﬂ.,l XdpX...Xdp 11 and is defined as
follows:

%
Liy..a, =] (di, dgﬂ)

1=0

Lastly, as the higher order analogue of the trans-
pose operator, we will define a permutation opera-
tor A™ where m = [my, 72, ..., 7] is a permutation
of [1...7] and r is the rank of A. The 7;th rank of
A" is equal to ith rank of A.

The key property of semirings for purposes of
efficient calculation of item values is the distribu-
tive property. This property also holds for tensors
over semirings.

Lemma 5.1. For any k, [, Q) distributes over ®
A proof can be found in Appendix A.

5.2 Grammar Derivations

For a grammar G with a function w that provides
a mapping from rules to tensor weights, we will
define a value of a derivation via the derivation tree:

Definition 2. Given a grammar G and a weight
function w, the value of a derivation tree T is:

w(r)
o if T'=(r)
VE(T) = w(r) @ [VE(TY), ..., V¥ (TL)]
lfT: <7~;T1,...,Tk:>

Note that there is no guarantee that this equa-
tion is defined for any arbitrary w. We will call a
weight function w well defined for a grammar G if
for all valid derivation trees 7" in G, V¥ (T') is de-
fined. For CFGs there is a straightforward method
to ensure that w is well defined:

Tensor dimensions of grammar rules:

w(S — AA) € ST (A - AA) e SAXAXA
w(A — a) € $*

Grammar derivation tree:

w(S — AA)/S?

w(A — a)/S? w(A — AA)/sA

w(A —a)/S* w(A—a)/S?
The value of the tree is given by the equation:

w(S -AA) ® (w(A — a),
(w(A— AA) ® (w(A — a),w(A — a))))

Grammar derivation string:

S—AA A—a A—AA
aAA
SAXAXS SAXS SAXAXS
A—aq A—a
— aa A —= aaa
SAXS SS

The value of the string is given by the equation:

w(S —- AA) @ w(A — a) ® (A - AA)
RA—a)® (A —a)

Figure 1: Example derivation for the string “aaa”. We illus-
trate the initial dimensions of the tensor values for the rules
and also show the intermediate tensor dimensions during the
calculation of the value of the grammar tree and the grammar
string.

Lemma 5.2. A set of weights w for a given CFG
is well defined if there exist consistent dimensions
d; for each nonterminal A; such that for all gram-
mar rules R : A, — a1Aias...qn oA, 10y,
w(R) c Sdlx...xdn

Proof is given together with Lemma 5.3.

Note that if a weight function for CFG is well
defined, then the rank for the weights of rules with
no non-terminals on their rhs is always 1.

Given a grammar derivation tree 7', let us call
the list of derivation rules £ : Ry, Ro, ..., R, ap-
pearing in T ordered via depth-first, left-to-right
manner a grammar derivation string.

Definition 3. Given a CFG with tensor weights
w, the value of a grammar derivation string is
defined as:

VE(B) = Qu(Ri)
i
where the application of @ proceeds from left to
right as is standard.

For semirings, since the bracketing does not af-
fect the final value of an expression, it is straightfor-
ward to show that the value of a grammar derivation
tree corresponds to that of a grammar derivation
string. With tensors over semirings this might fail
with an arbitrary formalism F', and in the general
we require the value of a derivation to be calculated
with the bracketing induced by the derivation tree.
However, for the special case of CFGs, the value
of the grammar derivation tree and the value of
its corresponding grammar derivation string are al-
ways equal. This means that for the computation of
the value of the derivation, it is possible to replace
the bracketing induced by the derivation tree by
left-to-right bracketing without affecting the final
value. Figure 1 demonstrates the calculation of the
value of the tree and the string for the same deriva-
tion together with how the tensor dimensions of the
intermediate results evolve with each step of the
calculation.

Lemma 5.3. Given a CFG G and a weight func-
tion w that fulfills the condition in Lemma 5.2,
then w is well defined and V5 (T) = V¥ (E) for
any grammar derivation tree T’ and corresponding
grammar derivation string E.

Proof. We will proceed by induction on the deriva-
tion tree. If 7" consists of only one rule r, then
VH(T) = V¥ (E). Furthermore, r does not have
any non-terminals on its rhs, so V¥ (T) € S% with
S% corresponding to the lhs non-terminal in 7.

Otherwise, T' has a labeled node r and the
subtrees T7,...,T,. Notice that if Ay €
Stxxdnxdo = A, e S A, € S, then
A0® [Al,...,An] = A0®A1 ®®An due
to all arguments within [. . .] being rank-1.

Because w fulfills the condition in Lemma 5.2,
w(r) € Shx-xdxxdo for some d; where S% is
the space corresponding to the non-terminal on
the lhs of 7, and S% is the space corresponding
to the ith non-terminal appearing in the rhs of r
for: = 1,...,k. Then to complete the proof, it
suffices to show that V¥ (T;) € S% for all subtrees
T;. This already holds for the base case. For each
Ty« (ri Ty, .., T}), if w(r;) € ST**dixdo then
by induction V¥ (T;) € S%, where S% is the space
corresponding to the non-terminal in the lhs of R;.
For the derivation to be valid, this non-terminal

needs to match the sth non-terminal in the rhs of R,
hence S% = S%]

79

5.3 Item-based Descriptions

Item-based descriptions are formal descriptions of
various parsers for context-free grammars. Item-

based descriptions consist of a set of deduction

Ty... Ty

rules of the form ———— P ... P; where upper

case letters could either be grammar rule tem-
plates (e.g. if 77 : A — B C then any non-
terminals from the grammar can be substituted for
A, B,C) or for items. 77 ... T} are referred to as
antecedents, () as the conclusion and P; ... P; are
side conditions that the parser requires to execute
the rule, but doesn’t use the values of. Items corre-
spond to chart elements in procedural descriptions
of parsers, and are placeholders for intermediate
results which can be combined to obtain the final
result. The item-based description also provides a
special goal item which is variable-free, and does
not occur as a condition of any other inference
rules.

Definition 4. Given a grammar G and an item-
based description I, a valid item derivation tree is
defined as follows:

e Forallr € G, (r) is an item derivation tree.

® [fDgy,..., Do, and Dy, ..., D.; are deriva-
tion trees headed by ay, . .. ,a and cy, . .., c;
respectively, and “5%cy, ... c; is the in-
stantiation of a deduction rule in I, then
(b:Dgy,...,Dy,) is also an item derivation

tree.

innery(x) denotes the set of all trees headed
by z that occur in parses for ¢. Formally, D €
innery(x) if D is headed by z and is a subtree of
some D’ € Dy(y(o). The value of a derivation
tree is calculated similarly to that of a grammar
tree:

Viiey(D) =
w(D) if D is arule
(D7) ® [VI“(’G) (Ds), ..., Viie) (Dy,)]
if D=(b:Dy,...,Dy,)

Vi(e)

Notice that unlike the definition from Goodman
(1999), the first antecedent in the inference rule has
a special role in the calculation. Intuitively, our
framework treats the value of the first antecedent as
a function, and the trailing ones as the arguments.
The interaction between the trailing antecedents is
thus moderated through the value of the first an-
tecedent, which corresponds to the requirement that

[1,5,4]/S°

w(S — AA)/SAXAXS [1,A,2]/S4

w(A = a)

w(A — AA)/SAxAXA

2, A, 4]/S4
2, A, 3]/S4 3, A, 4]/S4
w(A ‘—> a) w(A ‘—> a)

Figure 2: Item derivation corresponding to the derivation given in Figure 1 using the item-based description of CKY in Figure 3.

w(A — w;)
[i, A, 7]
w(A — BC) [i,B,k] [k,C,j]
[i, A,]

Figure 3: Item-based description for CKY

the children nodes be independent of each other
given the parent node.

Definition 5. Ifforany o € L(G) andany T, T" €
innerq(x), Vite (T') and Vite (T") are defined
and dim(Vi(c)(T)) = dim(Vy(c(T")), then the
weights w are well defined.

Given an item-based derivation /, a grammar
G, a well defined weight function w and a target
sentence o, the value of an item z is defined to be
the sum of all its possible derivations. Formally:

D

Deinnerq(x)

Vile)(z,0) = Vil (D)

Definition 6. For a given grammar G and item-
based description I, the value of a sentence o is
equal to the value of the goal item which spans o:

‘/fl(UG)(U) = Vf(”G) (goal, o)

Definition 7. An item-based description is cor-
rect if for all grammars G, complete semirings
S, well defined weight functions w and sentences
0, Vit (0) = V¥ (o)

Now we are ready to state the equivalent theo-
rem to Theorem 4.1. Let us introduce a special
symbol L and extend V%’ and VI“(’G) to any weight
function w so that if w is not-well defined for G,

then V¥ (o) = L and likewise for Vite)-

80

Theorem 5.4. An item-based description I is cor-
rect if

e For every grammar G, the mapping g
Dy) — Dg that maps d' € Dy to the
corresponding d € Dg is a bijection with an
inverse function f.

e For any complete semiring S and weight func-
tion w, g and f preserve the values assigned
to a derivation:

Ve (d) = Vi (f(d)) and
Vil (d) = V& (9(d))

Proof proceeds similarly to that in (Goodman,
1999) and can be found in Appendix A.

6 Inside and Outside Calculations

In the following, we will omit the sentence o
from inner,(x) and refer to this as inner(x). Let
inner(“=2%) the set of derivation trees where
the root note is x, and the direct children of x are
at, ..

For efficient computation of this value, we will
assume that there is a partial order b on the items so
that if the item y depends on x, then b(x) < b(y).

Theorem 6.1.

. Q.

The proof uses the distributive property and fol-
lows that of Goodman (1999). It can be found in
Appendix A.

For the notion of a value of a derivation to ex-
tend to outside trees, we will have to do some

modifications. This is because an outside tree
will have one subtree (b : Aq,..., Ay), such that
V(A1) ®[V(Ag),...,V(A,)] will potentially not
be defined since one of the subtrees A; will be
missing. Note that the missing Ay will be headed
by an item. We will say the a tree T' € outer(x)
if T' can be obtained by taking a tree 1" headed
by the goal item and removing any of its subtrees
headed by the item . Outer value Z(7},) is defined
recursively as follows:

If T}, is headed by the goal item then Z(7T}) =
I, . Else, it has a direct parent tree 7" such that 7' =
(b:T1,...,T,...,T,). Inthis case, Z(T}) =

(VAT @k Urxas, V), VT)])
® [V(T2),..., V(Tr1)] @ Z(T)

where I, <4 is the identity tensor for the space
Shx.xdixds e §hix-xdi and dy is the di-
mension assigned for the terminal symbol S. The
permutation 7 is defined as follows:

[1,2,...,0,7+1,74+2,...,n,i+1,i+2,...,7]

where i = k + rank(7}) —land j = kK + 2 X
rank(7y) + 1

To understand the function of 7 it is useful
to consider the dimensions of the term before
and after it is applied. Let the term V(7Tp) ®p
Ur,xdgs V(Tk+1), - - ., V(T},)] have dimensions:

X ep_1,d1 X ... X d; X dgx

X d; x dg x d, X ...xd,

er X ...

ekxdlx...

Here eq,...,e;_1 are the dimensions that will
be contracted with V(T1),..., V(Ti—_1) with the
second multiplication operation, and d,, . ..,d],
are the dimensions that were either introduced by
the contraction with V (Tj41), ...,V (T3,) or were
trailing dimensions from V'(77). The result of the
contraction with I, » 44 are the dimensions in the
middle: d1,...,d;,dg, e, dy,...,d;,ds. Unlike
the original definition of I there is one dimension
er missing from the beginning of the sequence
since it got used up during the contraction opera-
tion. What the permutation does is to move one
section of the dimensions introduced by I to the
very end. The dimensions become:

e1 X ... Xep_1,d1 X ... xXd;x

d,x...xd, xdgxe,xd x...xd;xdg

Note that this has no effect on the next contraction
with V(T1), ...,V (Tk—1) since the first k—1 ranks

81

are left in place. However, changing the order of
the ranks allow the last contraction with Z(7T') to
be well defined.

Lemma 6.2. Let V and Z be defined on a com-
mutative semiring S and let O € outer,(x) and
T € innery(z). If combining O and T in the
obvious way results in the complete derivation D,

V(D)

V(T) ®* Z(0)

Proof. (Sketch) We proceed by induction on the
parse tree. Base case is where x = goal, T = D
and O is empty. Then V(T') = V(D) and Z(O) =
Is. V(D) ®* Is = V(D) by the definition of Ig
which proves the statement.

Otherwise 1" has a parent tree 7, = (y
Ti,...,T,) where ' = Tj,. Furthermore, T, €
inner,(y), O, € outery(y) and by the induction
hypothesis V(D) = V(1,) ®* Z(O,).

Since T}, € inner,(y) we know that

=V(Th) ® [V(Tz),...,V(Tn)]

(V(T1) @ [V(T3), ..., V(Tm)]) @ Z(Op)

The proof progresses by calculating the value for
[V(D)]; based on the above term and shows that
this is equal to the value of [V (T") ®* Z(O)];. Full
proof can be found in Appendix A. O

In the general case, Goodman (1999) defines the
reverse value of x as the sum of all its outer trees.

D

Tcouter(x)

Z(z) Z(T)

We will see that for a well defined weight func-
tion w, any D € outer,(x) will be assigned a
value with dimensions dy X ... X d,, X dg where
dg is the dimension assigned to the start symbol .S,
and dy, ..., d, are the dimensions for inner,(x).

Lemma 6.3. Let C(D,) represent the number of
times x occurs in a derivation D. Then,

V(x) = & v)
DeD(o)
Proof.
Vi)e Z(z)= P VD) et @ z0)
Teinner(x) Ocouter(x)
= D @ vme 20

Teinner(z) O€outer(x)

By Lemma 6.2, Z(O) ®* V(T') = V(D). For
an item z, any O € outer(z) and T' € inner(z)
can be combined to form a successful derivation
tree containing x, and thus the number C (D, z)
corresponds exactly to the number of derivation
trees containing x. Hence,

Vi)e* Z(X)= @ V()" Z(0)
Teinner(z)
Ocouter(x)

= @ vV(D)C(D,x)

DeD(o)

O

Now we are ready to state how to calculate
the outside value of an item. Following Good-
man (1999) we will extend the notation for the set
of outer trees and introduce outer (k, “59) C
outer(ay) to mean the subset of the outer trees
in outer(ay) where aj, has parent b and the sib-
lings a;. In other words, this is the set of all outer

trees where the rule from which ay is removed is
at...an

b

Theorem 6.4. If x is the goal item, then Z (x) = I.
Else, Z(x) =

P (V(a) @k [Ta,, V(aki1), - Vian))"

7,a1,..,ak,b s.t.

al.”(lk _ X
= and r=a;

® [V(ag),...,V(ag-1)] @ Z(b)
Proof. (sketch) Z(z) = @D peoyter(z) Z(D)- Ei-
ther x is a goal item, in which case Z(x) = Ig.
Otherwise the outer trees outer(x) could be writ-
ten as the union of outer trees outer (k, %22) for
each rule 3% where a;, = z for some k. Hence:

20 = D o 2p
it abat Deouter(k,215)

Using the distributive property of the partial semir-
ing, the inside part of the equation becomes:

D

Deouter(k,

(V(al) Qk [Iak7 V(akJrl)v SRR V(an)]>7r
® [V(a2),...,V(ag—1)] @* Z(b)

Z(D)

alnb.an)

Replacing the inner part of the previous equation
with this term gives the desired equality. O

82

7 Conclusion

We have presented a general extension of the semir-
ing parsing framework where the weights for the
grammar rules are tensors of semiring values, with
the motivation of extending semiring parsing frame-
work to latent variable models. We hope that this
work will enable streamlined development of EM-
based or spectral learning algorithms for latent re-
finements of a number of grammar formalisms.

Acknowledgments

The authors thank the anonymous reviewers for
feedback and comments on a draft of this paper,
and acknowledge the support of NSF grant IIS-
1813823.

References

Raphaél Bailly, Francois Denis, and Liva Ralaivola.
2009. Grammatical inference as a principal compo-
nent analysis problem. In Proceedings of the 26th
Annual International Conference on Machine Learn-
ing, pages 33-40.

Pierre Boullier. 2004. Range concatenation grammars.
In New Developments in Parsing Technology, pages
269-289. Springer.

Shay B Cohen, Robert J Simmons, and Noah A Smith.
2008. Dynamic programming algorithms as prod-
ucts of weighted logic programs. In International
Conference on Logic Programming, pages 114—129.

Shay B Cohen, Karl Stratos, Michael Collins, Dean P
Foster, and Lyle Ungar. 2013. Experiments with
Spectral Learning of Latent-Variable PCFGs. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 148-157, Atlanta, Georgia. Association for
Computational Linguistics.

Shay B Cohen, Karl Stratos, Michael Collins, Dean P
Foster, and Lyle Ungar. 2014. Spectral learning of
latent-variable PCFGs: Algorithms and sample com-
plexity. The Journal of Machine Learning Research,

15(1):2399-2449.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statisti-
cal Society: Series B (Methodological), 39(1):1-22.

Jason Eisner. 2002. Parameter Estimation for Prob-
abilistic Finite-State Transducers. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 1-8, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jason Eisner, Eric Goldlust, and Noah A Smith. 2005.
Compiling Comp Ling: Weighted Dynamic Pro-
gramming and the Dyna Language. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 281-290, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Kilian Gebhardt. 2018. Generic refinement of expres-
sive grammar formalisms with an application to dis-
continuous constituent parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3049-3063, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Kevin Gimpel and Noah A Smith. 2009. Cube Sum-
ming, Approximate Inference with Non-Local Fea-
tures, and Dynamic Programming without Semir-
ings. In Proceedings of the 12th Conference of the
European Chapter of the ACL (EACL 2009), pages
318-326, Athens, Greece. Association for Computa-
tional Linguistics.

Joshua Goodman. 1999. Semiring Parsing. Computa-
tional Linguistics, 25(4):573-606.

Joshua T Goodman. 1998. Parsing Inside-Out.
Ph.D. thesis, Harvard University Cambridge, Mas-
sachusetts.

Daniel Hsu, Sham M Kakade, and Tong Zhang. 2012.
A spectral algorithm for learning hidden Markov
models. Journal of Computer and System Sciences,
78(5):1460-1480.

Werner Kuich. 1997. Semirings and Formal Power
Series: Their Relevance to Formal Languages and
Automata. In Rozenberg Grzegorz and Arto Salo-
maa, editors, Handbook of Formal Languages: Vol-
ume 1 Word, Language, Grammar, pages 609-677.
Springer, Berlin, Heidelberg.

Zhifei Li and Jason Eisner. 2009. First- and Second-
Order Expectation Semirings with Applications to
Minimum-Risk Training on Translation Forests. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages 40—
51, Singapore. Association for Computational Lin-
guistics.

Adam Lopez. 2009. Translation as Weighted Deduc-
tion. In Proceedings of the 12th Conference of the
European Chapter of the ACL (EACL 2009), pages
532-540, Athens, Greece. Association for Computa-
tional Linguistics.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 75-82.

Mark-Jan Nederhof. 2003. Weighted Deductive Pars-
ing and Knuth’s Algorithm. Computational Linguis-
tics, 29(1):135-143.

83

Fernando C N Pereira and David H D Warren. 1983.
Parsing as Deduction. In Proceedings of the 21st An-
nual Meeting on Association for Computational Lin-
guistics, pages 137-144, Cambridge, Massachusetts,
USA. Association for Computational Linguistics.

Stuart M Shieber, Yves Schabes, and Fernando C N
Pereira. 1995. Principles and implementation of de-
ductive parsing. The Journal of logic programming,
24(1-2):3-36.

Klaas Sikkel. 1998. Parsing schemata and correctness
of parsing algorithms. Theoretical Computer Sci-
ence, 199(1-2):87-103.

Martha Edmay Steenstrup. 1985. Sum-Ordered Par-
tial Semirings. Ph.D. thesis, University of Mas-
sachusetts Amherst.

Appendix A - Proofs of Theorems in Main Paper

Lemma 5.1. For any k,l, Q@ distributes over &
Proof. We will proceed by showing that:
A Q) (BOC) = (AQpy B) ® (A @y C)

Firstly, note that for the left hand side of the equation to be defined, B and C' needs to be of matching
ranks, and that B @ C will be the same rank as both B and C. Therefore, if the left hand side is well
defined then both A ®;..;; B and A ®j; C is defined and has matching ranks. So the right hand side is
defined if and only if the left hand side is defined as well.

I:A®[]7k} (B @ C)]il7"'77:/6717j1""7jl717.jl+17"'7jm7ik+17"'7in
= 6(ik, 1) Air i X (BB C)jy i

U]l

= 6(iks 1) Air i X (Bjr.oo g + Cinroojn)
UesJi

= 0(ik, 30)(Aiy i X Bijrojm) + 00k 30)(Aiy i % Ciy)
]l

= [(A ®[k;l} B) S (A ®[k;l} C)]il7---aik—1ajl:---vjl—lajl+1 ----- Jmslk41yeee5tn

Theorem 5.4. An item-based description I is correct if

e For every grammar G, the mapping g : Dyqy — Dg that maps d e Dy(q) to the corresponding
d € Dg is a bijection with an inverse function f.

o For any complete semiring S and weight function w, g and f preserve the values assigned to a

derivation:
V& (d) = Vi) (f(d)) and Vi) (d') = V& (9(d))
Proof.
Viie) (@) = Vi(e (goal, o) = @ Viig) (D) = @ V& (g(D))

De¢innerq (goal) DeDyg)(a)

Observe that D € Dy)(a) iff g(D) € Dg(a) since the rules that appear in the leaves of D, applied
from left to right, determines the grammar derivation tree g(D) uniquely via g, and vice versa. Hence,

Vi) = @ V¥ (D)) = V¥ ()
9(D)ED @)

Theorem 6.1.

84

Proof. Recall that by definition, V' (z) = € Deinner(z) V(D). For any item derivation D, D is either an
axiom or there is some a1, ..., ax,bs.t. D € inner(*5%). If D is an axiom, then inner (D) is just a

single rule a, and so V(D) = V/(a). Else, for each rule “-=-%&

D V(D) = B VD)@V (D)., V(Day)]

Deinner(al'g‘c'ak) Dy, €inner(ay),...,
Dy, €inner(ag,)

k
- P v, |e P KRV
D, €inner(ay) D, €inner(az),..., =2
D, €inner(ag)
- P VD)]|® P VDuy)..... P VD)
Dg, €inner(a1) Dq, €inner(az) D, €inner(ax)

=V(a) ® [V(az),...,V(ax)]

Where the last step holds due to the distributive property of the partial semiring.
Since the set inner(x) = |J; D; where D; € inner(*::%%) for all inference rules “=-%£, we can write
the summation over D € inner(x) as:

V@ = @ VD)

Deinner(x)

- D D v

[at,.-,ak] DEinner(%)
S‘t'al,”,ak
= @ V(al) ® [V(ag),V((Ig),. 7V(ak‘)]

la1,...,ak]
S.t' a1,4.,ak:
x

Where the last line is obtained by replacing the inner part of the expression with the equality obtained
from the previous part of the proof. O

Lemma 6.2. Let V and Z be defined on a commutative semiring S and let O € outery(x) and T €
innery(x). If combining O and T in the obvious way results in the complete derivation D then

V(D) =V(T)®" Z(0)

Proof. To simplify notation of the indices, let i stand for a list of indices 41, . . ., i, for some n. We will
also use d* to denote a list d4, . .. d}, and d to denote d*, ..., d"™. (i) = [Tj_; 0(ix, jr)-

We will proceed by induction on the parse tree. Base case is where x = goal, T' = D and O is empty.
Then V(T') = V(D) and Z(O) = Is. V(D) ®" Is = V(D) by the definition of Is which proves the
statement.

Otherwise T" has a parent tree 7, = (y : T1,...,T;,) where T' = T},. Furthermore, T}, € inner, (y),
O, € outer,(y) and by induction hypothesis V(D) = V(T},) ®* Z(Op).

Since T, € inner, (y) we know that

V(T,) =V(Th) @ [V(Ts), ..., V(Tn)]

So
V(D)= (V(T1) @ [V(T3),...,V(Tm)]) ®" Z(Op)

The proof progresses by calculating the value for [V (D)]; based on the above term and shows that this
is equal to the value of [V (T") ®@* Z(O)];.

85

Let:
V(Ty) € Sf V(T;) € sS4
Z(0,) € sS4t V(D) € S*

Then:

VI(Tp)las=[V(T1) @ (V(T2), ..., V(Tm))las

—ZVTlefXH(SGZ,Z edz

V(D)]s = V(1) @ Z(0p)], =

Z V(T1)es X (Hé(ei,e;)vm)%d)

e d,d/ff =2
X (S(d7 d/>5(f, f/>Z(Op)d,f,S

Now we will proceed to prove that this term is equal to V' (T},) ®* Z(O). Let I, € Ser-d®send®s e
will calculate the value of the outside term in sections. Let A = V(T1) ®y (I, V(Tk41), - - -, V(Tn))-
Then,

€1, nep—1,dF,8,85,dg,5,dF L dnf T
™ J—
e1,..,ep—1,dF,dF+1 . dn fs.e,,d,3

Z V(T1)es % 6(e, €,)d(d”, d* d®)é(s, §) x H d(ei, €;))el di

€y rEn i=k+1
/ /
€)r+1Cn

(A" ® (V(T2),. .. V<Tk71))}d7f,57ék7&k,§ =

ZVTlefoV e di X

17ék
(e, €') x 6(ek,ék) x §(d*, d¥) x é(s, 8)

2O ars= D V(Tier x HV v X Z(O0p)ar g
e’ d,d’
f,f’,s,s/ ’L?ék

x 8(e,€') x 8(ey, é) x o(d¥, d¥) x 6(s, §)
x 6(d,d’) x 6(f,f) x 6(s, s")
[V(Tk) @ Z(0)]s =

E V(Tk) " dx X V(T1 ef X HV e} di X Z(Op)dlyf/ﬁ/
e,e’ d,d’
ff s, 17%
éx,dF el "’

x 8(e,e') x 8(ey,) x o(d¥, d¥) x 8(s, §)
x 6(d,d’) x 8(f, f’) x 8(s, ") x 8(ell,e) x 6(a*", d¥)
= Z V(T1)es % HV erdi X Z(Op)ag,s
e,e’ . d,d'f f/

x d(e,e’) x 5(d,d’) x &(f,f)

86

Which completes the proof. The last simplification step is obtained by replacing é;, and e with ey, d*
and d*” with d* and s and s’ with § since these need to be equal for any term to contribute to the final
sum. The commutativity of S then allows V' (7}),, 4+ to be moved to its place in the sequence.

O

Theorem 6.4. If x is the goal item, then Z(x) = I. Else,
Zz)= P (V(a) @k Uy, Viagn), ... Vian))"

7,01 ,..,Qk,b 5.1
almak _ .
5= and T=a;

® (V(ag),...,V(ag—1)) @ Z(b)

Proof. by definition Z(z) = D peouter(z) £ (D). Either x is a goal item, in which case Z(z) = Z() =
Is.

Otherwise the outer trees outer(z) could be written as the union of outer trees outer (k:, %) for
each rule #%= where a;, = x for some k. Hence:

Z(z) = &y &y Z(D)

ajﬂlawvak:b s.t. DEouter(k,W)
71'; E and r=a;

For the inner part of this equation we have:

P Z(D) =

DEouter(k,W)

D D D

Dycouter(b) Dq, €inner(ai),..., Dak+1€inner(ak+1),...,
Dq, _, €inner(ag_1) D, €inner(an)

(V(Dal) D% [IDakxds, V(Dag,) V(Dan)Dﬂ
® (V(Day); - -, V(Day_,)) @ Z(Dy)

Since @ distributes over &, this can rewritten as

&y Z(D) =

Deouter(k, %)

@ V(Da,) ®y IDak’ @ V(Dak+1)""’ @ V (Da,)

Dale Dak+1€ Dane
inner(az) inner(axy1) inner(an)
® B VD). &y V(Dq,)
Do, €inner(az) Dg,,_, €inner(ag_1)
P Z(Dy)
Dy couter(b)

And since V' (a;) and Z(Dj) are defined as the summation of their inner and outer trees respectively

D b=

DGouteT(k, W)

(V(ar) @k (Lo, V(aksa), -+, Vian)]))" @ (V(az), ..., V(arg-1)) @ Z(b)

87

Replacing the inner part of the previous equation with this term gives us the desired equality, completing
the proof. 0

Appendix B - Inside and Outside Calculations for Looping Buckets

In computing the inside and outside values with an item-based description, we assume a pre-computed
ordering over items in the form of buckets. For items x and y, we write bucket(x) < bucket(y) if the
value of y depends on the value of x. So far we have assumed that items could be simply sorted so that no
item directly or indirectly depends on itself, and given the inside and outside formulas accordingly. In this
section we give the equivalent formulas for items in looping buckets. Items in a looping bucket depend on
each other and computing their values might require an infinite sum. Our presentation and proofs both
follow that of Goodman (1998).

For an item z in a looping bucket B, let the generation of a derivation tree x to be the maximum number
of items in B that could appear in a single path from the root to a leaf. This intuitively provides an ordering
for processing a potentially infinite number of trees by starting from generation 0 and incrementally
adding larger and larger trees. We will denote the set of inner trees of x with generation at most g with
inner<(z, B) Adding up the values of all inner trees of x that have generation at most g then gives us an
approximation for the true inner value of x, and the approximation gets better as g gets larger. Formally,
we define a g generation value for an item x in bucket B as:

Vgg(l‘,B) = @ V(D)

Deinner<y(z,B)

For w-continuous semirings, the infinite sum is equal to the supremum of the partial sums (Kuich 1997,
613), hence (Goodman 1999, 589):

V)= € V(D) =supVey(z,B)
Deinner(x) g

Fortunately, tensors of semirings of set dimensions are w-continuous as long as the underlying semiring
is w-continuous. We give the necessary definitions to establish this property:

Definition 8. (Kuich 1997, 611) A semiring is naturally ordered if there is a partial ordering T such that
x Cyiffthereisazst. x @z =1y.

Definition 9. (Kuich 1997, 612) A naturally ordered complete semiring is w-continuous if for any sequence
x1, %2, ... and for any constant y, if for all n, Py, ,, vs T y then P, x; Ty

Notice that for the set of tensors in S9 where d is an arbitrary list of positive integers, if the underlying
semiring has a natural ordering then this could be extended straightforwardly to S by the following rule:
X C Y iff X; C Y; for all indices i. It is straightforward to check that if the underlying semiring is
w-continuous, then S9 is w-continuous as well.

Goodman (1999) gives a formula for V<4 (x, B) in order to compute or approximate the supremum.
Below we give the analogous formula for partial semirings:

Theorem B.1. For items x in a looping bucket B and the generation g > 1

Veg(w,B)= €P Kyla1,B) @ [Ky(az, B),..., Ky(ay, B)]

[a1,...,ar]
ot ay,.-,ap
T

Where
V(a) ifa¢ B

Ky(a,B) = {V§g1(a,B) ifac B

88

Proof.

Veg(a, B) = @& vw

Deinner<y(z,B)

— @ @ V ({(z: Day,...Da,))

[a17"'7ak] Dlll Einn@"ggfl (alvB)7"'7
s.t. al’;’ak Dq, €inner<y_1(ax,B)

- P D VD) V(D). V(D)

[a1,...,ax] Da €inner<y_1(a1,B),...,
s.t. al’;’ak Dq, €inner<,_1(ay,B)

- @ @ V(Dth)

[a1,...,a] Da, €inner<y_1(a1,B)
S.t. a17u,ak
xT

® P V(Day), - - - D

Dq, €inner<g_(az,B) Da,, €inner<gy_1(ag,B)

= B Vegi(ar, B)® [Veg-i(az, B),..., Veg1(ar, B)]

[a1,...,ax]
S't. a17.4,ak
x

Note that if a; is not in the bucket B then V< _;(a;, B) = V' (a;), hence V<4_1(a;i, B) can be replaced

with K (a;, B), completing the proof.

We will follow a similar strategy for computing the outside values of items that belong to a looping
bucket. The only difference is the slight difference in the definition of the generation of of the tree. If
D € outer(z) where = belongs to a looping bucket B, then the generation of D is maximum number of

V(Day)

items that could appear in a single path from the root to x, where x is included in the count. Let

Zeg@,B)= @ Z(D)

Deouter<y(z,B)

Theorem B.2. For items x in a looping bucket B and the generation g > 1

Zgg(.%', B) = @ (V(a1> Ok [le? V(ak+1>7 R V(an)])ﬂ-

7,a1,..,ak,b s.t.
ﬂ,l...(lk _ X
e and r=a;

®[(V(ar),...,V(ax—1)] ®" Hy(b, B)

Where 7 is defined as in Theorem 6.4 and

Z(b) ifb ¢ B

HhB) = {Zggl(b,m ifbe B

&9

Proof.

ZSQ(J}?B): @ Z(D)

Deouter<y(z,B)

D

) Z(D)

Ga1,-akbSt Deoutercy y (k,Myon)

ala _

Tk and x=a;

j,a%..,ak,bs.t. Dycouter<y_1(b) Da, €inner(a1),..., Dak+1€inner(ak+1),...,
Lok and z=a; Dq,,_, €inner(ag_1) Da,, €inner(an)

(V(Dar) @k Dy xass V(D)o V(D))
® (V(Da2)7 SRR V(Dak,l)) ®* Z<y4(Ds, B)

s

= @ @ V(Da1)®k¢ IDakv @ V(DakJrl)v"'?@V(Dan)

7,a1,..,ak,b s.t. Dg, € Dak+1 Day €

A%k and z=a; \inner(a1) inner(aj41) inner(an)

® P V(Dw) -) V(Da,_,)

Day €inner(az) Dg,,_, €inner(az_1)

®* @ ZSg—l(vaB)

Dy€couter<g_1(b)

- @ (V(a1) @k Loy, V(aks1), .-, Vian)])™

7,a1,..,a,b s.t.
aln.ak _ X
5 and r=a;

[[(V(ag), cey V(ak_l)] ®* Zggfl(b, B)

Like the inner case, note that for an item b not in the looping bucket b, Z<,_1(b, B) = Z(b), hence we
can replace Z<,_1(b, B) with H,(b, B), completing the proof. O

90

Advances in using
Grammars with Latent Annotations
for Discontinuous Parsing

Kilian Gebhardt
Department of Computer Science
Technische Universitidt Dresden
D-01062 Dresden, Germany
kilian.gebhardt@tu-dresden.de

Abstract

We present new experiments that transfer tech-
niques from Probabilistic Context-free Gram-
mars with Latent Annotations (PCFG-LA) to
two grammar formalisms for discontinuous
parsing: linear context-free rewriting systems
and hybrid grammars. In particular, Dirich-
let priors during EM training, ensemble mod-
els, and a new nonterminal scheme for hy-
brid grammars are evaluated. We find that our
grammars are more accurate than previous ap-
proaches based on discontinuous grammar for-
malisms and early instances of the discrimina-
tive models but inferior to recent discrimina-
tive parsers.!

1 Introduction

Many tasks in natural language processing, such
as machine translation, information extraction, and
sentiment analysis, benefit from syntactic analysis
(Culotta and Sorensen, 2004; Ding and Palmer,
2005; Duric and Song, 2011). Often syntax is
represented by means of constituents. Languages
with a flexible word order such as German re-
quire constituents that are discontinuous, i.e., con-
stituents that cover words which do not consti-
tute a continuous interval in the sentence. To this
end, generalizations of context-free grammars such
as tree adjoining grammars (Joshi et al., 1975)
and linear context-free rewriting systems (LCFRS,
Vijay-Shanker et al., 1987) have been proposed.
Although the parsing complexity with these for-
malisms is polynomial in the length of the input
sentence (for a fixed grammar), they are often con-
sidered too slow to be practically useful. Also the
accuracy of LCFRS-based parsers does not match
up to their continuous counterparts.

Instead, a wide range of models that either ap-
ply transition systems with a reordering mecha-

!The implementation is available at https://github.
com/kilian-gebhardt/panda-parser/.

91

nism or are based on a dependency-to-constituency
transformation have been proposed in recent years
(Hall and Nivre, 2008; Versley, 2014a; Maier, 2015;
Fernidndez-Gonzélez and Martins, 2015; Coavoux
and Crabbé, 2017; Corro et al., 2017; Stanojevic¢
and Garrido Alhama, 2017; Coavoux and Cohen,
2019; Fernandez-Gonzdlez and Gémez-Rodriguez,
2020). There are two notable exceptions: van Cra-
nenburgh et al. (2016) considers a discontinuous
extension of the data-oriented parsing approach.
Gebhardt (2018) studies the extension of two gram-
mar formalisms with latent annotations: LCFRS
and hybrid grammars (Nederhof and Vogler, 2014),
which is a synchronous grammar formalism that
couples a string generating grammar (specifically:
LCFRS) and a tree generating grammar (specifi-
cally: simple definite clause programs; Deransart
and Matuszynski, 1989). In particular, Gebhardt
(2018) analyses the effect of a generalization of
Petrov et al.’s split/merge procedure (2006), which
adaptively refines the grammar’s nonterminals by
automatic splitting and merging. Although this re-
finement strategy showed vast improvements over
the respective unrefined grammar, some choices in
the experimental setup of Gebhardt (2018) can be
enhanced:

(1) The expectation maximization algorithm (EM,
Baker, 1979), which is a subroutine of the
split/merge procedure, utilizes a likelihood-
based objective that is prone to overfitting.

(i) Ensemble-models obtained by running the

split/merge procedure with different random

seeds were successfully applied for continu-
ous parsing (Petrov, 2010) but not considered

in Gebhardt (2018).

(iii)) Gebhardt (2018) supposes that the initial gran-

ularity of the grammar’s nonterminals mat-

ters as the state-refinement procedure does
not fully recover them.

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 91-97
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

In this work, we address the above points by
(i) comparing the likelihood-based objective to a
Maximum-a-Posteriori (MAP) objective, (ii) evalu-
ating ensemble models, and (iii) proposing a new
nonterminal naming scheme for hybrid grammars.
We hypothesize that these steps are complementary
in improving the accuracy of the parsing model.
Although we do not expect to reach or even sur-
pass the performance of recent discriminative ap-
proaches (in particular those utilizing neural nets),
we suppose that these experiments foster the under-
standing of the limits of the different architectures.

2 Model

We consider models based on LCFRS and hybrid
grammars. Vijay-Shanker et al. (1987) and Geb-
hardt et al. (2017) give formal definitions of these
formalisms, respectively. Baseline grammars are
induced from the training data using the induc-
tion techniques of Kallmeyer and Maier (2013) and
Gebhardt et al. (2017), respectively. LCFRS are
either binarized right-to-left (r2¢) or head-outward
(ho) with vertical and horizontal Markovization
set to 1. For hybrid grammars the induction is
parametrized such that the LCFRS-component has
fanout 2.

The baseline grammars are refined using a vari-
ant of Petrov et al.’s split/merge algorithm (2006),
which is described in Gebhardt (2018). This al-
gorithm consists of multiple split/merge cycles in
each of which the EM algorithm is used to fit the
rule weights to the training data. To obtain MAP
training, we modify the EM algorithm by including
a Dirichlet prior (see Johnson et al., 2007, Sec. 2.3).
This is implemented by incrementing each rule
count by a non-negative default value in the “ex-
pectation” phase.

Gebhardt (2018) reports that LCFRS outperform
hybrid grammars but conjectures that this might be
an artifact of the choice of nonterminals in the base-
line grammar. The nonterminal naming schemes
child and strict labeling for hybrid grammars (orig-
inally introduced by Nederhof and Vogler, 2014)
name a nonterminal based on the subset of tree
nodes U? that is generated by the nonterminal. As
illustrated in fig. 1, in strict labeling the roots of
maximum subtrees formed by U are used in the la-
bel, where consecutive sibling nodes are joined. In
child labeling, sequences of sibling nodes of length

2How these nonterminals/subsets are determined is de-
scribed in Gebhardt et al. (2017).

92

a scheme nonterminal
b {/é\} o strict: (b,efg)
N T child: (b, children(a))
C

strict-Markov: (b, a e <)

Figure 1: A tree, a subset of its nodes (underlined), and
the nonterminals created for this subset according to
different nonterminal labeling schemes.

> 1 are replaced by the “children(p)” where p is
the parent node. Gebhardt (2018) supposes that
these strategies either lead to a number of nonter-
minals that is too small or too large for favorable
automatic refinement. We explore a trade-off by
Markovizing (cf. Klein and Manning, 2003) the
strict labeling strategy. Where strict labeling uses
sequences s = nj - - - ng of sibling nodes in non-
terminal labels such that £ > 1, we now use the
parent node p of n; - - - ng, the first node ny, and
a cut-off marker <. Each nonterminal label then
consists of sequences s’ = p ny <.

After split/merge refinement, the grammars are
used to parse unseen sentences. Since exact parsing
is NP-hard already for PCFG-LA (see Matsuzaki
et al., 2005), we follow the literature and apply an
approximate tractable objective called max-rule-
product (short: mrp, which projects weights from
the refined grammar to a sentence-specific coarse
one and computes the the most probable derivation
of the latter, see Petrov and Klein, 2007).

Petrov (2010) presents experiments with ensem-
ble models, where different PCFG-LA are obtained
from the same training data by changing the ran-
dom seed. During parsing the mrp objective is
applied where each rule weight of the coarse gram-
mar is set to the product of the weights that result
from projecting with the individual grammars. This
ensemble grammar showed significantly improved
accuracy over the best single grammar. We instanti-
ate this approach for LCFRS and hybrid grammars
using 4 random seeds.

3 Experiments

Data. We present experiments on the German
TIGER (Brants et al., 2004) and NEGRA (Skut et al.,
1997) corpora. For TIGER, we use the SPMRL
split (Seddah et al., 2014, short: SPMRL) and the
split by Hall and Nivre (2008, short: HNOS) but
optimize hyperparameters solely on HNOS. For
NEGRA we use the split by Dubey and Keller
(2003). For evaluation we compute the labelled

TIGER HNOS NEGRA
NTs coverage parse F1 NTs coverage parse F1
grammar dev. set fails (< 40) dev. set fails (< 40)
LCFRSy, 767 86.9% 4 6829 716 88.2% 4 68.88
LCFRS;»¢ 817 84.7% 4 70.36 787 82.7% 8 70.07
hybrid child 288 92.5% 11 63.19 279 93.5% 2 62.06
hybrid strict-Markov 1,783 81.9% 108 72.18 1,623 81.1% 42 71.34
hybrid strict 32,281 50.0% 166 6990 20,766 53.9% 34 68.82

Table 1: Statistics for the baseline grammars induced from NEGRA and TIGER (after likelihood-based training).
For the dev. set we report: coverage, i.e., the percentage of gold parse trees that can be derived with the grammar;
parse fails, i.e., the number of sentences for which the grammar cannot derive any parse tree; labeled F1 for the

parse tree with the most probable derivation.

HNO8 NEGRA

grammar F1 (ens.) Disc. F1 (ens.) F1 (ens.) Disc. F1 (ens.)
Likelihood-based training

LCFRSy, 78.85 £0.34 7991 3257 +£1.91 33.81 80.14 +£0.54 81.35 39.57 +2.00 41.09
LCFRS,»¢ 79.25 £0.15 79.93 33.82 £0.21 34.19 78.74 £0.43 80.25 38.01 +1.64 39.49
hybrid child 77.82 £0.24 78.52 30.64 £0.28 31.15 80.38 £0.33 82.06 40.73 +0.86 44.52
hybrid strict-Markov ~ 79.66 +0.23 80.55 45.56 +£0.55 47.65 77.51 £0.32 78.17 39.27 £1.96 42.18
MAP training (default count: 1.0)

LCFRS, 79.03 £0.42 79.83 30.98 £0.53 33.00 80.88 +£0.23 82.27 40.40 +2.27 41.96
LCFRS,y, 80.01 £0.16 81.02 34.15+0.22 35.70 79.38 £0.79 80.79 40.92 £2.48 43.04
hybrid child 78.56 £0.23 79.36 32.15 £0.61 33.36 81.75 +£0.26 83.33 40.31 +0.68 43.06
hybrid strict-Markov 80.54 £0.16 81.75 47.32 £0.96 49.82 77.62 £0.12 78.60 40.23 +£0.89 42.52

Table 2: (Average) F1-scores on the dev. set (length < 40) after training for 4 s/m cycles at 50% merge rate (HNOS)
and 6 s/m cycles at 80% merge rate (NEGRA). Columns labeled (ens.) show scores for the ensemble models.

F1 and labelled discontinuous F1 using discodop®
(van Cranenburgh et al., 2016) with the included
proper.prm parameter file. In the tables we list
average F1 scores and standard deviation over 4
grammars with different random seeds, except for
ensemble experiments where we execute just one
run combining those 4 grammars.

Properties of baseline grammars. We induce
baseline grammars from the training data and
display their properties in table 1. We see that
Markovizing the strict labels effectively reduces
the number of nonterminals (NTs) and leads to the
most accurate baseline grammars. Still, this ap-
proach comes at the cost of reduced coverage in
comparison to the child labeling hybrid grammar
and the LCFRS. On NEGRA we see an increase
in parse failures also in comparison to strict label-
ing. This is due to the addition of vertical context

3https://github.com/andreasvc/disco-dop

93

(i.e., the parent node) that is not present in strict
labeling.

Training objective. We use the split/merge algo-
rithm to refine the baseline grammars using both a
likelihood-based and a MAP-based objective with
default count 1.0 during EM training*. Differences
between both training modes are displayed in ta-
ble 2 for HNO8 and NEGRA. MAP training in many
settings improves the accuracy. In particular, using
non-ensemble grammars the average F1 score on
all constituents always improves. The average F1

*Next to the default count the training has other hyperpa-
rameters, e.g., the rate of splits that is merged or the number
of s/m cycles. In early experiments we found default count
values around 1.0 to work best. Also, an increase of the merge
rate from 50% to e.g. 80% or 90% often does not harm the
accuracy and allows for smaller grammars or the execution of
additional split/merge cycles. We used such an optimized set-
ting for NEGRA (and for TIGER on the test set). An exhaustive
grid search that optimizes these parameters for all consid-
ered grammars and corpora is computationally expensive and
beyond the scope of this article.

NEGRA SPMRL HNO8
F1(<40) F1 Disc. F1 F1 Disc. F1 FI1 (<40)
this work
hybrid grammar (average of 4 grammars) 81.1 80.3 40.7 76.7 38.9 80.7
hybrid grammar (ensemble) 82.5 81.7 43.5 71.7 40.7 81.6
chart-based approaches
Kallmeyer and Maier (2013) © 75.8F - - - - -
van Cranenburgh et al. (2016) O 76.8 - - - - 78.2@
Versley (2016) 0® - - - 79.5 - 82.9
Gebhardt (2018) © - - - 75.1 - 79.3
Corro (2020) ® / (without pre-trained word embeddings) - 86.2 54.1 85.5 53.8 -
Corro (2020) ® / (with BERT, Devlin et al., 2019) - 91.6 66.1 90.0 62.1 -
dependency-to-constituency conversions
Hall and Nivre (2008) - - - - - 79.9
Fernandez-Gonzalez and Martins (2015) 81.1 80.5 - - - 85.5
Corro et al. (2017) / - - - 81.6 - -
Ferndndez-Gonzélez and Gémez-Rodriguez (2020) - 86.1 59.9 86.3 60.7 -
transition systems

Versley (2014a,b) - - - - - 74.2
Maier (2015) 77.01 - 19.87 747 188 79.5
Maier and Lichte (2016) - - - 76.5 16.3 80.0
Coavoux and Crabbé (2017) 82.8 82.2 50.0 81.6 49.2 85.1
Stanojevi¢ and Garrido Alhama (2017) / 83.4 82.9 - 81.6 - 85.3
Coavoux and Cohen (2019) ® / - 83.2 56.3 82.5 559 -
Coavoux et al. (2019) ® / - 83.2 54.6 82.7 559 -

Table 3: Test results with gold POS tags (systems/scores with @ use predicted tags; 1: sentence length < 30 and
no discounting of root notes in F1-score; O: grammar-based model; /: neural scoring component).

score on only discontinuous constituents does not
adhere to this trend in two cases. Note however that
the prediction of discontinuous constituents seems
to be comparably unstable (cf. the high variance).
This indicates that a larger sample size is needed to
reliably judge the influence of MAP training on the
discontinuous F1. Also in case of ensemble models
there are two grammars where the ensemble model
trained with the MAP objective is less accurate.

Ensemble models. Comparing the (Disc.) Fl1-
scores of the ensemble model with the averages
of the individual grammars, we always see an im-
provement, which in many cases is also well above
the standard deviation.

Selection of grammars. For HNO8 we obtain
the best results with hybrid grammars with the
Markovized strict labeling, which also outperform
LCFRS in contrast to the experiments by Gebhardt
(2018). In experiments with NEGRA we see that the
child nonterminal scheme is more accurate than the
Markovized strict one. This might be explained by
the smaller corpus size which may lead to sparsity

94

problems if nonterminal granularity is higher. The
hybrid grammar with child labeling scores better
than the LCFRS.

External comparison. Test set results are given
in table 3. For NEGRA we apply the child la-
beling scheme and train for 7 s/m cycles using
a merge rate of 80% and the MAP objective. For
TIGER we apply the Markovized strict labeling
scheme and train for 5 s/m cycles using a merge
rate of 90% and the MAP objective. The compar-
ison with results from the literature indicates that
the ensemble of hybrid grammars performs better
than other grammar-based approaches except for
the pseudo-projective approach by Versley (2016).
They are also more accurate than early dependency-
to-constituency and transition-based approaches’.
However, recent models, in particular those uti-
lizing neural nets, are far more accurate than the
hybrid grammars.

SInterestingly, the model by Ferndndez-Gonzalez and Mar-
tins (2015) is superior on TIGER but inferior on NEGRA
(which has a smaller training set).

4 Discussion and conclusions

The experiments provide further evidence that the
split/merge method is applicable and effective be-
yond PCFG. The use of priors and ensembles of
grammars is mostly beneficial and complementary.
From the performance differences between child
labeling and Markovized strict labeling, we can
surmise that the initial nonterminal granularity mat-
ters as the split/merge method cannot fully recover
important splits or at least during parsing the mrp
objective relies on guidance by the baseline nonter-
minal structure. More generally, the performance
differences between the considered grammars indi-
cate that a careful choice of the grammar formalism
and the extraction algorithm is not redundant de-
spite split/merge refinement.

Interestingly, the pseudo-projective approach by
Versley (2016) outperforms our strictly discon-
tinuous one. He uses a linguistically motivated
(de)projectivization strategy® that seems to address
the sparsity of discontinuous constituents in the
data very well. Hence, we may conjecture that
true discontinuous grammar formalisms that make
available a large number of discontinuous produc-
tions (based on scarce evidence) may rarely benefit
from the additional expressiveness. To substantiate
this claim certainly a controlled experiment is nec-
essary as differences may as well be artefacts of
the handling of lexical and fall-back rules by Ver-
sley (2016). However, a similar observation was
made concerning (discontinuous) tree substitution
grammars (van Cranenburgh et al., 2016). Also
a recent study by Corro (2020) finds that a very
restricted mode of discontinuity, which can be sim-
ulated by a series of continuous combinations, is
more accurate than more expressive modes.

The research on discontinuous parsing with la-
tent variable grammars may also be extended by
considering spectral algorithms (cf. Cohen, 2017,
for an overview). In particular, Louis and Cohen
(2015) use latently annotated LCFRS obtained by
spectral algorithms to parse the topical structure
of forum threads. Yet, the application of spectral
algorithms for discontinuous syntactic parsing has
not been investigated.

Acknowledgements

The author thanks the anonymous reviewers, Shay
Cohen, Richard Morbitz, and Thomas Ruprecht for

Boyd (2007) found that discontinuous trees that actually
occur in treebanks can be (de)projectivized without losses.

95

helpful comments on drafts of this paper.

References

James K. Baker. 1979. Trainable grammars for speech
recognition. In Speech Communication Papers for
the 97th Meeting of the Acoustical Society of Amer-
ica, pages 547-550.

Adriane Boyd. 2007. Discontinuity revisited: An im-
proved conversion to context-free representations.
In Proceedings of the Linguistic Annotation Work-
shop, pages 41-44, Prague, Czech Republic.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther Konig, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. Tiger: Linguistic interpretation of a ger-
man corpus. Research on Language and Computa-
tion, 2(4):597-620.

Maximin Coavoux and Shay B. Cohen. 2019. Discon-
tinuous constituency parsing with a stack-free tran-
sition system and a dynamic oracle. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 204-217, Minneapo-
lis, Minnesota.

Maximin Coavoux and Benoit Crabbé. 2017. Incre-
mental discontinuous phrase structure parsing with
the gap transition. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 1259-1270, Valencia, Spain.

Maximin Coavoux, Benoit Crabbé, and Shay B. Cohen.
2019. Unlexicalized transition-based discontinuous
constituency parsing. Transactions of the Associa-
tion for Computational Linguistics, 7:73-89.

Shay Cohen. 2017. Latent-variable PCFGs: Back-
ground and applications. In Proceedings of the 15th
Meeting on the Mathematics of Language, pages 47—
58, London, UK.

Caio Corro. 2020. Span-based discontinuous con-
stituency parsing: a family of exact chart-based al-
gorithms with time complexities from O(n®) down
to O(n?).

Caio Corro, Joseph Le Roux, and Mathieu Lacroix.
2017. Efficient discontinuous phrase-structure pars-
ing via the generalized maximum spanning arbores-
cence. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1644-1654, Copenhagen, Denmark.

Andreas van Cranenburgh, Remko Scha, and Rens Bod.
2016. Data-oriented parsing with discontinuous con-
stituents and function tags. Journal of Language
Modelling, 4(1):57-111.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. In Proceedings
of the 42nd Annual Meeting on Association for Com-
putational Linguistics, ACL 04, Stroudsburg, PA,
USA.

Pierre Deransart and Jan Matuszynski. 1989. A gram-
matical view of logic programming. In Program-
ming Languages Implementation and Logic Pro-
gramming, pages 219-251, Berlin, Heidelberg.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota.

Yuan Ding and Martha Palmer. 2005. Machine trans-
lation using probabilistic synchronous dependency
insertion grammars. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Lin-
guistics, ACL 05, pages 541-548, Stroudsburg, PA,
USA.

Amit Dubey and Frank Keller. 2003. Probabilistic pars-
ing for German using sister-head dependencies. In
Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics, pages 96—
103, Sapporo, Japan.

Adnan Duric and Fei Song. 2011. Feature selection
for sentiment analysis based on content and syntax
models. In Proceedings of the 2nd Workshop on
Computational Approaches to Subjectivity and Sen-
timent Analysis (WASSA 2.011), pages 96-103, Port-
land, Oregon.

Daniel Ferndndez-Gonzélez and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1523-1533, Beijing,
China.

Daniel Ferndndez-Gonzdlez and Carlos Gomez-
Rodriguez. 2020. Discontinuous constituent parsing
with pointer networks.

Kilian Gebhardt. 2018. Generic refinement of expres-
sive grammar formalisms with an application to dis-
continuous constituent parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3049-3063, Santa Fe, New Mex-
ico, USA.

Kilian Gebhardt, Mark-Jan Nederhof, and Heiko
Vogler. 2017. Hybrid grammars for parsing of dis-
continuous phrase structures and non-projective de-

pendency structures. Computational Linguistics,
43(3):465-520.

96

Johan Hall and Joakim Nivre. 2008. Parsing discon-
tinuous phrase structure with grammatical functions.
In Advances in Natural Language Processing, pages
169-180, Berlin, Heidelberg.

Mark Johnson, Thomas Griffiths, and Sharon Goldwa-
ter. 2007. Bayesian inference for PCFGs via Markov
chain Monte Carlo. In Human Language Technolo-
gies 2007: The Conference of the North American
Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference, pages
139-146, Rochester, New York.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. J. Comput. Syst. Sci.,
10(1):136-163.

Laura Kallmeyer and Wolfgang Maier. 2013. Data-
driven parsing using probabilistic linear context-
free rewriting systems. Computational Linguistics,
39(1):87-119.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, pages 423-430, Sap-
poro, Japan.

Annie Louis and Shay B. Cohen. 2015. Conversation
trees: A grammar model for topic structure in fo-
rums. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 15431553, Lisbon, Portugal.

Wolfgang Maier. 2015. Discontinuous incremental
shift-reduce parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1202—-1212, Beijing, China.

Wolfgang Maier and Timm Lichte. 2016. Discontinu-
ous parsing with continuous trees. In Proceedings
of the Workshop on Discontinuous Structures in Nat-
ural Language Processing, pages 47-57, San Diego,
California.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsu-
jii. 2005. Probabilistic CFG with latent annotations.
In Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics, pages 75-82,
Ann Arbor, Michigan.

Mark-Jan Nederhof and Heiko Vogler. 2014. Hybrid
grammars for discontinuous parsing. In Proceed-
ings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical Pa-
pers, pages 1370-1381, Dublin, Ireland.

Slav Petrov. 2010. Products of random latent vari-
able grammars. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 19-27, Los Angeles, California.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th Annual Meeting of the Association
for Computational Linguistics, pages 433-440, Syd-
ney, Australia.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Human Language Tech-
nologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference,
pages 404—411, Rochester, New York.

Djamé Seddah, Sandra Kiibler, and Reut Tsarfaty. 2014.
Introducing the SPMRL 2014 shared task on pars-
ing morphologically-rich languages. In Proceedings
of the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages, pages 103—
109, Dublin, Ireland.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997. An annotation scheme for
free word order languages. In Fifth Conference on
Applied Natural Language Processing, pages 88-95,
Washington, DC, USA.

Milo§ Stanojevi¢ and Raquel Garrido Alhama. 2017.
Neural discontinuous constituency parsing. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1666—
1676, Copenhagen, Denmark.

Yannick Versley. 2014a. Experiments with easy-first
nonprojective constituent parsing. In Proceedings
of the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages, pages 39-53,
Dublin, Ireland.

Yannick Versley. 2014b. Incorporating semi-
supervised features into discontinuous easy-first
constituent parsing.

Yannick Versley. 2016. Discontinuity (re)2-visited: A
minimalist approach to pseudoprojective constituent
parsing. In Proceedings of the Workshop on Discon-
tinuous Structures in Natural Language Processing,
pages 58—69, San Diego, California.

Krishnamurti Vijay-Shanker, David J. Weir, and Ar-
avind K. Joshi. 1987. Characterizing structural
descriptions produced by various grammatical for-
malisms. In Proceedings of the 25th Annual Meet-
ing of the Association for Computational Linguistics,
pages 104—111, Stanford, California, USA.

97

Lexicalization of Probabilistic Linear Context-free Rewriting Systems

Richard Morbitz and Thomas Ruprecht
Faculty of Computer Science
Technische Universitit Dresden
01062 Dresden, Germany
{richard.moerbitz,thomas.ruprecht}@tu-dresden.de

Abstract

In the field of constituent parsing, probabilis-
tic grammar formalisms have been studied to
model the syntactic structure of natural lan-
guage. More recently, approaches utilizing
neural models gained lots of traction in this
field, as they achieved accurate results at high
speed. We aim for a symbiosis between prob-
abilistic linear context-free rewriting systems
(PLCFRS) as a probabilistic grammar formal-
ism and neural models to get the best of both
worlds: the interpretability of grammars, and
the speed and accuracy of neural models. A
combination of these two could be achieved
by applying supertagging to PLCFRS. This ap-
proach requires lexical grammar formalisms.
Here, we present a procedure which turns any
PLCFRS G into an equivalent lexical PLCFRS
G’. Moreover, we show how the derivations
in G’ can be transformed to obtain their corre-
sponding original derivations in G. Our con-
struction for G’ preserves the probability as-
signment and does not increase parsing com-
plexity compared to G.

1 Introduction

Constituency parsing is a syntactical analysis in
NLP that aims to enhance sentences with, usually
tree-shaped, phrase structures (for an example cf.
the left of Fig. 1). Formalisms such as context-free
grammars (CFG) are used in this setting because
they are conceptually simple, interpretable, and
parsing is tractable (cubic in sentence length).
Discontinuous constituents span non-contiguous
sets of positions in a sentence. The resulting phrase
structures do not take the shape of a tree anymore,
as they contain crossing branches (cf. the left of
Fig. 1), and cannot be modeled by CFG. As a coun-
termeasure, many corpora (e.g., the Penn Treebank
(PTB)) denote these phrase structures as trees nev-
ertheless and introduce designated notations for

98

discontinuity, which is then often ignored in pars-
ing. However, discontinuity occurs in about 20 %
of the sentences in the PTB, and parsing discon-
tinuous constituents can improve accuracy (Evang
and Kallmeyer, 2011). For this, so-called “mildly
context-sensitive” grammar formalisms have been
investigated, e.g., tree-adjoining grammars (TAG;
Joshi et al., 1975) and linear context-free rewrit-
ing systems (LCFRS; Vijay-Shanker et al., 1987).
Their increased expressiveness comes at the cost
of a higher parsing complexity: given a sentence
of length n, parsing is in O(n®) for TAG and
O(n*>™on@)y for an LCFRS G. The fanout is
grammar-specific and reflects the degree of dis-
continuity in the rules of G. The expressiveness
of TAG equals that of LCFRS with fanout 2. An
LCFRS derivation of a discontinuous phrase is
shown in the right of Fig. 1.

Supertagging has been used for more efficient
parsing with lexical TAG (Bangalore and Joshi,
1999). A TAG is lexical if each rule contains one
word. A supertagger selects for each position of
the input sentence a subset of the rules of the TAG;
these are the so-called supertags. Parsing is then
performed with the much smaller grammar of su-
pertags. Recently, the performance of supertagging
has been improved by using neural classifiers for
the selection of supertags (Vaswani et al., 2016).
The goal of our research is to use supertagging
for parsing with LCFRS, because they are more
expressive than TAG.

In this paper, we lay the theoretical founda-
tions for a supertagging-based LCFRS parser. As
LCFRS obtained from corpora such as the PTB
are usually not lexical, we employ a lexicalization
procedure. It can be seen as an instance of the tech-
nique for lexicalization of multiple context-free
tree grammars (Engelfriet et al., 2018). However,
our approach is more concise and does not increase
the fanout of the grammar (thus preserving parsing

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 98—104
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

VP

S N
VP
|
NP NP
NP PP
NP
F—Iﬁ
DT NN VBZ VBN INDT NN NN
\ \ \ \ I \ \
A hearing is scheduled on the issue today

. NP, — (x!x!) (DT, NN)

NP, — (x},x!) (NP,, PP)

— N

PP — (x'x}) (IN,NP;)

/N VRN

DT — (A) NN — (hearing) IN — (on) NP, — (x:xf) (DT, NN)

N

DT — (the) NN — (issue)

Figure 1: Left: a discontinuous phrase structure tree of the sentence A hearing is scheduled on the issue today.
Right: an LCFRS derivation of the discontinuous noun phrase A hearing on the issue.

complexity). Moreover, the approach is extended
to account for probabilistic parsing. Furthermore,
we introduce a procedure which recovers from each
derivation of a lexicalized LCFRS all correspond-
ing derivations of the original grammar.

This short paper is to be seen as a report on
our approaches to lexicalization and recovery of
derivations. An implementation of the supertagger
and experimental evaluation are currently work in
progress.

2 Preliminaries

The set of non-negative (resp. positive) integers is
denoted by N (resp. N). We abbreviate {1, ..., n} by
[n] for each n € N. Let A be a set; the set of (finite)
strings over A is denoted by A*. An alphabet is a
finite and non-empty set.

Let § be some set whose elements we call sorts.
An S -sorted set is a tuple (A, sort) where A is a
set and sort: A — §. Usually, we identify (A, sort)
with A, and denote sort by sorty and sort™!(s) by
A for each s € §. The usual notation for sets
(€,C,U,...) is used with sorted sets in the intu-
itive manner. Now let A be an (S* X S)-sorted
set. The set of trees over A is the §-sorted set
TA where T4 = {a(t;,....,tr) | k € N, s1,..., 5 €
S,a € Ag 55,11 € T?l sk € T?k} for each
s € §. A ranked set A is an (§* X §)-sorted set
where S = {s}; the notation rk4(a) = k abbreviates
sorta(a) = (s¥, 5), and A; abbreviates A). I we
use a usual set B in place of a ranked set, we will
silently assume rkg(b) = 0 for each b € B. Let X
be a set. We let A(X) = {a(x1,...,xx) | ke N,a €
Ak,x],...,xk € X}.

LCFRS. Linear context-free rewriting systems
extend the rule-based string rewriting mechanism
of CFG to string tuples; we describe the gener-

99

ation process by compositions. Let k € N and
Sls...,5k S € Ny; a X-composition is a tuple
(u1,...,us) where each uy, ..., us is a non-empty
string over 2" and variables of the form X{ where
i € [k] and j € [s;]. Each of these variables must
occur exactly once in u; - - - uy and they are ordered
such that xi1 occurs before xl.1 . and x{ occurs before
X{H foreachi € [k—1] and j € [s; — 1]. We denote
the set of 2-compositions by C%; L)t W€ drop
the superscript in the case 2 = 0 (then Cy,...5; 5
is finite); we drop the subscript if we admit any
configuration of k, 51, ..., s and s. We associate
with each composition (u1, ...,
function from £ string tuples, where the i-th tuple
is of length s;, to a string tuple of length s. This
function is denoted by [(uy, ..., uy)]. Intuitively, it
replaces each variable of the form x{ nu,...

by the j-th component of the i-th argument.

’MS

An LCFRSisatuple G = (N, 2, S,R) where ¢ N
is a finite N, -sorted set (non-terminals), X is an
alphabet (terminals), ® S € N (initial non-ter-
minal), and e R is a finite (N* X N)-sorted set

(rules). Each rule is of the form A — ¢(By, ..., By),

where k¥ € N, AB;,...,.By € N, and
z

cE€ C(SortN(By) sorty(By).sorty(A))" The sort of the rule

is (By - - - By, A); we call A the left-hand side (lhs),
Bi, ..., By the right-hand side (rhs) and c the rule’s
composition. We drop the parentheses around the
rhs if kK = 0. We call rules of the form e A — ¢
where A # S terminating, ¢ A — c(B) monic, and
e A — c¢(By,..., By) where k > 2 branching, and
denote the set of these rules in R by R, RM
and R®, respectively. A rule is called lexical,
if its composition contains at least one terminal.
The lcfrs G is called lexical, if each rule is lex-
ical. The set of (complete) derivations in G is
D¢ = T’;. LetweX*andd = r(d,,...,d;) € TR

with r = A — ¢(By,...,Br). The yield of d is
yd(d) = [cl(yd(d1), . . ., yd(dy)).

PLCFRS. A probabilistic LCFRS is a tuple
(G,u) where G = (N,2,S,R) is an LCFRS and
u: R — [0, 1] maps each rule to a probability. The
weight of a derivationd = r(d,...,dy) € TR is
wi(d) = pu(r) - wit(dy) - - - wi(dp).

Top-down Tree Transducers. A fop-down tree
transducer (TT)is atuple A = (Q, 2, 4, g;, 6) where
e (O is a finite set (states), ® 2 and A are ranked
alphabets (input and output alphabet), ® q; € Q
(initial state), and e § is a finite set (transitions).
Each transition is of the form g(o(x1,...,X¢)) = ¢,
where o € % and ¢t € TAVCWX-XD We call a
transition linear (resp. non-deleting) if each vari-
able in {xi,..., Xy} occurs at most once (resp. at
least once) in . We call A deterministic if, for each
g € Q an o € X, there is at most one transition of
the form g(o(xy,...,X;)) — tin d. We call it [in-
ear (resp. non-deleting) if each transition is linear
(resp. non-deleting).

In a TT with e-rules (¢TT), the set 6 may also
contain transitions of the form g(x;) — ¢ where ¢ €
TAYCW1D and ¢ € Q. We treat them analogously to
transitions where k = 1.

The transduction of A is expressed in terms of the
binary derivation relation =4 over T4V We
write s =4 t if there is a subtree g(o (s, ..., St))
in s and a transition g(o(Xy,...,X;)) — t’ such
that 7 is obtained by replacing g(o(s1, ..., s¢)) in s
by ¢’ and replacing x; by s; for each i € [k]. The
transduction of A is the relation [A] = {(s,?) €
T xT | qi(s) =7 t}. If A is deterministic, we
consider [A] a function.

TTs are a special case of TTs with regular looka-
head (TTR) that were used by Engelfriet et al.
(2018). For an excellent overview on tree trans-
ducers, we refer to Maletti (2010).

.....

Equivalence of (P)LCFRS. Two LCFRS G and
G’ are called IdTTR-equivalent if there are two
linear and deterministic TTR, 7 and 7’, such
that e [7](d) € DY and yd([T1(d)) = yd(d)
for each d € DY, and e [T’](d") € D¢ and
yd([T'1(@)) = yd(d’) for each '’ € DY. Two
PLCFRS (G,u) and (G’,u’) are called IdTTR-
equivalent if G and G’ are 1dTTR-equivalent and
o Wt([T](d)) > wt(d) for each d € DY, and
o Wt([T"](d")) > wt(d’) for each @’ € DY".

[TT, as well as [T’], may map multiple deriva-
tions to one single derivation. The relation between

100

the weights assures that this mapped derivation
assumes the greatest of the original derivations’
weights.

3 Lexicalizing LCFRS

For the remainder, we assume (without loss of gen-
erality; cf. Seki et al., 1991) a PLCFRS (G, w)
where G = (N,2,S,R) is terminal- and initial-
separated, i.e. each rule is either of the form
A —> (oc)withoceXorA — c¢(By,...,B;) where
¢ € C (i.e. ¢ contains no terminal symbols) and
none of By,..., By is §. Starting with (G, u), we
incrementally construct a lexical PLCFRS in three
steps:

1. Monic rules are removed.

2. Terminating rules are removed and, for each
branching rule, each subset of rhs nontermi-
nals is replaced with lexical symbols of match-
ing terminating rules. This construction ob-
tains terminating rules with at least two lexical
symbols and each constructed monic rule con-
tains at least one lexical symbol.

. A terminal is cut from each terminating
rule and pasted into a remaining non-lexical
branching rule if a derivation with the branch-
ing rule reaches the terminating rule at some
point. At the end of this step, each rule con-
tains at least one terminal.

The first two steps are direct instances of the lex-
icalization for multiple context-free tree grammars
as introduced by Engelfriet et al. (2018).

Step 1 (Dechain). In the first step, we remove
each monic rule and chain its composition with the
composition of each other reachable rule.
Definition 1. Let k € N, 5,5, 51,...,5 € N,
¢ € C,..5,5) and ¢’ € C(y,¢. We denote the com-
position [¢’]l(c) € Cy,...,¢ by ¢’ 0 C.]
The set of rules R4, is the smallest set
R such that ¢« R \ R™M C R e for each
A = c|(B) € RM and B — ¢(Cy,....Cy) € R,
the rule A — ¢ 0 3 (C1, ..., Cy) is in R. We define
the function ugc: Rge — [0, 1] such that, for each
ruler =A — ¢(Cy,...,Cr) € Ry, the value is

Hac(r) = max {u(r)} U
{u(ry) - wae(r2) | 1 = A — ¢ (B) € RM,
= B — Cz(Cl,...,Ck) € Rdc:Cl o0Cy = C}.
The set Rqc, as well the function pgc, can be effi-

ciently computed with an instance of the algorithm
by Aho et al. (1974, alg. 5.5), cf. alg. 1 in app. A.

PP — (x!x!) (IN,NP,)
A
PN PP — (onx!) (NP,)
IN - (on) NP, — (x!x2) (DT, NN) \
p() m/A A\\f&‘l) = issue NP, — (theissue)
DT — (the) NN —s (issue)

Figure 2: Fusing of terminals. Left: derivation of Gyc.
Right: corresponding derivation of Gy, where the ter-
minals of the leaves are inserted into their parent rules.

Step 2 (Fuse Terminals). In this step, the sym-
bols of the terminating rules are inserted into non-
terminating (terminal-free) rules. The intuition is
given in Fig. 2. For the formal definition we first
introduce the insertion operation.

Definition 2. Let A — ¢(By,...,By)bearule, m C
{i € [k] | B; € N1} and p:m — 2. Moreover, let
i1,..., iz be the indices in [k] \ 7 in ascending
order. The composition c[p] is obtained from c¢
by replacing each variable of the form x{ e by p(i)

We denote A —

ifl'Eﬂ',OI‘Obeéifig i.
clpl(Biys ..., By) by A = ¢(B1,...,Blp]. O

For each rule r = A — ¢(By,...,B;), we de-
fine the set F(r) = {p:mr —» X | n C [k],Vi €
m B — (p@) € Rg)}. It contains each function
that replaces a subset of r’s rhs nonterminals with
terminal symbols respecting the terminating rules;
we use it to define the set of rules Ry and the func-
tion ug: Ree — [0, 1]:

Ry = {rlpl | r € Rac \RY,p € F(r)),
ua(r') = max {pac(r) - | |, Hac(Bi = (0(0)
| r € Ryc \Rg),p € F(r):rlp] = r'}.

Step 3 (Propagate Terminals). In this final step,
terminal symbols are inserted into the remaining
non-lexical branching rules. Intuitively, one termi-
nal symbol is cut from each terminating rule, which
now has at least two occurrences of terminal sym-
bols. This symbol is then pasted into a non-lexical
branching rule that reaches the rule it was cut from
via its second right-hand side nonterminal. If there
are rules between the terminating rule the symbol
was cut from and the rule it shall be pasted into,
then the information that a terminal can be pasted
through these rules is propagated via the nontermi-
nals. For this we extend the set of nonterminals to
Ny = NUN x 2, where (A,0) € N x 2 indicates
that o was cut from a rule with left-hand side A
(sorty, (A, o) = sorty(A) for each (A,0) € N X 2).

101

Fig. 3 shows an example of how the terminal sym-
bols are propagated through a derivation.

Definition 3. Let o € 2 and r be a rule of the
form A — (ouy,un, ..., us) (B, ..., By). We denote
(A,0) = (uy, ..., us5) (By, ..., By) by cut(r). O
Definition 4. Let r = A — c¢(By,...,By) be a
rule and i € [k]. We obtain ¢’ from ¢ by replac-

ing the variable xl.1 with O'Xl! and denote A —
¢’ (B, ...,(B;,0), ..., By) by paste! (r). O

Let Rg) denote the set of rules in Rgs) without
terminals. We define the sets of rules

&)

’ 2
R' = {paste;(r) | r € R,

B
Ry = (R \RPHUR
U{cut(A - ¢)|A - cERg)}

URW,oex

oeZfURY \RY)

U { cut(paste},(r)) |re R

.

Note that, in contrast to Engelfriet et al. (2018),
we do not need to split the rules’ compositions,
because we always cut the first symbol. Therefore,
the fanout of the grammar is unchanged.

The applications of cut and paste that led to a
rule in Ry, are unambiguously determined from the
lhs and rhs nonterminals in N X2 These operations
are unambiguously reversible; for each ' € Ry,
there is a rule in r € Ry uniquely determined such
that 7’ is exactly one of e r, ® pasteg(r), e cut(r),
° cut(paste},(r)), ore cut(paste},l (paste?rz(r))). We
define the function wupi: Ry — [0,1] such that
Hpe(r") = pg(r) for each 1’ € Ry

Theorem 5. The PLCFRS ((Np,2,S,Rp), tpt)
and (G, u) are ldTTR—equivalent.

4 Unlexicalizing Derivations

The ultimate goal of parsing is to obtain derivations
of the original grammar (G, i), which are quite
different from the derivations of the transformed
grammar ((Np, 2, S, Rpt), ppe). Therefore we seek
a transformation from T to TX.

Engelfriet et al. (2018) have introduced deter-
ministic linear and non-deleting TTR from T% to
TR, from TR to TR« and from TR to TX; they
were used to show 1dTTR-equivalence of the cor-
responding grammars. The composition of these
transducers yields a transduction from TR to TX.
However, for recovering derivations, these trans-
ducers are not adequate, as a derivation in T or
TR« may have multiple possible originals in TR
or TR, respectively. We want to be able to obtain all
of these derivations, as this may be beneficial for

NP; — (x],x}) (NP, PP)

/pdslc:m\ ~ \\
NP, — (Ahearing) PP — (onx}) (NP;)

. \1
‘\ paste, .
\

cut

cut

NP, — (tﬁe issue)

NP, — (x}, onxj) (NP, (PP, on))

/ N

NP, — (Ahearing) (PP,on) — (the X}) ((NPy, the))

(NP, the) — (issue)

Figure 3: Propagation of terminals. Left: derivation of a (partly lexicalized) LCFRS before the application of
step 3. Right: derivation after step 3, where the is propagated from the leaf to the PP rule and on is propagated

from there to the NP, rule, thus lexicalizing it.

later stages of an application (e.g., when selecting
k best derivations is desired).

For this, we employ two approaches. We map
each derivation in T® to its unique original deriva-
tion by using the transducer of (Engelfriet et al.,
2018); we denote this transducer by Tﬁ' It real-
izes a deterministic tree relabeling which is already
indicated at the end of the previous section. For
the other two transductions, we define novel non-
deterministic tree transducers.

Transduction TRt — TRe, Let r A >
c¢(Bi,...,By) € Ry, 1 C {i € [k] | Bi € Ny},
p:m— 2andiy,..., iy be the elements of [k]\ &
in ascending order. We denote the tree r(dy, . . . , dy),
where d; = B; — (p(i)) if i € m and d; = =(xp) if
i=1ip, by r(xg,...,xplpel

We define the linear and non-deleting TT T}? =
({*}, R, Ryc, =, 0), where ¢ is the smallest set such
that, for eachrule r = A — ¢(Bjy, ..., Br) € Rqc \Rg)
and p € F(r), the transition *(r[p]l(X1, ..., Xk—|x])) —

r(X1, ..., Xp)[p] is in 0.

Transduction TR — TR, Let us denote the
composition (X, ..., Xsorty(4)) by id4 foreach A € N.
We define the linear and non-deleting eTT Te =
(O, Rac, R, (S,ids),6) where QO = [Ju pen{B} X
Csorty(B),sorty(4)) and 6 is the smallest set that con-
tains,

e foreach (B,c) € Q,r =B — ¢’(By,...By) €

R\ R™ and A € N, the transition

(B, C) (A — COC/ (Bl, ceey Bk) (X], veey Xk))
— r((By1,idp,)(X1), ..., (Bk, 1dp,) (1)),

e foreach(A,c)e Qandr=A — ¢’(B) € RM),
the transition (A, ¢)(x1) = r((B, ¢ o ¢')(x1)).
The transduction |[T<d—c]] o |[T<R]] o [[Tff]]: TR —
TR, i.e., the composition of the three transductions
introduced in this section, is the inverse of the
transduction [7"] from the proof of Theorem 5 (cf.
App. B, p. 7). Therefore, the k best derivations
in (G, i) must be among the transductions of the

102

k best derivations in ((Np, 2, S, Rpt), ppt), which
benefits the enumeration of k best derivations.

5 Conclusion

Based on Engelfriet et al. (2018), we have in-
troduced a procedure which constructs for every
PLCFRS G an equivalent lexicalized PLCFRS G’.
Moreover, we have described how to recover from
each derivation of G’ all corresponding derivations
of G. In future work, we will use our approach to
implement a supertagging-based LCFRS parser.

Acknowledgements

We thank our colleague Kilian Gebhardt as well
as the anonymous reviewers for their insightful
comments on drafts of this paper.

References

Alfred V Aho, John E. Hopcroft, and Jeffrey D. Ull-
man. 1974. The design and analysis of computer
algorithms. Pearson Education India.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational linguistics, 25(2):237-265.

Joost Engelfriet, Andreas Maletti, and Sebastian
Maneth. 2018. Multiple context-free tree gram-
mars: Lexicalization and characterization. Theoreti-
cal Computer Science, 728:29-99.

Kilian Evang and Laura Kallmeyer. 2011. PLCFRS
parsing of English discontinuous constituents. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 104—116, Dublin, Ire-
land. Association for Computational Linguistics.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. 10(1):136-163.

Andreas Maletti. 2010. Survey: Tree transducers in
machine translation. In NCMA, pages 11-32. Cite-
seer.

Andreas Maletti and Giorgio Satta. 2009. Parsing al-
gorithms based on tree automata. In Proceedings of

the 11th International Conference on Parsing Tech-
nologies, IWPT 09, pages 1-12, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free
grammars. 88(2):191-229.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with LSTMs. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
232-237.

Krishnamurti Vijay-Shanker, David Jeremy Weir, and
Aravind K. Joshi. 1987. Characterizing structural
descriptions produced by various grammatical for-
malisms. In Proceedings of the 25th Annual Meet-
ing on Association for Computational Linguistics,
ACL 87, pages 104-111, Stroudsburg, PA, USA.
Association for Computational Linguistics.

A Supplemental Algorithms

Algorithm 1 comps shows an instance of the alg.
by (Aho et al., 1974, alg. 5.5) that we use to com-
pute R4. and pqc efficiently.

Require: terminal-separated PLCFRS (G, u)
where G = (N, 2,S,R)

Ensure: pecHAIN(N, R, 1) = (Ryc, Mdc)
1: max v < w denotes v « max(v, w)
2: function comps(N, R, u)
3 let (mA_m(B) =0|A,BeEN,ce ()
4: my < u(r) Vre RM
5: MASIds(A) < 1 VA
6 for Be N do

7 for A,C e N\ {B}do

8 for c;,c; € Cdo

9 W MAse (B) * MB-es(C)

10: max MA—coc, (C) < w

11: return m

12: function pEcHAIN(N, R, u)

13: m < coMmps(N, R,)

14: let (fia—c,,...80)0 = 0 | A, By,..

N,ceC)

15: R’ — R\ R™

16: ay =u(@) VYr' erR

17 forr =B — ¢(Cy,...,Cy) € R\ R™ do

LB €

18: for A e N,ci € C:mpe,) # 0do
19: r—A—>cpocCq,...,Cp)
20: R « R U{r)}

21: max i, < Mma_¢ (B - 1(1)

22: let u: R" — [0, 1] with ¢’ (+') = ,,Vr' € R’
23: return (R, u’)

B Supplemental Proofs

We prove thm. 5 in two steps.

First lem. 7 shall prove that the (unweighted)
underlying grammars, G and (Np,2,S,Ry,) are
1dTTR-equivalent. As linear and deterministic TTR
are closed under composition, the idea is to con-
struct two of them for each step, one that trans-
duces derivations in the original to derivations in
the constructed grammar and vice versa. The three
transducers for each direction are then composed
to obtain transductions from derivations in G to
derivations in (Np, 2, S, R) and vice versa.

Thm. 5 additionally proves the preservation of
the weights. Similarly to the above, we show that
the PLCFRS constructed in each of the three steps
are 1dTTR-equivalent. The property is clearly tran-
sitive.

Definition 6. A 7T is a tuple A = (Q, 2,4, ¢;,)
where Q, 2, 4 and ¢g; are as in TT, and transitions
in ¢ are of the form g(o(x;: Ly, ..., Xk Ly): Lo) —
t where ¢ € Q, o € X, t € TAVCWX) apd
Lo, ..., L are regular tree languages.! We omit
some of the languages Ly, . . ., Ly if they are T>. We
define the binary relation =4 over TAVCT) gych

that s =4 t if there is a subtree g(o (s, ..., ;) in
s and a transition g(o(x1: Ly, ..., Xg: Ly): Lo) —
such that e o(sy,...,8¢) € Lo, s1 € Ly, ..., Sk € Ly,
and e ¢ is obtained by replacing (o (s1, ..., st)) in

s by ¢’ and replacing x; by s; foreachi e [k]. O

Lemma 7. The LCFRS G and (Np, 2, S, Ry) are
1dTTR-equivalent.

Proof. The first two steps are instances of lems. 32
and 37 by Engelfriet et al. (2018), therefore we will
only show the third step.

Step 3. For the construction, we consider Ry and
Ry as ranked sets. For each R € {Ry, Ry} and rule
of the formr = A — ¢(By,...,By) € R, we let
tkp(r) = k.

Let, for each o € X, R, and Rx be the sets
of all rules in Rg of the form A — c¢(By,..., By)
where ¢ is of the form (ouy,u,...,us) and
(x{ul ,Uup, ..., Us), respectively. To decide whether
a terminal symbol may be propagated through a
derivation, we define the look-ahead language L,

'Regular tree languages are recognized by regular tree au-
tomata. We refer to Maletti and Satta (2009) for an overview.

103

for each o= € 2 as the smallest set L such that

L={rdi,....d) | r € Ry, di,...,d; € TR}
U{r(dy,...,dy) | r€Rx,dy € L,
do, ..., dy € TR},
Observation 8. Let d € T® and o € X. The

following are equal: 1. d € L, and 2. yd(d) is of
the form (oup, uy, ..., uy).

We define the IdTTR Ty = ({p, =}, Rer, Ry, *, 0)
where ¢ contains the following transitions

1. *(r(xq,...,%x1) — r(x(x7),...,*(xy)) for

each r € Rg \ Rg),

2. foreachr e Rg), *(r(x1,%x2: Loy X3, ..., XK))
— pasteZ (r)(+(x1), p(X2), #(X3), . . ., #(xz)),

3. p(r) — cut(r) for each r € R(ﬁT),

4. for r € R URY \ RP) and o € 2,
p(r(x1: Ly, X2, ..., Xk))
— cut(paste. (r))(p(x1), #(x2), .. ., *(x¢)), and

5. for each r € Rg) and oy,00p € 2,
p(r(x1: Loy > X2 Loy s X3, -, Xg))
- r(p(x1), p(x2), #(X3), . . . , *(X)) Where
r = cut(paste},l (paste(zrz(r))).

Let us have a close look at some constructions
in these transitions. Letr = A — ¢(By,...,By)
be a rule and (v; € (Z*)B) | i € [k]). We de-
note the composition of cut(r) by cut(c) and the
composition of paste’ (r) by paste! (c).

Observation 9. Let cut(c) be defined, then

[cut(c)](v1, ..., ve) = cut([cll(vy, ..., vg)).
Observation 10. Let v; be of the form

(cuj,up,...,us) for i € [k] and o € 2.
[paste! (c)(vy, ..., cut(;),...,vk) =
[l .-, vp)

Using the observations 8—10 one can easily show
that, for each d € TRt and &’ e TRe: 1. if
*(d) =>>"Tpt d’, then yd(d) = yd(d’), and 2. if
p(d) ﬁ*Tpl d’,thenyd(d’) = (uy,...,us)andd € L,
where (ouy,...,us) = yd(d). This concludes the
proof in the direction TRt — TR,

For the other direction, we observe that the ap-
plications of cut and paste to obtain the rules in
Ry can easily be determined by the occurrences
of the nonterminals in N X 2. The transduction
TR — TR is thus a deterministic relabeling and
can be implemented by a deterministic top-down

tree transducer. Engelfriet et al. (2018, lem. 42, pg.
39) came to the same conclusion for their construc-
tion.]

Theorem S. The PLCFRS ((Np,2, S, Rp), tpt)
and (G, u) are 1dTTR-equivalent.

Proof sketch. We split the proof into the two re-
maining properties to show:

1. wt([T1(d)) > wt(d) for each d € TR, and
2. wt([T’1(d")) = wt(d’)?* for each d’ € TR,

(item 1) The weight functions in sec. 3 are obvi-
ously defined in such a way that the weight of a con-
structed rule is the greatest product of weights for
all involved rules in the construction. For each step,
the transducer T replaces the rules in the derivation
d with an unambiguous constructed rule (this fol-
lows from the inductive structure of the previous
proof). Therefore, the weight wt([7](d)) must be
greater than wt(d).

(item 2) For each step, the transducer 7" gives
us some derivation that contains the rules that were
used to construct the rules in d’. The construction
of T’ for the steps 1 and 2 is ambiguous, so that
we can choose any combination of rules used to
construct 7’ foreachrule v’ ind’. [T’'](d’) then con-
tains each rule in these combinations. Intuitively,
we choose the combination of rules with greatest
product of weights. Then the weight wt([7”](d"))
is wt(d’). [|

2More specifically, we prove wt([T’](d")) = wt(d’) for
each &’ € Tfr,

104

Self-Training for Unsupervised Parsing with PRPN

Anhad Mohananey'*" Katharina Kann?>* Samuel R. Bowman'
'New York University
2University of Colorado Boulder
{anhad, bowman}@nyu.edu
katharina.kann@colorado.edu

Abstract

Neural unsupervised parsing (UP) models
learn to parse without access to syntactic anno-
tations, while being optimized for another task
like language modeling. In this work, we pro-
pose self-training for neural UP models: we
leverage aggregated annotations predicted by
copies of our model as supervision for future
copies. To be able to use our model’s predic-
tions during training, we extend a recent neural
UP architecture, the PRPN (Shen et al., 2018a),
such that it can be trained in a semi-supervised
fashion. We then add examples with parses
predicted by our model to our unlabeled UP
training data. Our self-trained model outper-
forms the PRPN by 8.1% F1 and the previous
state of the art by 1.6% F1. In addition, we
show that our architecture can also be help-
ful for semi-supervised parsing in ultra-low-
resource settings.

1 Introduction

Unsupervised parsing (UP) models learn to parse
sentences into unlabeled constituency trees with-
out the need for annotated treebanks. Self-training
(Yarowsky, 1995; Riloff et al., 2003) consists of
training a model, using it to label new examples
and, based on a confidence metric, adding a subset
to the training set, before repeating training. For
supervised parsing, results with self-training have
been mixed (Charniak, 1997; Steedman et al., 2003;
McClosky D, 2006). For unsupervised dependency
parsing, Le and Zuidema (2015) obtain strong re-
sults by training a supervised parser on outputs
of unsupervised parsing. UP models show low
self-agreement between training runs (Kim et al.,
2019a), while obtaining parsing performances far
above chance. Supervising one run with confident

*Equal contribution.
TNow at Electronic Arts.

105

LANGUAGE
MODEL

D,

CONV-1D
EMBEDDING

Figure 1: Our parser, represented by the dotted box,
outputs syntactic distances D, and D;. Both Dy and
D; can be supervised, but D; can also be learned in a
latent manner.

parses from the last could combine their individ-
ual strengths. Thus, we ask the question: Can UP
benefit from self-training?

In order to answer this question, we propose
SS-PRPN, a semi-supervised extension of the UP
architecture PRPN (Shen et al., 2018a), which can
be trained jointly on language modeling and su-
pervised parsing. This enables our model to lever-
age silver-standard annotations obtained via self-
training for supervision. Our approach draws on the
idea of syntactic distances, which can be learned
both as latent variables (Shen et al., 2018a) and
as explicit supervision targets (Shen et al., 2018b).
We use both of these, leveraging annotations ob-
tained via UP to supervise the two different outputs
of the parser, in addition to standard UP training.

SS-PRPN, in combination with self-training, im-
proves over its original version by 8.1% F1 and
over the previous state of the art (Kim et al., 2019a)
by 1.6% F1, when trained and evaluated on the
English PTB (Marcus et al., 1999): UP can indeed
benefit from self-training. We further perform an
analysis of our self-training procedure, finding that
longer sentences benefit most from self-training.

Although our primary motivation for the de-

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 105-110
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

velopment of a semi-supervised architecture is to
enable self-training, we further hypothesize that,
since language modeling and parsing annotations
seem to provide complementary information, UP
should aid low-resource supervised parsing. As a
proof of concept, we employ SS-PRPN for semi-
supervised training. In extremely-low-data regimes
with no more than 250 labeled parses, SS-PRPN
outperforms supervised and unsupervised baselines
in most settings on unlabeled parsing, and in all
settings on labeled constituency parsing.

Related Work Following the line of research on
non-neural UP models (Clark, 2001; Klein and
Manning, 2002; Bod, 2006), early approaches to
neural UP (Yogatama et al., 2017; Choi et al., 2018)
obtain improved performance on downstream tasks,
yet show highly inconsistent behavior in parsing
(Williams et al., 2018).

Recently, Shen et al. (2018a) introduce the first
high performing neural UP model (Htut et al.,
2018). Dyer et al. (2019) raise concerns that
PRPN’s parsing methodology is biased towards
English trees. Though these concerns are serious,
they are largely orthogonal to our research question
regarding the helpfulness of self-training for UP.

Several models have been introduced since:
Shen et al. (2019) propose an architecture con-
sisting of an LSTM (Hochreiter and Schmidhu-
ber, 1997) with a modified update function for the
LSTM cell state, Kim et al. (2019a)—the current
state-of-the-art—introduce a model based on a mix-
ture of probabilistic context-free grammars, Kim
et al. (2019b) present unsupervised learning of re-
current neural networks grammars, Li et al. (2019)
combine PRPN with imitation learning, and Droz-
dov et al. (2019) employ a recursive autoencoder.
Kim et al. (2020) examine tree induction from pre-
trained models.

2 Model

Syntactic Distances In order to parse a sentence,
a computational model needs to output some kind
of variables representing a unique tree structure.
The variables we use are syntactic distances as in-
troduced by Shen et al. (2018a). They represent the
syntactic relationships between all successive pairs
of words in a sentence. If the distance between two
neighboring words is large, they belong to differ-
ent subtrees, and, thus, their traversal distance in
the tree is large. A parse tree can be created by
finding the maximum syntactic distance, splitting

106

Algorithm 1: Tree to latent distances D

1 Dy < [1] * leavesiree > leaves:, e :leaf count of tree
2 b+ 0

3 maz < 100 > max: max possible depth of tree
4 Function DISTANCE (tree, b, max)

5 DISTANCE (tree;, b, max-1)

6 X < tree, > tree,: right child of tree
7 while True do

8 if x; is empty then

9 D;[b + leavesiree, | < max

10 break

11 end

12 X < X > x;: left child of x
13 end

the sentence into sub-trees there, and repeating this
process recursively for each sub-tree until a single
token is left.

Two different formulations of syntactic distance
have been proposed to realize this basic intuition:
The first, which we refer to as D;, is introduced by
Shen et al. (2018a) as a latent variable in their UP
model. Since, for self-training, we supervise D;
with values predicted by our model, we introduce
Algorithm 1, which is used to convert a tree to dis-
tances ;. The second kind of distance, denoted
here as D, is introduced by Shen et al. (2018b)
as labels for direct supervision. We use their algo-
rithms to map trees to distances D, and vice versa,
and ask readers to refer to Shen et al. (2018b) for
details.

We design our parser in such a way that it can
predict both. We treat the decision whether D, or
Dy are used at test time as a hyperparameter. The
reasons why we employ both types of distances are
two-fold: D, unlike D;, cannot be learned in an
unsupervised fashion, which is critical for a semi-
supervised architecture. Empirically, supervising
purely on D; performs poorly.

The Parser Our parser, cf. Figure 1, consists
of an embedding layer and a convolutional layer
which are followed by two different components:
a linear output layer that predicts DD, and a second
convolutional layer that predicts D;.

Formally, given an input sentence s =
to,t1,...,tn—1, our parser predicts D, as:
li—1,
hi = ReLUW, | "2) (1)
ti
d; = ReLU (Wah;+byg) 2)

Algorithm 2: Self-training for UP

Unlabeled data X

Training set X1 < ()

Train n. UP models on Xy

for s; € Xy do
ne <— number of models agreeing on parse p(s;)
if n, > pn. then

X+ XU p(si)

end

end

Train model on Xy and X

> add confident parse

LT Y I N R

=
)

where W, are the weights of the first convolutional
layer, Wy are the weights of the output layer corre-
sponding to Dy, and b, and b, are bias vectors. L
is the filter size. D); involves similar computations,
but is the output of the second layer.

Distance Loss When we have silver-standard an-
notations from self-training available, we compute
the loss for both syntactic distances directly. Since
the relative ranking between distances—rather than
absolute values—defines the tree structure, we train
our parser with a hinge ranking loss following Shen
et al. (2018b). Our distance loss L, is the weighted
sum of the distance losses corresponding to D;
(Lg) and Dg (Lsg):

L, = aLsg + (]- - Oé)le (3)

Language Modeling Loss In order to optimize
the parameters of our parser without direct supervi-
sion, we further feed its output—the predictions for
D;—into a language model, following Shen et al.
(2018a).

Multi-Task Training Our parser is trained in a
semi-supervised fashion with losses correspond-
ing to (i) learning the distances in a latent manner
through language modeling, and (ii) supervising di-
rectly on distances. We sample batches from both
objectives at random.

Self-Training For self-training, cf. Algorithm
2, we first train n. models on the unlabeled PTB
training set X;7. We then have them predict parse
trees for all sentences in Xy;. If more than p
n. models (with u as a hyperparameters) agree
on the same parse, we add it as a silver-standard
labeled example to the parsing training set X,. We
use Algorithm 1 and the respective algorithm by
Shen et al. (2018b) to convert consensus trees into
distances D; and D,. We then train a new model
on both Xy and X7.

Model Fl(w)
PRPN 39.8 (5.6)
PRPN (ours) 46.3 (6.3)
C-PCFG 52.8 (3.8)
URNNG 44.8 (4.1)
SS-PRPN 54.4 (0.6)
Left Branching (LB) 13.1
Right Branching (RB) 16.5
Random 21.4

Table 1: Results on the English PTB test set, with the
model tuned on the dev set. LB, RB and Random base-
lines are taken as-is from Htut et al. (2018). Since eval-
uation of C-PCFG, PRPN and URNNG is done against
binary gold trees, results might differ from the original
papers.

3 Experimental Design

Data and Metrics We experiment on the English
Penn Treebank Marcus et al. (PTB; 1999). For
evaluation, we compute the F1 score of the out-
put parses against binarized gold parses following
Williams et al. (2018). The code for our model is
published online!.

Baselines We compare against an unsupervised
recurrent neural network grammar (URNNG; Kim
et al., 2019b), a compound probabilistic context
free grammar (C-PCFG; Kim et al., 2019a), and
Shen et al. (2018a)’s PRPN. We re-implement and
tune PRPN in our code base.

Hyperparameters We tune our hyperparameters
on the development set. Hidden states and word
embeddings have 300 and 100 dimensions, respec-
tively. We set the weight o = 0.5. For self-training,
we obtain best results with = 60% and n. = 15.
We further experiment with converting either D
or D into final parse trees, and find that D; works
best.

4 Results and Analysis

Unsupervised Parsing Performance Table 1
shows our results. SS-PRPN outperforms all base-
lines: our model obtains a 1.6% higher F1 score
than the strongest baseline. It further improves sub-
stantially over comparable non-self-trained base-
lines: by 14.6% over PRPN and by 8.1% over our
reimplementation of it. SS-PRPN also shows a
much lower variance. This demonstrates that self-
training is indeed a viable approach for UP.

'https://github.com/anhad13/SelfTraining AndLRP

107

Av. Av. Av.Fl #sents

Length Depth
Self-training 7.0 33 82.2 1897
PTB gold 20.9 10.6 100.0 39701

Table 2: Statistics of our best self-training annotations
compared to PTB.

Length 0-10 10-20 20-30 30-40 >40

Ex. 115 573 613 295 94
% Ex. improved 20% 36.8% 49.7% 52.8% 55.3%

Table 3: Percentage of development examples im-
proved by SS-PRPN in comparison to PRPN, listed by
sentence length.

Analysis of Self-Training We interpret agree-
ment rate as our confidence value for self-training,
with the hypothesis that, as agreement among mod-
els increases, there is a higher likelihood that the
parse is correct. In Figure 2, we show that, as
expected, the F1 score increases as more models
agree, for the best self-training run (15 individual
models, or the second last row in Table 1).

Additionally, Figure 2 and Table 2 show that self-
training annotations consist of shorter sentences
and shallower trees than our dataset’s average, i.e.,
mostly of easier sentences.

Our final hypothesis is that self-training helps
mostly for longer sentences, since models often
agree on shorter ones anyways and, trivially, longer
sentences leave more room for error. Table 3 shows
the development set performance and the number
of examples for varying sentence lengths. As ex-
pected, self-training yields the greatest gains for
longer sentences.

120 ———7— 18,000

100 |- |®av. length 115,000
= 4 av. depth . §
5 80| — w 12,000 §
o . - g
= | |
5 60| - " - {9,000 £
5 e = °
— L} g
= 404 {6,000 E
- z

20F o 2 3,000

L |
. 2
Pt S S0 S0 S S

U Il Il Il Il Il 0
456 78 9101112131415

bl
Number of Models Agreeing

Figure 2: Statistics for self-training (n, = 15): As
agreement among UP models goes up, parsing F1 im-
proves, and average depth and length go down.

108

[[3

] SP
—— PRPN
— C-PCFG
—— URNNG [|

RNNG
s+ SS-PRPN

|
100 150 200
5 T T T

Binary F1

2

50

45

Binary F1

40

s SP
4+SS-PRPN

200

Il Il
100 150 250

Figure 3: Low-resource parsing on the PTB. The first
and second plots show unlabeled and labeled F1 respec-
tively, plotted against the training data size.

Low-Resource Parsing Performance We fur-
ther investigate how SS-PRPN performs when lim-
ited gold parses are available in addition to unla-
beled data. To predict constituency labels, we add
and train an additional linear output layer after the
first convolutional layer. We find that, on the devel-
opment set, converting [, into parse trees works
better for low-resource parsing than D;. As super-
vised baselines, we employ Dyer et al. (2016)’s
recurrent neural network grammar (RNNG) and a
supervised parser (SP) based on syntactic distances
(Shen et al., 2018b). Figure 3 shows results for 50
to 250 annotated examples. The upper part shows
the unlabeled parsing performance in comparison
to the UP baselines. We outperform all baselines
for 50 to 150 examples, while SP performs slightly
better with more annotations. When looking at la-
beled F1 in the lower part of Figure 3, SS-PRPN
clearly outperforms SP, which indicates that unla-
beled data can be leveraged in the low-resource
setting.

5 Conclusion

We introduce a semi-supervised neural architecture,
SS-PRPN, which is capable of UP via self-training.
Our self-trained models strongly outperform com-
parable baselines, and advance the state of the art

on PTB by 1.6% F1. Analyses show that our ap-
proach yields most gains for longer sentences. Our
architecture can also leverage limited amounts of
parsing supervision when available. We conclude
that it is beneficial to develop better UP models for
semi-supervised settings.

6 Acknowledgements

This work has benefited from support of Sam-
sung Research through the project Improving Deep
Learning using Latent Structure and the donation
of Titan V GPU by NVIDIA Corporation.

References

Rens Bod. 2006. An all-subtrees approach to unsuper-
vised parsing. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the Association for Compu-
tational Linguistics.

Eugene Charniak. 1997.
a context-free grammar and word
AAAI/IAAL 2005.

Statistical parsing with
statistics.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018.
Learning to compose task-specific tree structures. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Alexander Clark. 2001. Unsupervised induction of
stochastic context-free grammars using distribu-
tional clustering. In Proceedings of the 2001 work-
shop on Computational Natural Language Learning.
Association for Computational Linguistics.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
latent tree induction with deep inside-outside recur-
sive auto-encoders. In Proceedings of the North
American Chapter of the Association for Computa-
tional Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. In Proceedings of the North American
Chapter of the Association for Computational Lin-
guistics.

Chris Dyer, Gabor Melis, and Phil Blunsom. 2019. A
critical analysis of biased parsers in unsupervised
parsing. arXiv:1909.09428.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Phu Mon Htut, Kyunghyun Cho, and Samuel Bowman.
2018. Grammar induction with neural language
models: An unusual replication. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing.

109

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-
goo Lee. 2020. Are pre-trained language models
aware of phrases? simple but strong baselines for
grammar induction. In /CLR.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019a.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of Association
for Computational Linguistics. Association for Com-
putational Linguistics.

Yoon Kim, Alexander M Rush, Lei Yu, Adhiguna Kun-
coro, Chris Dyer, and Gabor Melis. 2019b. Unsuper-
vised recurrent neural network grammars. In Pro-
ceedings of the North American Chapter of the As-
sociation for Computational Linguistics.

Dan Klein and Christopher D Manning. 2002. A gener-
ative constituent-context model for improved gram-
mar induction. In Proceedings of Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Phong Le and Willem Zuidema. 2015. Unsupervised
dependency parsing: Let’s use supervised parsers.
arXiv preprint arXiv:1504.04666.

Bowen Li, Lili Mou, and Frank Keller. 2019. An im-
itation learning approach to unsupervised parsing.
arXiv:1906.02276.

Mitchell Marcus et al. 1999. Treebank-3 1dc99t42 web
download. Philidelphia: Linguistic Data Consor-
tium.

Johnson M McClosky D, Charniak E. 2006. Effective
self-training for parsing. North American Chapter
of the Association of Computational Linguistics.

Ellen Riloff, Janyce Wiebe, and Theresa Wilson. 2003.
Learning Subjective Nouns using Extraction Pattern
Bootstrapping. In Proceedings of CoNLL.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2018a. Neural language modeling
by jointly learning syntax and lexicon. In ICLR.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018b. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
Association for Computational Linguistics.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
ICLR.

Mark Steedman, Miles Osborne, Anoop Sarkar,
Stephen Clark, Rebecca Hwa, Julia Hockenmaier,
Paul Ruhlen, Steven Baker, and Jeremiah Crim.
2003. Bootstrapping statistical parsers from small
datasets. In Proceedings of European chapter of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics.

Adina Williams, Andrew Drozdov, and Samuel R Bow-
man. 2018. Do latent tree learning models identify
meaningful structure in sentences? Transactions of
the Association for Computational Linguistics.

David Yarowsky. 1995. Unsupervised Word-Sense Dis-
ambiguation Rivaling Supervised Methods. In Pro-
ceedings of ACL.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
compose words into sentences with reinforcement
learning. In ICLR.

110

Span-Based LCFRS-2 Parsing

Milos Stanojevié¢
School of Informatics
University of Edinburgh
m.stanojevic@ed.ac.uk

Abstract

The earliest models for discontinuous con-
stituency parsers used mildly context-sensitive
grammars, but the fashion has changed in re-
cent years to grammar-less transition-based
parsers that use strong neural probabilistic
models to greedily predict transitions.

We argue that grammar-based approaches still
have something to contribute on top of what
is offered by transition-based parsers. Con-
cretely, by using a grammar formalism to re-
strict the space of possible trees we can use
dynamic programming parsing algorithms for
exact search for the most probable tree.

Previous chart-based parsers for discontinuous
formalisms used probabilistically weak gener-
ative models. We instead use a span-based
discriminative neural model that preserves the
dynamic programming properties of the chart
parsers. Our parser does not use an explicit
grammar, but it does use explicit grammar for-
malism constraints: we generate only trees
that are within the LCFRS-2 formalism. These
properties allow us to construct a new parsing
algorithm that runs in lower worst-case time
complexity of O(I n*+nS), where n is the sen-
tence length and [is the number of unique non-
terminal labels. This parser is efficient in prac-
tice, provides best results among chart-based
parsers, and is competitive with the best transi-
tion based parsers.

We also show that the main bottleneck for fur-
ther improvement in performance is in the re-
striction of fan-out to degree 2. We show that
well-nestedness is helpful in speeding up pars-
ing, but lowers accuracy.

1 Introduction

Most constituency parsers are designed to predict a
projective (or continuous) tree representation. This
type of tree representation is not expressive enough
to model (structurally) long-range dependencies

111

Mark Steedman
School of Informatics
University of Edinburgh
steedman@inf.ed.ac.uk

that are a major concern of most syntactic theories.
Take for instance the sentence in Figure 1. It con-
tains a long range dependency between “on” and
“what”. This is represented differently across syn-
tactic theories. In dependency parsing, there would
be a direct arc between these two words that would
cause the dependency tree to be non-projective,
i.e. there would be crossed dependencies (Nivre
et al., 2016). In constituency treebanks this is mod-
elled either by using traces that are co-indexed with
the moving element, as in English Penn treebank
(Marcus et al., 1993), or by having a direct discon-
tinuous constituent, as in German Negra and Tiger
treebanks (Brants et al., 2004).

Here we adopt the discontinuous constituency
approach because of its well defined formal prop-
erties, but the results are also relevant for other
representations. The Penn treebank trace represen-
tation can be converted to a discontinuous repre-
sentation (Evang and Kallmeyer, 2011)" and non-
projective dependency trees can be interpreted as
lexicalised versions of discontinuous constituency
trees (Kuhlmann and Mo6hl, 2007).

There are two different approaches to predict-
ing discontinuous constituency structure directly.?
The first approach, usually grammar-based chart
parsing, limits the type of trees that are accept-
able (for example TAG (Joshi, 1985) or LCFRS
(Vijay-Shanker et al., 1987; Seki et al., 1991)) and
searches for the best tree with an exact search al-
gorithm like CKY. The second approach, usually
transition-based, does not limit the type of trees
but searches for the best tree only approximately

IThis is a lossy conversion because the discontinuous rep-
resentation does not contain information about the initial loca-
tion of the constituent before it was displaced, nor the attach-
ment point in the surface tree.

Indirect approaches work by conversion to some other
simpler formalism, parsing in the simpler formalism, and then
converting the result back. They are not the focus of this
article but their results are reported in the Section 5.4.

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 111-121
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

with a beam search. Lately, with the success of
neural models, transition-based parsers have been
preferred to grammar-based approaches because
transition-based models do not need to make any
independence assumptions and strong neural mod-
els can be used to their full potential. Grammar-
based methods have more difficulty incorporating
rich probabilistic models due to the necessary inde-
pendence assumptions needed for exact dynamic
programming algorithms like CKY. Another dis-
advantage of grammar based models is that, even
though their parsing algorithms are polynomial,
they are significantly slower in practice due the
high polynomial degrees and a large grammar con-
stant.

In this work we try to improve both speed and
accuracy of chart-based parsers. The accuracy is
improved by using a modified version of neural
span-based scoring of non-terminal nodes (Cross
and Huang, 2016; Stern et al., 2017) which does
not break the independence assumptions needed for
efficient parsing. Speed is improved by restricting
the set of acceptable trees to the ones recogniz-
able with an LCFRS-2 grammar formalism, but no
explicit grammar is used, removing the grammar
constant from the worst-case complexity.® Addi-
tionally, the parser is implemented using an imper-
ative approach to Viterbi CKY parsing (as opposed
to deductive approach), similar to standard CFG
CKY implementations with embedded loops. By
avoiding the usage of standard weighted deductive
parsing (Shieber et al., 1995; Nederhof, 2003). we
avoid the need to maintain heap property of the
agenda, further reducing the worst-case parsing
complexity.

This results in a fast chart-based LCFRS-2 parser
that outperforms all previous chart-based parsers
for discontinuous structures, and gives performance
that is on par with the best transition-based parsers.

2 LCFRS-2 Trees

LCFRS (Vijay-Shanker et al., 1987; Seki et al.,
1991; Kallmeyer, 2010) is a grammar formalism
that works in a similar way to CFG: it applies a
series of recursive rewriting rules that eventually
generate a sentence. What makes it different from
CFG is that it allows each non-terminal node in the

3Note that not having explicit LCFRS-2 grammar but only
explicit set of non-terminals is equivalent to having an LCFRS-
2 grammar that overgenerates. This is prevented with a strong
span-based probabilistic model.

112

derivation tree to contain more than one continuous
span of words.

A
(PP)
|~

What do they work on

Figure 1: Discontinuous tree example.

For instance, if we look back at the example
from Figure 1, we can represent the discontinu-
ous PP as PP(what, on), or in terms of spans
PP((0,1),(4,5)). An LCFRS rule that forms this
constituent can be expressed as:

PP(X,Y) — WH(X) P(Y)

These individual spans are often called compo-
nents and the number of them per non-terminal is
called the fan-out of the non-terminal. The fan-out
of an LCFRS grammar is defined by the maximal
fan-out of its non-terminals.

The fan-out of the grammar has significant con-
sequences to its expressivity and the parsing com-
plexity. For binary LCFRS the worst-case parsing
complexity is O(G - n3?) where G is the grammar
constant (total number of LCFRS rules) and ¢ is the
grammar’s fan-out (Seki et al., 1991; Kallmeyer,
2013). If fan-out is 1 we get only the power of a
standard CFG and a very efficient parser. If the
fan-out is unrestricted (as big as the sentence be-
ing parsed), we could process any discontinuous
structure but will get a non-polynomial parser.

Clearly, we need to restrict fan-out to some small
constant number. Maier et al. (2012) suggested
that restricting fan-out to 2 is sufficient to process a
large portion of discontinuous structures in German
treebanks. We adopt this proposal and show the
consequences of it in the experiments section. We
will refer to this grammar as LCFRS-2.

Another useful restriction of LCFRS is a well-
nestedness property (Kuhlmann and Nivre, 2006;
Maier and Lichte, 2009). For any LCFRS rule
which contains some non-terminals A and B on
its right-hand side we say that it is well-nested

if there are no components A; and Ay from A,
and B; and By from B that form a linear order
A1 < B1 < Ay < Bj. This property allows for
efficient parsing (Gémez-Rodriguez et al., 2010),
but in our case of a binary LCFRS with fan-out 2,
the effect of well-nestedness will be only propor-
tional to some constant. Maier and Lichte (2009)
state that well-nestedness holds for the majority of
constituents in German treebanks. We will test it
in our experiments. We will refer to this type of
grammar as LCFRS-wn-2. Tree-Adjoining Gram-
mars (TAG) (Joshi, 1985) are weakly equivalent to
LCFRS-wn-2.

3 Neural Span-Based Model

We borrow and modify some ideas already popular
in CFG parsing to improve LCFRS-2 chart parsing.
In particular, span-based scoring is a popular ap-
proach for modelling scoring of parse trees without
breaking the dynamic programming assumptions
of chart parsers (Cross and Huang, 2016; Stern
et al., 2017; Gaddy et al., 2018; Kitaev and Klein,
2018a,b).

In this approach words are first encoded with bi-
LSTM (Hochreiter and Schmidhuber, 1997; Graves
et al., 2005). These word encodings are afterwards
used to score spans. For each span we take en-
codings of two words that are at its borders and
pass them through feed-forward (Cross and Huang,
2016; Gaddy et al., 2018) or bi-affine classifier
(Dozat and Manning, 2017; Stern et al., 2017) that
predicts the score for each possible label (non-
terminal) occupying that span. Unaries are all
collapsed into a single non-terminal to simplify
scoring. The score of a whole tree is defined as
a sum of the scores all of its nodes. These scores
are often optimised for max-margin loss (Taskar
et al., 2004a) by decoding the currently best tree
according to the model and minimising the margin
violation in case the predicted tree is not the gold
tree.

Stern et al. (2017) show that span labelling and
span combination (parsing) part can be done inde-
pendently for this model because the best label for
each span does not depend on the span’s children
nodes, unlike the standard PCFG. Computing opti-
mal labels for each span takes O(I n?) for sentence
of length n and [labels (non-terminals).

There are a couple of things that need to be
addressed before this approach can be used for
LCFRS-2 parsing. First is that non-terminals in

113

LCFRS-2 can have two spans and applying the ap-
proach of Stern et al. (2017) would give labelling al-
gorithm that runs in O(I n*) which is prohibitively
large considering the hidden constant factor of ma-
trix multiplication done by the neural scoring layer.

To reduce the computational complexity of span
scoring we introduce independence assumption that
score of some discontinuous constituent with label
X and spans ((a,b), (¢, d)) is:

score(X((a, b), (c, d))) = SCOTe(Xleft(av b))+
score(Xgqp(b+1,c—1))+
score(Xyighi(c, d))

where Xic ¢, Xgap, Xright are newly created non-
terminals for each X. This decomposes the dis-
continuous constituent scoring as scoring of three
continuous constituents. The labelling complexity
with [labels is still O(I n*) but the neural matrix
multiplication will be done only O(n?) times just
like in CFG case of Stern et al. (2017). In Sec-
tion 5.3 we will show that most of the time is spent
in the neural component and span combination,
and that the labelling component takes a negligible
proportion of time.

The second aspect of span-based models that we
needed to change is the objective function. The
original max-margin parsing objective proposed
by Taskar et al. (2004b) maximised the margin be-
tween the gold tree and all other trees. Because
that approach was too slow in practice it is usu-
ally approximated by maximising only the margin
between the gold and the highest scoring tree, in
case highest scoring tree is not the gold tree. This
approach gave good results in CFG parsing (Stern
et al., 2017), but it was very unstable in our tests.
The reason for this may be in the difference be-
tween the number of possible hypotheses between
CFG and LCFRS-2 which increases quadratically
from the order of O(n?) to O(n®). In this case, op-
timising for just a single margin violation may be
a too weak learning signal. Decreasing the scores
of one bad tree alone may increase the score of
another bad tree.

That is why instead of the structured max-margin
training we used an alternative method where we
treat each triple (span start, span end, label) as
a binary classification task and train the model to
predict the probability of that triple being part of the
gold tree. For training we use not only the triples
from the gold tree but all possible triples for a given
sentence. We consider the probability of the tree to

be the product of probabilities of the triples coming
from each of its nodes. This probability model is
obviously making some independence assumptions
that are not correct. For instance, the probability of
a constituent with a span (1, 3) does not inform the
probability of a constituent with a span (2, 5) even
though it is clear that both constituents cannot exist
at the same time. This model may nevertheless give
good parsing results because the optimal result of
these classifications would give the optimal tree.

This method is much more stable in comparison
to the max-margin approach of Stern et al. (2017)
because the gradient takes into consideration the
components of all possible trees at the same time
instead of only the highest scoring one. In com-
parison to Max-Margin Markov Networks method
of Taskar et al. (2004b) which also considers all
trees, our approach is much faster because it does
not need to build chart for each training instance.

As mentioned before, we collapse all unary
chains into a single non-terminal which contains
sufficient information to be unchained after parsing.
Nodes that have more than 2 children are binarized
with the same method as Stern et al. (2017) by
labelling all new sub-nodes as @. Again, there
are some aspects to consider before applying the
method of Stern et al. (2017). First, binarization
of LCFRS, unlike binarization of CFG, can in-
crease the generative power by increasing the fan-
out (Kallmeyer, 2010). If we have a tree that can
be generated with LCFRS-2 and arbitrarily choose
binarization method, the binarised tree may turn
out not to be within the strong generative power
of LCFRS-2. Hence, choosing the right binariza-
tion is important. Second, different binarizations
actually correspond to different latent derivations
of the tree we are modelling. These latent deriva-
tions will have different probabilities and its not
easy to see which one of them should be used. The
approach we will pursue is to model all of them by
treating every possible triple that can be extracted
from every possible binarization of a gold tree to
be a positive class.

4 Direct CKY Parsing Algorithm

The algorithms for LCFRS are usually presented,
and implemented, as deductive rules. These deduc-
tive rules, combined with a deduction engine of
Shieber et al. (1995) can form a conceptually sim-
ple mechanism for parsing. In case of weighted de-
ductive rules the modification of Nederhof (2003)

114

can be used. It modifies the method of search to
explore the most probable search space first by
implementing the agenda as a priority queue. Al-
most all Probabilistic LCFRS (PLCFRS) parsers
have been implemented in this way (Kallmeyer and
Maier, 2010; Maier et al., 2012; van Cranenburgh
etal., 2016).

However, there are many reasons not to use this
approach with our span-based model. First, im-
plementing the agenda as a priority queue adds
a O(logn) multiplicative term to the worst-case
complexity. Second, the multiplicative grammar
constant that exists in PLCFRS approaches does
not exist in ours since there is no explicit grammar,
and the optimal label for each span is independent
of the other spans. Third, because of the difficulty
of implementing optimal chart lookup under deduc-
tive approaches means that most PLCFRS parsers
optimise lookup only on the non-terminal labels
and not on span indices, representing a serious bot-
tleneck.

The parsing approach we propose has instead
worst-case complexity O(I n*+n®) because it does
not use an explicit grammar, nor priority queue, and
it has very straightforward lookup based on indices.
It consists of two parts. First part takes the scores
from the neural model and computes the optimal
score for each possible LCFRS-2 combination of
spans of which there are n*. That makes its com-
plexity O(I n*) where [is the number of distinct
non-terminals. The second part does the actual
parsing by combining these scores to form the best
tree. It is a generalisation of how non-deductive
CFG CKY algorithm works by having multiple em-
bedded for loops and a multi-dimensional array to
represent a chart. Both chart and loops have to be
adapted to LCFRS.

We have two data structures involved that are
both indexed by the span: a lookup table for op-
timal span label (and its score), and a lookup ta-
ble for the optimal backpointer to children nodes
(and its score). We will refer to the first one as
labChart and to the second one as chart. Each
one of them could be used for looking up continu-
ous spans (only 2 indices) or discontinuous spans
(4 indices). We can implement them with multi-
dimensional arrays that provide constant lookup.

To find which loops are needed we borrow Ta-
ble 1 from Maier et al. (2012) who have found
all possible rule shapes for binary LCFRS-2. We
augment this table with the worst-case complex-

ity for each rule given in the fourth column. This
complexity can be easily derived using the method
of McAllester (2002) which states that the com-
putational complexity of each rule depends on the
number of free variables on the left-hand side of the
rule, assuming rules are non-deleting. For instance,
for CFG rule #3 there are three free variables: index
at the start of X, index between X and Y and index
at the end of Y. Therefore its complexity is O(n3).
Each of these indices requires an embedded for
loop.

Algorithm 1 Direct CKY LCFRS-2 Parsing

ID ‘ Type ‘ counts ‘ o(.)
#1 AX) = B(X) 49 | O(n?)
#2 AX,Y) = BX,Y) 1| Omn
#3 AXY) — B(X) C(Y) 14,430 | O(n?)
#4 A(X,Y) — B(X) C(Y) 1,644 | O(n?)
#5 A(XYZ) — B(X,Z) C(Y) 621 | O(n?)
#6 AX,YZ) — B(X,Y) C(Z) 100 | O(n®)
#7 AX,YZ) — B(X,Z) C(Y) 142 | O(n®)
#3 A(XY,Z) — B(X,Z) C(Y) 172 | O(n®)
#9 AXY,Z) — B(X) C(Y,Z) 582 | O(n®)
#10 | AXY,ZU) — B(X,Z) C(Y,U) 7 On%)
#11 | AXY,ZU) — B(X,U) C(Y,Z) 0| Omd)
#12 | AX,YZU) — B(X,Z) C(Y,U) 12 | O(nb)
#13 | A(XYZ,U) — B(X,Z) C(Y,U) 12 | O(nf)
#14 | AXYZU) — B(X,Z) C(Y,U) 13 | O(n)

Table 1: LCFRS-2 rule instances from (Maier et al.,
2012) with frequency counts from Tiger sentences of
length 30.

This is simple when we have only one rule shape
as in the case of CFG, but with LCFRS we need to
make sure that all rules are tested in the right order.
We know that bigger spans are always composed
of smaller spans. Therefore we can have a top
for loop that would iterate over the total span size.
The for loop below it would split that total span
size between left and right span in case of rules
that produce discontinuous constituents. These top
loops are needed only to ensure that constituents
are built in a bottom-up topological order. Further
loops are used only to compute all other needed
indices for each rule. The space in this paper is
not sufficient to present the implementation for all
14 rules but the example in Algorithm 1 for rule
#6 should be sufficient to show how the rest of
the algorithm works. The number of embedded
for loops for this rule clearly corresponds to its
computational complexity.

By designing which rules from this schema we
use we can get different generative power accom-
panied with a different computational complexity.

115

for sizeSpan in [1...n]do

forain [0...n — sizeSpan — 1] do
b < a + sizeSpan
// processing a continuous constituent
// with the span (a, b)
// using rules 3, 5 and 14

for sizeLeft in [1...sizeSpan —1] do
sizeRight < sizeSpan — sizeLeft

forain [0...n — sizeSpan — 1] do
b+ a + sizeLeft
for cin [0+ 1...n — sizeRight] do
d < c + sizeRight
best <~ —o0
// processing a discontinuous
// constituent with two components
//(a, b) and (¢, d)
// finding best solution with
// discontinuous rules 2, 4, 6,
/ 7,8910,11,12,13

/M rule 6: A(X, YZ) — B(X,Y)C(Z)
// X=(a, b), Y=(c, e), Z=(e, d)
forein [c+1...d—1]do
score < chart[a, b, ¢, €]+
chartle, d]
if score > best then
best < score

chart[a, b, ¢, d] < best +
labChart[a, b, ¢, d]

If we use only rule #3 we get a CFG parser that can
be run in O(n?). If we use all of the rules we get
LCFRS-2 parser with complexity O(n%). However,
there are interesting subsets of rules in between full
LCFRS-2 and CFG. Well-nested LCFRS-2 is one
of those subsets. It includes all LCFRS-2 rules ex-
cept #10, #12, #13 and #14. Well-nested LCFRS-2
still has the same complexity as a full LCFRS-2 be-
cause it contains rule #11 that is O(n%). If we look
at its counts in the Negra treebank we can see that
that rule never appears. Therefore we find it also
interesting to try well-nested LCFRS-2 without the
rare rule. We will refer to it as LCFRS-wn-nr-2.
LCFRS-wn-nr-2 can be parsed in O(n%). We will
not use rule types #1 and #2 in any of the ap-
proaches because we handle unary rules in a differ-
ent way as previously described.

S Experiments

The parser is implemented in Scala using DyNet
(Neubig et al., 2017) and is available on github.*
Experiments are conducted on German and En-
glish discontinuous constituency treebanks. The
reported development results are on the German
Negra treebank. The test set results, in addition
to German Negra, also contain German Tiger tree-
bank (Brants et al., 2004) and English Discontinu-
ous Penn Treebank (DPTB) (Evang and Kallmeyer,
2011). The treebanks were preprocessed using stan-
dard practice described in (Maier, 2015) by using
the treetools® package. For evaluation we have
used the discodop® package with the standard set-
tings (van Cranenburgh et al., 2016).

parameter value
word-embeddings dim. 32
char bi-Istm dim. 100
sentence-level bi-lstm layers 2
sentence-level bi-lstm dim. 200
compression MLP layers 2
compression MLP dim. 200
Adam optimiser Ir. 0.001
batch size 1 sentence

Table 2: Hyper-parameters.

The architecture and hyper-parameters of the
neural model are chosen to be the same as in
(Coavoux and Cohen, 2019) to obtain a relatively
fair comparison. That is, we use a combination
of character bi-LSTM to embed each word. This
embedding is concatenated with the lookup table
embedding for each word and passed through a
two-layer bi-LSTM that runs over the whole sen-
tence. In case of MLP model we score labels for
each span by passing two bi-LSTM vectors at bor-
ders of the spans through a two-layer MLP. In the
case of the bi-affine model we compress bi-LSTM
vectors with a specialised MLP for left and right
index, analogous to the specialisation for head and
dependent vector in Dozat and Manning (2017),
and then score labels through a bi-affine layer.

5.1 What is the right objective function and
classification layer?

First we test if our new objective function that /o-
cally optimises span labelling is better than the

‘nttps://github.com/stanojevic/
grammarless—1lcfrs

Shttps://github.com/wmaier/treetools

*https://github.com/andreasvc/
disco-dop

parser all F1 | disc F1
MLP margin | 20.75 0.00
bi-affine margin | 77.85 32.85
MLP local | 82.49 | 38.62
bi-affine local | 84.16 | 48.83

Table 3: Comparison on Negra dev set of different ob-
jectives and label classifiers.

max-margin approach of Stern et al. (2017) in the
context of discontinuous parsing. Table 3 shows
the results in which we can see that local model
gives much better results. This is especially true
for the version of the model that as its top layer
uses MLP which completely fails when trained
with max-margin but gives reasonable results when
trained with more stable objective that takes into
consideration all possible trees.

Therefore in further experiments we are going to
use only the bi-affine version of the model trained
with the local objective.

5.2 Isrestriction to LCFRS-2 a good
approach?

A particularly interesting point of reference is the
work of Coavoux and Cohen (2019) which also
uses span-based scoring, but in transition-based
setting. Our model can be seen as a dynamic pro-
gramming alternative to their parser.

Dynamic programming (i.e. chart parsing) pro-
vides us with an exact search mechanism, unlike
the approximate greedy search used by Coavoux
and Cohen (2019). However, that benefit does not
come for free. The development set results shown
in Table 4 show that in a comparable setting (same
hyper-parameters of the encoder) there are aspects
in which each of the chart-based and transition-
based approaches has an advantage. Why is that?

One explanation could be that the setting in
which two parsers are tested is not fully compa-
rable. What we mean by that is that there are
algorithmic reasons why the neural architecture
cannot be exactly the same. Let us take a con-
stituent with a gap as an example where the left
component is a span (a, b) and the right component
is (¢,d). Coavoux and Cohen (2019) predict the
probability of the next transition by encoding the
gap constituent with all 4 embeddings together as
(a,b,c,d). In our case we had to split the decision
on the label into three independent decisions: the
first one that takes (a, b), the second one for (b, ¢)
and the final one for (c, d). This independence as-

116

parser all disc

F1 P R F1 P R
Coavoux and Cohen (2019) | 84.00 — — 54.00 — —
CFG 82.86 84.50 8129 | — — —
LCFRS-wn-nr-2 83.99 8521 82.80 | 45.04 66.24 34.12
LCFRS-wn-2 83.99 8521 82.80 | 45.04 6624 34.12
LCFRS-2 84.16 85.34 83.02 | 48.83 67.21 38.34

Table 4: Development set results on Negra treebank.
constituents, both continuous and discontinuous, while

sumption is necessary because otherwise we would
need to run the MLP layer O(n*) times. This is
not an issue for Coavoux and Cohen (2019) be-
cause they consider only a subset of spans needed
in greedy search.

However, we think that the main property that
distinguishes these two models is expressive power,
i.e. the set of trees that they can generate. While the
transition-based parser could generate any discon-
tinuous tree, our chart-based parser can generate
only trees that are within the LCFRS-2 formalism.
To find evidence for the importance of this property
we modified the search to explore the different lev-
els of complexity in between CFG and LCFRS-2
while keeping the exactly same parameters of the
neural scoring model. From Table 4 we can see
that the higher we get on the complexity hierarchy
the better are results on the development set, both
for discontinuous constituents and all constituents.
In comparison to Coavoux and Cohen (2019), we
get better results overall but for discontinuous con-
stituents alone the transition-based parser still has
an edge.

parser with all disc
ideal scorer F1 R F1 R
CFG 97.53 95.19 — —

LCFRS-wn-nr-2 | 99.29 98.60 | 82.95 70.88
LCFRS-wn-2 99.35 98.71 | 83.04 71.01
LCFRS-2 99.69 99.39 | 93.32 87.48

Table 5: Oracle parsing results with an ideal scorer that
always assigns correct probabilities.

If we look at the results for discontinuous con-
stituents carefully we can see that precision is sig-
nificantly greater than recall. The reason for this
could be that the parser is good when the gold tree
is within the reach of the LCFRS-2 formalism, but
for discontinuous constituents that is sometimes
not the case.

To test the limitations that the formalism puts on
our model further we did oracle experiments that
would show what would results be if we had an

The column all contains the results computed over all
disc are results on the discontinuous constituents alone.

ideal scoring model that always gives perfect prob-
ability 1 to correct span labellings and probability
0 to incorrect ones. The results for the oracle ex-
periments are shown in Table 5. If we compare re-
sults over F1 of all types of constituents then there
is very little difference among the discontinuous
formalisms. However, if we evaluate only on the
discontinuous constituents, the change in coverage
(recall) when we remove the well-nestedness con-
straint of LCFRS-wn-2 to LCFRS-2 is very large,
around 16%.

The recall of 87% for our most expressive for-
malism LCFRS-2, seem to suggest that if we want
further increases in accuracy of chart-based dis-
continuous constituency parsers we will need more
than LCFRS-2 generative power. Furthermore, this
more expressive formalism will need to be able to
generate trees that are not well-nested.

This is not to be confused with requirements for
well-nestedness of dependencies. The need for ill-
nested dependencies was established in the work
of Chen-Main and Joshi (2010). However, gram-
mar formalisms like CCG can model ill-nested de-
pendencies without having ill-nested derivations
(Koller and Kuhlmann, 2009). Our statement about
the need of increasing fan-out and for allowing
ill-nested rules applies only to the prediction of
discontinuous constituency structures of the kind
found in the Negra treebank.

5.3 Parsing speed

Chart parsers have often been avoided for expres-
sive formalisms like LCFRS because of their high
worst-case complexity. Most previous work us-
ing them has either constrained sentences to those
less than 30 words in length, or used length fil-
tering in combination with heavy pruning (Evang
and Kallmeyer, 2011; van Cranenburgh and Bod,
2013; van Cranenburgh et al., 2016; Ruprecht and
Denkinger, 2019) it is therefore important to com-
pare our parser with previous approaches not only
in accuracy but also in speed.

117

DPTB Tiger Negra
parset all disc | all disc | all disc
v, | this work 90.5 67.1 | 83.4 535|836 507
% Evang and Kallmeyer (2011) < 25 gold POS | 79.0 81.6
8 van Cranenburgh et al. (2016) <40 87.0 74.8
Ruprecht and Denkinger (2019) < 30 gold POS 69.0
3 Coavoux and Cohen (2019) 909 673|825 559|832 563
_:g Coavoux et al. (2019) 91.0 71.3 | 82.7 559|832 546
g Stanojevi¢ and G. Alhama (2017) 77.0
£ | Stanojevi¢ and G. Alhama (2017) gold POS 81.6 82.9
% Maier (2015) gold POS 747 188 | 77.0 19.8
S| Coavoux and Crabbé (2017) gold POS 81.6 49.2 | 822 50.0
= | Corro et al. (2017) 89.2
-2 | Corro et al. (2017) gold POS | 90.1 81.6
S | Versley (2016) 79.5
§ Fernandez-Gonzalez and Martins (2015) 71.3
Fernandez-Gonzélez and Gémez-Rodriguez (2020) 853 59.1 | 854 58.8
Table 6: Test set results.
In theory our parser is certainly an improvement 1.2 ¢
because it runs in O(I n* +n) while other parsers —e—neural

in the worst-case use O(G n%logn). To test if the
same holds in practice we ran the parser on Negra
dev set sentences of different length without using
any pruning techniques. The results up to length
50 are shown in Figure 2.

The neural component (mostly bi-LSTM) and
labelling component (with complexity O(I n*))
are shared across all parsing approaches we have
tried. The labelling component, despite its theoret-
ical complexity, has a very small influence on the
overall parsing speed even for long sentences.

Stern et al. (2017) state that in their experiments
the neural component took most of the time. While
in our experience that is true for CFG search, the
same conclusion does not hold for LCFRS for sen-
tences longer than 35 words.

Instead, parsing time for long sentences is dom-
inated by the chart parsing component. The well-
nested version that excludes the rare rule (LCFRS-
wn-nr) is the fastest, as predicted by its complexity
of O(n%). As we have seen in previous sections,
excluding the rare rule #11 does not affect outcome,
but it does affect speed significantly.

The more powerful, and accurate, formalism of
full LCFRS-2 changes the dynamics of parsing:
speed quickly decreases for sentences longer than
30 words. Nevertheless, parsing time stays under
1 second for all sentences under 45 words with-
out any need for pruning. This is significantly
faster than speeds reported for all previous chart-
based parsers that do not use pruning (see ddi-
cfrs, rparse and GF in Figure 4 in Ruprecht and

118

1| | -=labelling
—o— LCFRS-wn-nr

'§O-8 —— LCFRS-wn
S —— LCFRS
206

()

£0.4

0 10 20 30 40 50
sentence length in words

Figure 2: Parsing speed on Negra.

Denkinger (2019)). The only parsers that could
compare in speed are heavily pruned versions of
DiscoDOP (van Cranenburgh and Bod, 2013) and
OP (Ruprecht and Denkinger, 2019) that get much
lower accuracy than our parser (see Table 6).

For sentences longer than 50 words (not visible
on the plot) parsing is significantly slower, but it
is still tractable. For our test set results we use
no pruning up to sentence length 60: for the rare
sentences above 60, we use the same model, but
with only well-nested parse search.

5.4 Test set results

Test set results for English and German are shown
in Table 6. Compared to previous chart-based
LCFRS parsers our parser provides the best results
on all measures for both English and German.
Compared to transition based parsers, it is com-

petitive over all constituencies, but has slightly
lower score on discontinuous constituents alone.

The recent parser by Ferniandez-Gonzilez
and Gémez-Rodriguez (2020) outperforms both
LCFRS and transition-based parsers. It treats dis-
continuous constituency parsing as a diconstinuous
dependency parsing with slightly enriched labels
that allow conversion back to the discontinuous
constituency structure. However, it is not easy to
see how to compare this approach to the ones dis-
cussed above.

6 Conclusion

We have presented a span-based LCFRS-2 parser
that outperforms all previous LCFRS parsers.
It is in addition competitive with the best
transition-based parsers, outperforming them in
all-constituency evaluation for both German tree-
banks.

The results from this paper also indicate that the
strong generative power of the grammar formalism
is correlated with the accuracy. LCFRS-2 power
is a great improvement over formalisms that are
lower in the complexity hierarchy, but is still inade-
quate for complete coverage of discontinuity. Our
results also show that well-nestedness significantly
limiting the coverage that could be achieved even
with an ideal scoring model.

Acknowledgments

We thank Maximin Coavoux for providing us ac-
cess to DPTB dataset. This work was supported
by ERC H2020 Advanced Fellowship GA 742137
SEMANTAX grant.

References

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther Konig, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszko-
reit. 2004. TIGER: Linguistic Interpretation of a
German Corpus. Research on Language and Com-
putation, 2(4):597-620.

Joan Chen-Main and Aravind K. Joshi. 2010. Unavoid-
able ill-nestedness in natural language and the ad-
equacy of tree local-MCTAG induced dependency
structures. In Proceedings of the 10th International
Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+10), pages 53-60, Yale Univer-
sity. Linguistic Department, Yale University.

Maximin Coavoux and Shay B Cohen. 2019. Discon-
tinuous constituency parsing with a stack-free tran-

119

sition system and a dynamic oracle. In Proceedings
of NAACL-HLT, pages 204-217.

Maximin Coavoux and Benoit Crabbé. 2017. Incre-
mental discontinuous phrase structure parsing with
the GAP transition. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 1259-1270, Valencia, Spain. Associa-
tion for Computational Linguistics.

Maximin Coavoux, Benoit Crabbé, and Shay B Cohen.
2019. Unlexicalized transition-based discontinuous
constituency parsing. Transactions of the Associa-
tion for Computational Linguistics, 7:73—89.

Caio Corro, Joseph Le Roux, and Mathieu Lacroix.
2017. Efficient discontinuous phrase-structure pars-
ing via the generalized maximum spanning arbores-
cence. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1644—-1654, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Andreas van Cranenburgh and Rens Bod. 2013. Dis-
continuous parsing with an efficient and accurate
dop model. In Proceedings of The 13th Interna-
tional Conference on Parsing Technologies (IWPT
2013), pages 7-16.

Andreas van Cranenburgh, Remko Scha, and Rens Bod.
2016. Data-oriented parsing with discontinuous con-
stituents and function tags. Journal of Language
Modelling, 4(1):57-111.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1-11.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings.

Kilian Evang and Laura Kallmeyer. 2011. PLCFRS
Parsing of English Discontinuous Constituents. In
Proceedings of the 12th International Conference
on Parsing Technologies, IWPT ’11, pages 104116,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Daniel Fernandez-Gonzédlez and Carlos Gomez-
Rodriguez. 2020. Discontinuous constituent
parsing with pointer networks. arXiv preprint
arXiv:2002.01824.

Daniel Ferndndez-Gonzdlez and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1523—-1533, Beijing,
China. Association for Computational Linguistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999-1010.

Carlos Gémez-Rodriguez, Marco Kuhlmann, and Gior-
gio Satta. 2010. Efficient parsing of well-nested lin-
ear context-free rewriting systems. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 276-284. As-
sociation for Computational Linguistics.

Alex Graves, Santiago Ferndndez, and Jiirgen Schmid-
huber. 2005. Bidirectional LSTM Networks for
Improved Phoneme Classification and Recogni-
tion. In Proceedings of the 15th International
Conference on Artificial Neural Networks: For-
mal Models and Their Applications - Volume Part
11, ICANN’05, pages 799-804, Berlin, Heidelberg.
Springer-Verlag.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8).

Aravind K. Joshi. 1985. Tree adjoining grammars:
How much context-sensitivity is required to provide
reasonable structural descriptions?, Studies in Natu-
ral Language Processing, page 206-250. Cambridge
University Press.

Laura Kallmeyer. 2010. Parsing Beyond Context-Free
Grammars. Springer, NY.

Laura Kallmeyer. 2013. Linear context-free rewrit-
ing systems. Language and Linguistics Compass,
7(1):22-38.

Laura Kallmeyer and Wolfgang Maier. 2010. Data-
driven parsing with probabilistic linear context-free
rewriting systems. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 537-545. Association for Computational Lin-
guistics.

Nikita Kitaev and Dan Klein. 2018a. Constituency
parsing with a self-attentive encoder. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2676-2686.

Nikita Kitaev and Dan Klein. 2018b. Multilingual con-
stituency parsing with self-attention and pre-training.
arXiv preprint arXiv:1812.11760.

Alexander Koller and Marco Kuhlmann. 2009. Depen-
dency Trees and the Strong Generative Capacity of
CCG. In Proceedings of the 12th Conference of
the European Chapter of the Association for Com-
putational Linguistics, EACL 09, pages 460—468,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

120

Marco Kuhlmann and Mathias Mohl. 2007. Mildly
context-sensitive dependency languages. In Pro-
ceedings of the 45th Annual Meeting of the Associ-
ation of Computational Linguistics, pages 160—167,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly
Non-projective Dependency Structures. In Pro-
ceedings of the COLING/ACL on Main Conference
Poster Sessions, COLING-ACL ’06, pages 507-514,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Wolfgang Maier. 2015. Discontinuous Incremental
Shift-reduce Parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1202—-1212, Beijing, China. As-
sociation for Computational Linguistics.

Wolfgang Maier, Miriam Kaeshammer, and Laura
Kallmeyer. 2012. Data-driven PLCFRS parsing re-
visited: Restricting the fan-out to two. In Proceed-
ings of the Eleventh International Conference on
Tree Adjoining Grammars and Related Formalisms
(TAG+11), Paris, France.

Wolfgang Maier and Timm Lichte. 2009. Character-
izing discontinuity in constituent treebanks. In In-
ternational Conference on Formal Grammar, pages
167-182. Springer.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

David McAllester. 2002. On the complexity analysis
of static analyses. J. ACM, 49(4):512-537.

Mark-Jan Nederhof. 2003. Weighted deductive parsing
and knuth’s algorithm. Computational Linguistics,
29(1):135-143.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Cloth-
iaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,
Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Kumar, Chai-
tanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. Dynet: The dy-
namic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
vl: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659-1666.

Thomas Ruprecht and Tobias Denkinger. 2019. Im-
plementation of a chomsky-schiitzenberger n-best
parser for weighted multiple context-free grammars.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 178—191.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191-229.

Stuart M Shieber, Yves Schabes, and Fernando CN
Pereira. 1995. Principles and implementation of de-
ductive parsing. The Journal of logic programming,
24(1-2):3-36.

Milo§ Stanojevi¢ and Raquel G. Alhama. 2017. Neu-
ral discontinuous constituency parsing. In Proceed-
ings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 818—-827.

Ben Taskar, Carlos Guestrin, and Daphne Koller.
2004a. Max-margin markov networks. In Advances
in neural information processing systems, pages 25—
32.

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller,
and Christopher Manning. 2004b. Max-margin pars-
ing. In Proceedings of the 2004 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1-8.

Yannick Versley. 2016. Discontinuity re™2-visited: A
minimalist approach to pseudoprojective constituent
parsing. In Proceedings of the Workshop on Discon-
tinuous Structures in Natural Language Processing,
pages 58—69, San Diego, California. Association for
Computational Linguistics.

Krishnamurti Vijay-Shanker, David J Weir, and Ar-
avind K Joshi. 1987. Characterizing structural
descriptions produced by various grammatical for-
malisms. In Proceedings of the 25th annual meet-
ing on Association for Computational Linguistics,
pages 104-111. Association for Computational Lin-
guistics.

121

Analysis of the Penn Korean Universal Dependency Treebank (PKT-UD):
Manual Revision to Build Robust Parsing Model in Korean

Tae Hwan Oh*, Ji Yoon Han®, Hyonsu Choe®, Seokwon Park®, Han He,*
Jinho D. Choi®, Na-Rae Han*, Jena D. Hwang", Hansaem Kim*

*Yonsei University, Seoul, South Korea
©Emory University, Atlanta GA 30322, USA
*University of Pittsburgh, Pittsburgh PA 15260, USA
“ Allen Institute For Artificial Intelligence, Seattle WA 98103, USA

{ghks10604, clinamen35, choehyonsu, pswon27}@yonsei.ac.kr, han.he@emory.edu

jinho.choi@emory.edu, narachan@pitt.edu, jenahfallenai.org, khss@yonsei.ac.kr

Abstract

In this paper, we first open on important issues
regarding the Penn Korean Universal Treebank
(PKT-UD) and address these issues by revising
the entire corpus manually with the aim of pro-
ducing cleaner UD annotations that are more
faithful to Korean grammar. For compatibility
to the rest of UD corpora, we follow the UDv2
guidelines, and extensively revise the part-of-
speech tags and the dependency relations to re-
flect morphological features and flexible word-
order aspects in Korean. The original and the
revised versions of PKT-UD are experimented
with transformer-based parsing models using
biaffine attention. The parsing model trained
on the revised corpus shows a significant im-
provement of 3.0% in labeled attachment score
over the model trained on the previous corpus.
Our error analysis demonstrates that this revi-
sion allows the parsing model to learn relations
more robustly, reducing several critical errors
that used to be made by the previous model.

1 Introduction

In 2018, Chun et al. (2018) published on three
dependency treebanks in Korean that followed the
latest guidelines from the Universal Dependencies
(UD) project, that was UDv2. These treebanks were
automatically derived from the existing treebanks,
the Penn Korean Treebank (PKT; Han et al. 2001),
the Google UD Treebank (McDonald et al., 2013),
and the KAIST Treebank (Choi et al., 1994), using
head-finding rules and heuristics.

This paper first addresses the known issues in
the original Penn Korean UD Treebank, henceforth
PKT-UD v2018, through a sampling-based analysis
(Section 3), and then describes the revised guide-
lines for both part-of-speech tags and dependency
relations to handle those issues (Section 4). Then,
a transformer-based dependency parsing approach
using biaffine attention is introduced (Section 5) to

122

experiment on both PKT-UD v2018 and the revised
version, henceforth PKT-UD v2020 (Section 6).
Our analysis shows a significantly reduced num-
ber of mispredicted labels by the parsing model
developed on PKT-UD v2020 compared to the one
developed on PKT-UD v2018, confirming the ben-
efit of this revision in parsing performance. The
contributions of this work are as follows:

1. Issue checking in PKT-UD v2018.

2. Revised annotation guidelines for Korean and

the release of the new corpus, PKT-UD v2020.

. Development of a robust dependency parsing
model using the latest transformer encoder.

2 Related Works

2.1 Korean UD Corpora

According to the UD project website,! three Ko-
rean treebanks are officially registered and released:
the Google Korean UD Treebank (McDonald et al.,
2013), the Kaist UD Treebank (Choi et al., 1994),
and the Parallel Universal Dependencies Treebank
(Zeman et al., 2017). These treebanks were created
by converting and modifying the previously exist-
ing treebanks. The Korean portion of the Google
UD Treebank had been re-tokenized into the mor-
pheme level in accordance with other Korean cor-
pora, and systematically corrected for several errors
(Chun et al., 2018). The Kaist Korean UD Treebank
was derived by automatic conversion using head-
finding rules and linguistic heuristics (Chun et al.,
2018). The Parallel Universal Dependencies Tree-
bank was designed for the CoONLL 2017 shared task
on Multilingual Parsing, consisting of 1K sentences
extracted from newswires and Wikipedia articles.
The Penn Korean UD Treebank and the Sejong
UD Treebank were registered on the UD website

"https://universaldependencies.org

Proceedings of the 16th International Conference on Parsing Technologies and the INPT 2020 Shared Task, pages 122—131
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

csubj

advcl

amod

comp

ro@{i

W

advcl

ccomp

N ™M) !ﬁm

S =} A ARk AFPE <, Holxg Uttm, LRI,
Renault last month with_Samsung_Motors cxcluslvc acquisition_negotiate -ing was announced_and
PROPN ADJ NUM NOUN ADV VERB NOUN SCONJ ADV SCONJ
(a) Example from v2018 where the labels in revision are indicated by the red bold font.
csubj
obl

amod T i advcl

Vnummv.)d l ;—acl—w ;—obj—w ’ aux
2xE, Ad, I 9, 2Ha Aok 5 AFAEE, Txded,,
Renault last 1 month with_Samsung_Motors excluswe acquisition_negotiate mg was announced_and
PROPN ADJ] NUM NOUN NOUN ADJ NOUN VERB AUX VERB

(b) Example from v2020 where the revised labels are indicated by the blue bold font.

Figure 1: Example from v2018 and v2020, that translates to “Renault announced last January that it was negotiat-

ing an exclusive acquisition with Samsung Motors, and ...

as well but unreleased due to their license issues.
Similar to the Kaist UD Treebank, the Penn Korean
UD Treebank? was automatically converted into
UD structures from phrase structure trees (Chun
et al., 2018). The Sejong UD Treebank was also
automatically converted from the Sejong Corpus,
a phrase structure Treebank consisting of 60K sen-
tences from 6 genres (Choi and Palmer, 2011).

Treebank | GKT | KTB | PUD | PKT | Sejong

Sentences 6k 27k 1k 5k 60k
Tokens 80k 350k 16k 132k 825k
Released O (0] O X X
Unit Eojeol | Eojeol | Eojeol | Eojeol | Eojeol
Genre Blog, | Litr, Blog, | News | Litr,
News | News, | News News,
Acdm, Acdm,
Mscr Mscr
Table 1: Korean UD Treebanks. Each abbrevia-

tions indicate genres of source texts: webblogs(Blog),
newswire(News), literatures(Litr), academic(Acdm),
manuscripts(Mscr).

In a related effort, the Electronic and Telecom-
munication Research Institute (ETRI) in Korea con-
ducted a research on standardizing dependency re-
lations and structures (Lim et al., 2015). This effort
resulted in the establishment of standard annotation
guidelines of Korean dependencies, giving rise to
various related efforts that focused on the establish-
ment of Korean UD guidelines that better represent
the unique Korean linguistic features. These studies
include Park et al. (2018) who focused on the map-
ping between the UD part-of-speech (POS) tags

The annotation with the word-forms of the Penn Korean UD
Treebank can be found here: https://github.com/
emorynlp/ud-korean.

i)

123

. This example continues in Figure 2.

and the POS tags in the Sejong Treebank, and Lee
et al. (2019) and Oh (2019) who provided in-depth
discussions of applicability and relevance of UD’s
dependency relation to Korean.

2.2 Penn Korean UD Treebank

As mentioned in Section 2.1, the Penn Korean UD
Treebank (PKT-UD v2018) was automatically de-
rived from phrase-structure based the Penn Korean
Treebank and the results were published by Chun
et al. (2018). Even so, it currently does not number
among the Korean UD treebanks officially released
corpora under the UD project website.

Our effort to officially release Chun et al. (2018)’s
PKT-UD v2018 has uncovered numerous mechani-
cal errors caused by the automatic conversion and
few other unaddressed issues, leading us to a full
revision of this corpus. PKT-UD v2018 made tar-
geted attempts at addressing a number of language-
specific issues regarding complex structures such
as empty categories, coordination structures, and al-
location of POS tags with respect to dependency re-
lations. However, the efforts were limited, leaving
other issues such as handling of copulas, proper al-
location of verbs according to their verbal endings,
and grammaticalized multi-word expressions were
unanswered. Thus, this paper aims to address those
remaining issues while revising PKT-UD v2018 to
clearly represent phenomena in Korean.

3 Observations in PKT-UD v2018

The Penn Korean Treebank (PKT) was originally
published as a phrase-structure based treebank by
Han et al. (2001). PKT consists of 5,010 sentences

root

conj

*compound| r obl —1 £
o

conj

Y ""“’d_\ i

nsubj

compound advcl

Root, dR Y=, g, AEEA), =R 3 ’dake] 1, M E s 1]6 xHo=, 37_ ‘}/1 19
root announced_and Korean media according_to ofisamsung Motors the_value 1 trillion_won estlmated at is
ROOT SCONJ PROPN ADV SCONJ PROPN NOUN NUM ADV SCONJ AUX
(a) Example from v2018 where the labels in revision are indicated by the red bold font.
root
advcl
advcl
nsubj
Vcompound robl—w {—nmod—w l nummodI (oblw ’

Rooty gl 10 @i]] AEE]12 =213 2Hd ate] 14 7} t‘15 g Z\—’L-——?—n FAkE 1 —7 18 9\)\ 19
root announced_and Korean media according_to of Samsung_Motors the_value 1 trillion_won estimated_at is
ROOT VERB PROPN NOUN VERB NOUN NOUN NUM NOUN VERB AUX

(b) Example from v2020 where the revised labels are indicated by the blue bold font.

Figure 2: Continuing example from Figure 1 that translates to “...

announced ..., and according to Korean media,

the value of Samsung Motors is estimated at 1 trillion won”.

from Korean newswire including 132,041 tokens.?
Following the UDv2 guidelines, Chun et al. (2018)
systematically converted PKT to PKT-UD v2018.
While this effort achieved a measure of success at
providing phrase-structure-to-dependency conver-
sion in a manner consistent across three different
treebanks with distinct grammatical frameworks, it
stopped short of addressing more nuanced issues
that arise from aligning grammatical features of Ko-
rean, that is a heavily agglutinative language, to the
universal standards put forth by UDv2. In building
PKT-UD v2018, the POS tags were largely mapped
in a categorical manner from the Penn Korean POS
tagset. The dependency relations on the other hand
were established via head-finding rules that relied
on Penn Korean Treebank’s existing function tags,
phrasal tags, and morphemes.

Chun et al. (2018) did make a few targeted at-
tempts at teasing apart more fine-grained nuances
of grammatical functions. For example, the PKT
POS tag (XPOS) DAN was subdivided into the UD
POS tag (UPOS) DET for demonstrative prenomi-
nals (e.g., ©] (this), 1 (the), and the UPOS ADJ for
attributive adjectives (e.g., Al (new), & (old)) in the
recognition that the XPOS DAN, focusing primarily
on grammatical distribution, conflated two semanti-
cally distinct elements. However, such efforts were
limited in scope, and the project did not examine
the full breadth of language-specific issues.

Moreover, the converted annotation was found

3While most Korean resources have what is known as Eojeol
representing a token and white space is used as delimiter, PTK
tokenizes apart symbols, punctuation and even occasional
morphemes where strictly required by syntactic structure.

124

to contain a share of mechanical errors. A case in
point, what should have been 5,010 sentences were
found to contain 5,036 roots, suggesting low-level
parsing errors. Additionally, a manual examination
of the first five sentences in the corpus uncovered a
variety of syntactic errors that raised an alarm. The
worst of the five examined sentences is shown in
Figure 1 (and continued in Figure 2) with errors in
both the UPOS and the dependency relation labels
(DEPREL). While we will not delve into particulars
of each error seen in this example, the example
provides a general sense for the extent of errors
existent that merited our attention.

These observed issues inspired us to revise PKT-
UD v2018, with the aim of producing cleaner syn-
tactic annotations that would be more faithful to the
Korean grammar. The following section provides
specifics of the revision content.

4 PKT-UD Revisions
4.1 UPOS Revision

Revision of the UPOS portion of the resource was
done from the ground up. That is, instead of cor-
recting PKT-UD v2018’s UPOS annotations, we
implemented a new mapping from XPOS to UPOS
after a careful re-examination of the original map-
ping schema. In particular, we consulted the POS
mapping guidelines by Park et al. (2018) whose
morphological tagset, carried over from the Sejong
Project (Kim, 2006), differs from PKT’s in some
key aspects. However, we found their nuanced view
of grammatical characteristics and typology of Ko-
rean in reference to the UDv2 very much applicable.

The followings illustrate key ideas of of our UPOS
revision approach. Below and throughout this pa-
per, we italicize XPOS labels (e.g., DAN) so they
are visually distinct from UPOS labels (e.g., ADJ).

Copulas mapped to ADJ One major target of re-
vision was the scope of the UPOS adjective label
ADJ in Korean, which includes typical predica-
tive adjectives such as ‘9JJ#-’ (prerty) and ‘Tf2-
(different). As mentioned in Section 3, PKT-UD
v2018 already extended the ADJ label to include
the closed class of adjectives whose distribution is
limited to pre-nominal, attributive use which had
been grouped together with the determiner cate-
gory DAN in the original PKT. In our current work,
we further extend the ADJ label to encompass the
copula: CO (‘-9]-" (be)). In Korean, ‘-0]-" (be) is
a copula particle that attaches to a nominal to pro-
duce a predicate, much like the English ‘be’. How-
ever, such copula-derived predicates in Korean are
known to share semantic and syntactic traits with
adjectives rather than verbs, chief among which
being their inability to take on the present/habitual
aspect verbal ending ‘-+~=T} (do) which is only al-
lowed on verbs. In light of this, we made a decision
to map all instances of XPOS’ cO to UPOS’ ADJ.

Consistent NOUN focusing on morpheme roles
Korean is well-known as an agglutinative language,
and Josas (postpositions) are extremely common
nominal suffixes that can indicate a variety of syn-
tactic roles of the whole Eojeol unit (Figure 3).
For example, when an adverbial case particle (‘©f|’,
PAD) attaches to a noun, the resulting Eojeol serves
the syntactic role of an adverb. When a conjunctive
particle (‘2}’, PCJ) is used, the Eojeol functions
as a noun conjunct. Consequently, PKT-UD v2018
mapped ADV to the former and CCONJ to the latter.

BT St +o] oFul+9}
hakkyo hakkyo+PAD hakkyo+PCJ
(school) (at school) (school and)

Figure 3: Korean postpositions, marked in bold.

However, this distinction underscores a syntactic
role rather than a morphological one: while the syn-
tactic role changes with the attachment of the post-
position, the POS of the noun itself remains unaf-
fected. UPOS, as a marker that solely demonstrates
morphological characteristics of Eojeol rather than
its syntactic function, should reflect the morpholog-
ical status of the nominal. Therefore, we made a
decision to allocate the NOUN label to these cases.

125

Verbal endings signal VERB Korean has verbal
endings on predicates that dictate the syntactic role
of Eojeol (Figure 4). In PKT-UD v2018, predicates
marked with ENM (nominalization verbal ending)
and ECS (conjunctive ending) are mapped to NOUN
and SCONJ, respectively. However, as with the ear-
lier case involving nominals, these verbal ending
suffixes should not be treated as fundamentally al-
tering the underlying POS of the predicate itself.
This work revises both cases of UPOS to VERB.
Extending the same principle, parallel cases with
the same verbal endings involving an adjective or a
copula were likewise re-assigned to ADJ.

RS S L I
mek+ta mek+ki mek+ko
(Eat) (Eating) (Eatand)

Figure 4: Korean verbal endings, marked in bold.

Statistics of v2018 and v2020 The complete dis-
tributions of PKT-UD v2018 and v2020 are listed
in Table 2.

UPOS | v2018 v2020 \ PC
ADJ 3,431 7,034 | 105.0 T
ADP 1,251 1,425 | 1391
ADV 15,174 2,851 | 81.2]
AUX 2,263 4,060 | 79.41

CCONJ 2,453 377 | 84.6]
DET 685 685 0.0

NOUN 46,866 | 58,367 | 24.51
NUM 7,931 7,602 4.1

PART 464 290 | 3751

PRON 857 1,142 | 3337

PROPN | 12,257 | 12,769 421

PUNCT | 13,428 | 13,428 0.0

SCONJ 9,780 533 946
SYM 376 376 0.0

VERB 13,855 | 21,102 | 5231

X 970 0 | 100.0 4
Total | 132,041 | 132,041 0.0

Table 2: Universal POS tagset comparison between the
2018 and 2020 versions of the Penn Universal Depen-
dency Treebank. v2018/v2020: the number of tokens in
those versions respectively, PC: percentage change.

4.2 DEPREL Revision

In re-examining PTK-UD v2018’s dependency re-
lations, we consulted two existing dependency an-
notation guidelines for Korean: Lee et al. (2019)

and Oh (2019). They offer a thorough analysis on
applicability of the universal dependency relation
labels to Korean, and further identify a list of de-
pendency relations such as 1obj, xcomp, expl,
and cop (among others) as not suited for captur-
ing characteristics of Korean grammar. Addition-
ally, where applicable, we took into consideration
the UD Japanese Treebank (Asahara et al., 2018),
since Japanese exhibits many parallel syntactic phe-
nomena as another strictly head-final agglutinative
language (Kanayama et al., 2018).

Reevaluation of iobj We turned our attention
to iob], the DEPREL label for indirect object. We
found PKT-UD v2018’s decision to assign nomi-
nals with dative case markings to iob 7 question-
able, for the following reasons. First, unlike En-
glish, where word order distinguishes indirect ob-
jects from direct objects (e.g. “She gave me:iobj
a box:ob3”), Korean has no such structural con-
straint that forms the basis for identifying instances
of iobj. The only potential identifier, then, is
dative postpositions such as ‘-o||7|’(t0) and ‘-
SHe|’(by), which correspond roughly to English
preposition ‘to’ as in “She gave it o me”. The prob-
lem is, these markers do not exclusively encode the
dative case, as seen in examples such as “7J|o]| A
=R (“I was bit by a dog”).

Hence, we adopted a new approach of reassign-
ing all instances of iobj to the oblique relation
obl. This move brings language-internal consis-
tency, as postpositions, in many instances, can sim-
ply be dropped if contextually recoverable, render-
ing any such nominals practically indistinguishable
from other nominal adverbials that are assigned
to obl. This overall approach is also in line with
UD Japanese Treebank, where iob7j is categor-
ically absent and ‘|z (ni)’, a postposition whose
usage largely parallels the two Korean postposi-
tions above, mapping to ob1.

Standardizing verbal predicates As shown in
Figure 5, Korean predicates take on various syntac-
tic functions depending on the attached verbal end-
ing. Predicates with the declarative verbal ending
-t} (ta) are assigned to root, which is straight-
forward. Endings ‘-2’ (un) and ‘-’ (ul) on the
other hand turn the verb into a modifier to an up-
coming noun; the acl relation therefore is the
best fit here. Predicates with endings such as ‘-
O] A’ (ese) and -7’ (key) modify other predicates,
which calls for an advcl assignment. In PKT-UD

v2018, these cases had received an array of incon-
sistent allocations such as clausal complements
(ccomp/xcomp), auxiliaries (aux), and conjuncts
(conj). These were corrected to acl and advcl.

Har} we2/e HiolA
mek-ta mek-un/ul mek-ese
(eat) (ate/to-eat) (eat because)

Figure 5: Examples of Korean verbal ending.

Orphaned postpositions and verbal endings
In Korean, verbal endings and postpositions are
bound to verbs and nominals, respectively, and
cannot occupy their own Eojeol. In natural text,
however, they can occasionally be separated from
the constituent they attach to via quotation marks,
white spaces, or parentheses. PKT-UD v2018 had
assigned such orphaned bound morphemes to
UPOS of PART (particle) and ADP (adposition)
with the DEPREL of mark (marker) and case
(case marker), respectively as seen in Figure 6.

root

{ punctw ((p:ct;
1 st 3

Rooty 5t=,
root ! sky
ROOT PUNCT NOUN PUNCT ADP

obj

=4 Bts
obj-cm look at
VERB

'

Figure 6: PKT-UD v2018 treatment of separated post-

ne=]1_»

position - (ul) in "‘Sl= = —ﬂ' (Look at the ‘sky’)".

However, verbal endings and postpositions can ex-
press syntactic function only if they are attached
to their modifying predicates and nominals. While
PKT-UD v2018’s assignment of the UPOS and
DEPREL are not categorically incorrect, they ad-
dress morphological relationship between these
morphemes rather than their syntactic relationship.
That is, even if these bound morphemes are no-
tationally distanced from their heads by punctua-
tion or white spaces, they form a single syntactic
unit with their nominals and postpositions. Hence,
mark and case were updated to goeswith,
used for divided words as seen in Figure 7, making
it clear that the seemingly separate Eojeols (e.g.
nominal and postposition) are actually one unit.

Orphaned copulas Similar revisions were ap-
plied to copulas. Korean copula morpheme -©]-’
(i) combines with a nominal on the left and a verbal

126

ending to the right. These copulas too can occa-
sionally be detached via intervening punctuation or
white space. To such cases, PKT-UD v2018 had as-
signed cop as the DEPREL. These instances have
been updated to goeswith in accordance with the
treatment given to verbal endings and postpostions.

roots and flats The number of root is ad-
justed from 5,036 to 5,010 after correcting sen-
tences with zero or more roots. Additionally, DE-
PREL of Eojeols that used to be incorrectly mapped
to compound are now assigned to flat.

Statistics of v2018 and v2020 The complete DE-
PREL distributions of PKT-UD v2018 and v2020
are listed in Table 3.

DEPREL v2018 v2020 PC

acl 1,488 | 11,210 653.4 1
advcl 11,636 5,086 56.3 |
advmod 2,964 3,125 547
amod 1,595 1,593 0.1}
appos 1,182 1,173 0.8
aux 4,807 4,061 155
case 1,548 0 100.0 |
ccomp 9,858 1,989 79.8 |
cc 785 473 39.71
compound | 28,908 | 21,433 259 |
con’j 9,960 7,155 28.2 1
cop 418 0 100.0 |
csubj 8,014 8,012 0.0
dep 609 10 98.4 |

det 685 685 0.0
fixed 528 589 11.6 T
flat 18 739 | 4,005.6 1
goeswith 0 2,199 100.0 1
iobj 222 0 100.0 |
mark 1,003 0 100.0 |
nmod 5,555 5,501 1.0
nsub 4,012 4,114 251
nummod 154 7,341 | 4,666.9 1
obj 9,823 9,849 037
obl 3,357 | 16,891 403.2 1
orphan 0 9 100.0 1
punct 13,073 | 13,794 557
root 5,036 5,010 051
xcomp 4,803 0 100.0 |

Total 132,041 | 132,041 0.0

Table 3: Universal dependency label comparison be-
tween v2018 and v2020 of the Penn Universal Depen-
dency Treebank. v2018/v2020: the number of tokens in
those versions respectively, PC: percentage change.

127

root

ob,

j
goeswith
(punct ;
Root 3 %4 Bt 5

{ punct\
') _—_}_ R
root ! sky obj-cm look_at

[e) —é‘z
ROOT PUNCT NOUN PUNCT ADP VERB

Figure 7: Revision of the DEPREL of the separated
postposition & at "‘5l="2 H (Look at the ‘sky’)"
in PKT-UD v2020, where case relation for orphaned
postposition revised to goeswith.

S Parsing Approach

Our dependency parsing model is based on the bi-
affine parser using contextualized embeddings such
as BERT (Devlin et al., 2019) that has shown the
state-of-the-art results on both syntactic and seman-
tic dependency parsing tasks in multiple languages
(He and Choi, 2020). This model is simplified from
the original biaffine parser introduced by Dozat and
Manning (2017) such that trainable token embed-
dings are removed and lemmas are used instead of
word forms. This section proposes an even more
simplified model that no longer uses embeddings
from POS tags, so it can be easily adapted to lan-
guages that do not have dedicated POS taggers, and
drops the Bidirectional LSTM encoder while inte-
grating the transformer layers directly into the bi-
affine decoder so that it minimizes the redundancy
of having multiple encoders for the generation of
contextualized embeddings.

Given an input sentence, every token wj is first
segmented into one or more sub-tokens by the Sen-
tencePiece tokenizer (Kudo and Richardson, 2018)
and fed into a transformer. The output embedding
corresponding to the first sub-token of wj; is treated
as the embedding representation of w;, say e;, and
fed into four types of multilayer perceptron (MLP)
layers to extract features for w; being a head (*-h)
or a dependent (*-d) for the arc relations (arc-*)
and the labels (rel-*) (k and [are the dimensions
of the arc and label representations, respectively):

hgarc-h) — MLP(arC—h) RkX 1

(e;)

hgarc_d) _ MLP(arc—d)() kal
)

)

S
e;) €
hgrel—h) — MLP(rel—h) (ei c Rlxl
h&rel-d) — MLP(rel—d) (ei c Rlxl
All feature vectors, hg{, ..., h}, from each repre-
sentation are stacked into a matrix (n is the number

—(@ .]H(rel h)T

i -
ur@l

o0 H(arc h)T

[O)O) 000
%oo% X looo
o0 U(arc)

h(”)h‘ o) h(!l

MLP) Mrp@et) \plebd) \rplared yprplet) \ppploch) \pplerd) yppplared) pprpeet
| Ly | J | L m | J

ee@e@ec0@ee8@eE0o EeEses/coESITeCST

) MLP(re) MLplrehd) yqrplered) MLPUeH pLplret) pMppetd prplered)
Fan | \ Loy | |

€ €it1

(@0 0) eit+3

Figure 8: The overview of our transformer-based biaffine dependency parsing model.

of tokens in a sentence); these matrices together are
used to predict dependency relations among every
token pairs. Note that bias terms are appended to
the feature vectors hf'd) that represent dependent
nodes to estimate the likelihood of a certain relation
given only the head node:

g tareh) h(arc h)

., heh)) ¢ ghxn
., h@redy g 1 ¢ Rk+1)xn
., hlekh)y ¢ Rixn
L h0ekD) g 1 ¢ RUHDxn

H(arc -d) h(arc d)

= (
= (

g (rel-h) (h(r61 -h) N
= (

H(rel -d) h(rel d)

The bilinear and biaffine classifiers are then used
for the arc and label predictions respectively, where
ylae) 1y Z-(rel) and V) are trainable parameters,
and m is the number of dependency labels. In par-
ticular, a separate weight matrix U™ is dedicated
for the prediction of each label:

S(arc) H(arc -h) T U(arc) . H(a.rc-d) e RXn
ui(rel) — pgleln)T Ui(rd) . g (rekd) o pnxn
S @,)

+ (H(rel—h) @ H(rel—d))T . V(rel) e Rmxnxn

Once the arc score matrix S@ and the label score
tensor STV are generated by those classifiers, the
Chu-Liu-Edmond’s maximum spanning tree (MST)
algorithm is applied to S@© for the arc prediction,
then the label with largest score in ST correspond-
ing to the arc is taken for the label prediction:

arc = MST(S®9)

label = argmax(S"V[index(arc)])

6 Experiments

To extrinsically assess the quality of our revision,
parsing models are separately developed on PKT-
UD v2018 and v2020; in other words, v2018 mod-
els are trained and evaluated on PKT-UD v2018
whereas v2020 models are trained and evaluated
on PKT-UD v2020. The transformer-based parsing
approach in Section 5 is used to develop all models.
For each version of the corpus, three models are
developed by initializing neural weights with dif-
ferent random seeds and the average accuracy and
its standard deviation is reported for each version.
The entire corpus is divided into the training (TRN),
development (DEV), and evaluation (TST) sets by
following the 80/10/10% split (Table 4).

| TRN | DEV | TST
of Sentences 4,010 501 500
of Tokens 105,947 | 13,088 | 13,023

Table 4: Statistics of the data split.

The multilingual BERT* is used as the transformer
encoder in our parsing models (Devlin et al., 2019).
All models are optimized by the sum of softmax
cross-entropy losses on the gold dependency heads
and labels. AdamW (Loshchilov and Hutter, 2019)
is used as the optimizer with the learning rate of
5e-06 for the BERT weights and 5e-05 for the rest.
The learning rate is scheduled as a combination of
both linear warm-up and decay phases. The models
are trained for 100 epochs with a batch size of 150.
Following the standard practice, we evaluate our
best models with the unicode punctuation ignored
using the unlabeled attachment score (UAS) and
the labeled attachment score (LAS).

*https://github.com/google-research/bert/
blob/master/multilingual.md

128

Table 5 shows the results achieved by the v2018
and v2020 models. The v2020 model shows a sig-
nificantly improvement of 3.0% in LAS over the
v2018 model. This makes sense because the major
parts of the revision are dedicated to DEPREL con-
sistency, yielding more robust parsing performance
in labeling. The v2020 model also gives a good im-
provement of 0.6% in finding dependency arcs. The
improved parsing results ensure the higher quality
annotation in PKT-UD v2020 that is encouraging.

| UAS | LAS
v2018 [[90.7 (£0.2) | 86.0 (+0.1)
v2020 || 91.3 (0.1) | 89.0 (+0.1)

Table 5: Results by the v2018 and v2020 models.

7 Error analysis

PKT-UD v2018 We perform an error analysis on
the parsing outputs generated by the v2018 model.
Our analysis shows that the head error occurred in
1,360 Eojeols and the label error occurred in 4,292
Eojeols. Table 6 shows the distribution of head
and label errors per label based on the revised test
set. The relations advcl, nummod, acl, and obl
have a high error rate, which are due to the inconsis-
tencies seen in the data we handled by establishing
clear criteria. Moreover, the labels goeswith and
flat saw 100% error, again, due to the errors we
observed during the revision process.

DEPREL \ Error \ Percentage

obl 1,294 30.15%
acl 961 22.39%
nummod 777 18.1%
advcl 462 10.76%
goeswith 203 4.73%
conj 99 2.31%
compound 96 2.24%
flat 91 2.12%
ccomp 77 1.79%
etc 232 5.41%
Total 4,292 100%

Table 6: DEPREL error of PKT-UD v2018.

There is an observable trend in these errors. For
example, a number of error cases report advcl as
xcomp, conj, or ccomp while nummod tends to
be wrongly parsed to compound, acl to ccomp,
and obl to advcl. Multiple cases of parsing er-
rors due to errors in the UPOS are also found. Incor-

rect UPOS appears to commit errors while allocat-
ing edge and DEPREL. The annotation guideline
based on XPOS is already described in Section 4.

PKT-UD v2020 After revising the data accord-
ing to the criteria presented in Section 4, many
improvements have been made. The error rate
of advcl decreased from 98.93% to 2.36%, the
nummod also decreased significantly from 97.37%
to 0.5%, and the ac1l error from 86.73% to 0.9%.
The error rate of obl was also reduced from
79.14% to 5.5%. In addition, the error rate is re-
duced for goeswith and flat. In the case of
ccomp, errors decreased by more than 35% from
44.51% to 8.67%. These results is indicative of
the effect of improving training data by ensuring
consistency of annotations.

DEPREL | v2018 | v2020

obl 1,294 90
acl 961 10
nummod 777 4
advcl 462 11
goeswith 203 3
conj 99 85
compound 96 83
flat 91 34
ccomp 77 15
etc 232 134
Total 4,292 469

Table 7: DEPREL error comparison between PKT-UD
v2018 and v2020.

8 Conclusion

In this study, we revise the Penn Korean Univer-
sal Dependency Treebank (PKT-UD) and compare
parsing performance between models trained on
the original and revised versions of PKT. Our new
guidelines follow the UDv2 guidelines. UPOS and
DEPREL are revised to reflect Korean morpholog-
ical features and flexible word-order aspects with
reference to Korean UD studies such as Park et al.
(2018), Lee et al. (2019), and Oh (2019). In UPOS,
ADJ, NOUN, and VERB are revised extensively. In
DEPREL, iobj, acl, advcl, and goeswith
are thoroughly revised. The revision results show-
ing the percentage change of each label are pre-
sented in Table 2 and Table 3.

As a result of the parsing experiment, the v2020
model improves UAS by 0.6% and LAS by 3.0%
over the v2018 model. In particular, obl, acl,

129

nummod, and advcl errors are significantly re-
duced. This study, which improves parsing accu-
racy by applying characteristics of Korean, can also
contribute to improve the quality of other Korean
UD treebanks. In the future, we will explore the
possibility of extending PKT-UD with enhanced de-
pendency types® by incorporating empty categories
from the original PKT.

References

Masayuki Asahara, Hiroshi Kanayama, Takaaki
Tanaka, Yusuke Miyao, Sumire Uematsu, Shinsuke
Mori, Yuji Matsumoto, Mai Omura, and Yugo
Murawaki. 2018. Universal dependencies version
2 for japanese. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC 2018).

Jinho D. Choi and Martha Palmer. 2011. Statistical de-
pendency parsing in korean: From corpus generation
to automatic parsing. In Proceedings of the Second
Workshop on Statistical Parsing of Morphologically
Rich Languages, pages 1-11. Association for Com-
putational Linguistics.

Key-Sun Choi, Young S Han, Young G Han, and Oh W
Kwon. 1994. Kaist tree bank project for korean:
Present and future development. In Proceedings
of the International Workshop on Sharable Natural
Language Resources, pages 7T—14. Citeseer.

Jayeol Chun, Na-Rae Han, Jena D Hwang, and Jinho D
Choi. 2018. Building universal dependency tree-
banks in korean. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and

Evaluation (LREC 2018).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of the 5th International
Conference on Learning Representations, ICLR’17.

Chung-hye Han, Na-Rae Han, Eon-Suk Ko, Martha
Palmer, and Heejong Yi. 2001. Penn korean tree-
bank: Development and evaluation. In Proceedings
of the 16th Pacific Asia Conference on Language, In-
formation and Computation, pages 69-78.

Shttps://universaldependencies.org/u/
overview/enhanced-syntax.html

Han He and Jinho D. Choi. 2020. Establishing strong
baselines for the new decade: Sequence tagging, syn-
tactic and semantic parsing with bert. In Proceed-
ings of the 33rd International Florida Artificial Intel-
ligence Research Society Conference, FLAIRS 20.

Hiroshi Kanayama, Na-Rae Han, Masayuki Asahara,
Jena D Hwang, Yusuke Miyao, Jinho D Choi, and
Yuji Matsumoto. 2018. Coordinate structures in uni-
versal dependencies for head-final languages. In
Proceedings of the Second Workshop on Universal
Dependencies (UDW 2018), pages 75-84.

Hansaem Kim. 2006. Korean national corpus in the
21st century sejong project. In Proceedings of the
13th NIJL International Symposium, pages 49-54.
National Institute for Japanese Language Tokyo.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text process-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 66—71, Brussels, Bel-
gium. Association for Computational Linguistics.

Chanyoung Lee, Tachwan Oh, and Hansaem Kim.
2019. A study on universal dependency annota-
tion for korean. Language Fact and Perspectives,
47(0):1-11.

Joon-Ho Lim, Yongjin Bae, Hyunki Kim, Yunjeong
Kim, and Kyu-Chul Lee. 2015. Korean Dependency
Guidelines for Dependency Parsing and Exo-Brain
Language Analysis Corpus. In Proceedings of the
27tht Annual Conference on Human and Cognitive
Language Technology.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Os-
car Tackstrom, et al. 2013. Universal dependency
annotation for multilingual parsing. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 92-97.

Taechwan Oh. 2019. Study on universal dependen-
cies for korean. Master’s thesis, Yonsei University,
Seoul, Korea.

Hyejin Park, Taechwan Oh, and Hansaem Kim. 2018.
Universal pos tagset for korean. The Korean Society
for Language and Information, 22(3):67-89.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Haji¢, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkovd, Jan Haji¢ jr.,
Jaroslava Hlavacova, Vaclava Kettnerova, Zdenka

130

UreSov4, Jenna Kanerva, Stina Ojala, Anna Mis-
sild, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
de Paiva, Kira Droganova, Héctor Martinez Alonso,
Cagn Coltekin, Umut Sulubacak, Hans Uszkoreit,
Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayadelen,
Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily
Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirch-
ner, Hector Fernandez Alcalde, Jana Strnadova,
Esha Banerjee, Ruli Manurung, Antonio Stella, At-
suko Shimada, Sookyoung Kwak, Gustavo Men-
donga, Tatiana Lando, Rattima Nitisaroj, and Josie
Li. 2017. CoNLL 2017 shared task: Multilingual
parsing from raw text to universal dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Multi-
lingual Parsing from Raw Text to Universal Depen-
dencies, pages 1-19, Vancouver, Canada. Associa-
tion for Computational Linguistics.

131

Statistical Deep Parsing for Spanish using Neural Networks

Luis Chiruzzo
Facultad de Ingenieria
Universidad de la Republica
Montevideo, Uruguay
luischir@fing.edu.uy

Abstract

This paper presents the development of a deep
parser for Spanish that uses a HPSG grammar
and returns trees that contain both syntactic
and semantic information. The parsing pro-
cess uses a top-down approach implemented
using LSTM neural networks, and achieves
good performance results in terms of syntac-
tic constituency and dependency metrics, and
also SRL. We describe the grammar, corpus
and implementation of the parser. Our process
outperforms a CKY baseline and other Span-
ish parsers in terms of global metrics and also
for some specific Spanish phenomena, such as
clitics reduplication and relative referents.

1 Introduction

The syntactic analysis of sentences is one of the key
activities within the Natural Language Processing
pipeline, and is often seen as a necessary step that
must be performed before extracting deeper infor-
mation such as semantics. Two main paradigms
have historically dominated the work on syntactic
analysis: constituency parsing, where the sentence
is structured as a tree of linguistically motivated
segments called constituents; and dependency pars-
ing, where the sentence is structured as a set of
bi-lexical dependencies with each word associated
to another word that acts as its head.

Throughout the years there have been attempts
to create deeper syntactic models that try to com-
bine both syntactic and semantic notions in the
same analysis, for example CCG (Steedman, 1996),
HPSG (Pollard and Sag, 1994) or TAG (Joshi,
1985). The process of analyzing a sentence in one
of these formalisms is often called deep parsing.
Over the last years the use of deep neural networks
has advanced the state of the art in many NLP
tasks, and though some work has been done for
performing deep parsing using these architectures
(mainly in English and for CCG), few works have

132

Dina Wonsever
Facultad de Ingenieria
Universidad de la Republica
Montevideo, Uruguay
wonsever@fing.edu.uy

focused on the application of these techniques to
other formalisms or other languages. In this work,
we present a neural network architecture for deep
parsing Spanish sentences using the HPSG formal-
ism.

The rest of the paper is structured as follows:
Section 2 describes the grammar and corpus we
use. Section 3 introduces our parsing architecture
and the baseline we compare it to. Section 4 shows
an analysis of results. Section 5 describes rele-
vant related work. Finally, section 6 gives some
conclusions and future perspectives.

2 Grammar and Corpus

We use a HPSG style grammar (Pollard and Sag,
1994) adapted to Spanish. HPSG grammars are
unification grammars that operate on feature struc-
tures. Each word is defined by a feature structure
that indicates the combinatorial properties of the
word: how it can be combined to other words in
order to form phrases. Because of this, these gram-
mars tend to have few rules, which are very generic.
When applying a rule, the process of unification
validates that both the conditions of the rule and
the constraints imposed by the expressions being
combined are met, and the resulting phrases inherit
some of the features of their children in order to
define their own combinatorial properties.

2.1 Feature structure

Our grammar defines morphological, syntactic va-
lence, and semantic role label features, as shown
in figure 1. The HEAD feature contains the part-of-
speech and the morphological attributes of the word
such as number and gender. The VAL feature con-
tains the local syntactic valence features: what are
the expected specifier, complements, or modifier
that could be associated to the word, and we add
a CLITICS feature that is specially important for
Spanish as clitic pronouns could act as arguments

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 132—144
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

[word

[n|vlal...

PER 1]2]3
NUM sg | pl
GEN f|m

HEAD
AGR

SPEC

SYN COMPS

CLITICS
VAL
MOD

COORD_LEFT

COORD_RIGHT

{
{
{
{
{
{

NONLOCAL [REL <expr>]

ARGO expr
ARGI1 expr

SEM
ARG2 expr

ARGS

TEXT text

Figure 1: Feature structure for words in our grammar.

of verbs. We also include two features used by
conjunctions to guide the analysis of coordinated
structures.

In a simplification from the original HPSG the-
ory, the only non-local dependencies modeled in
our grammar are the relative clauses that act as
modifiers of a noun phrase. This is represented
by the REL feature, which allows the grammar to
support argument sharing in relative clauses such
as “La manzana que comi” / “The apple I ate”.

The grammar incorporates semantic features for
modeling the semantic role label structure for the
sentence. Unlike the way semantics is modeled in
standard HPSG (Sag et al., 1999), which uses min-
imal recursion semantics (Copestake et al., 2005),
our approach to semantics uses the simpler Prop-
Bank notation (Bonial et al., 2010). The feature
SEM includes features derived from PropBank rep-
resentation: ARGO for proto-agent, ARG1 for proto-
patient, ARGM for modifying adjuncts, etc. Con-
sider, for example, the feature structure for the
word “come” / “eats” shown in figure 2, which
coindexes the syntactic specifier and complement
to the corresponding proto-agent and proto-patient
semantic arguments.

2.2 Rules

The grammar uses only thirteen combinatorial rules
for forming phrases. These rules describe in broad
terms how to combine expressions, but the unifica-
tion process also takes into account the constraints
imposed by the expressions as well as the ones

<

133

[word]
[HEAD v

SYN SPEC <[SYN.HEAD n]>
VAL

COMP < [SYN.HEAD n]>

ARGO <>

SEM
ARG1 <>

TEXT come

Figure 2: Feature structure for the word “come” /
‘eats”, that expects a noun phrase as specifier (subject)
and a noun phrase as complement (direct object), which
are also coindexed as proto-agent and proto-patient se-
mantic arguments.

defined in the rules.

For example, consider the head_comp rule de-
fined in figure 3. This rule takes the two expres-
sions shown on the left side of the arrow. The left
expression (marked as head) expects at least one
complement, which is the right expression (shown
only as a coindexation box, meaning any expres-
sion that unifies with what the left expression ex-
pects). The result is the phrase shown on the right
side of the arrow: a phrase that will have the same
features as the head expression except the COMP
feature, which will expect one less complement.
This definition is only a description of what this
rule does in particular, but the unification process
by which the rules are applied will also ensure that
the constraints defined within the expressions are
held. If we combine the word “come” / “eats” as
defined in figure 2 with a complement phrase, the
rule application will fail (not unify) if the comple-
ment is not a noun phrase.

(H) {

Figure 3: Definition of the head_comp rule.

expr phrase

+—>[

VAL [COMP < | >} VAL [COMP <>}

All rules in our grammar are binary, and they
are designed taking into account that the order of
constituents in Spanish is not as strict as in English.
For example, even though Spanish is officially an
SVO language like English, the sentences “El tren
llego” and “Llegé el tren” are two equally valid
ways of saying “The train arrived”, where the
second case uses a postponed subject. The thirteen
rules in our grammar are the following:

* Two rules for attaching a specifier (or sub-

ject) to the left or to the right of a head:
spec_head and head_spec.

* Two rules for attaching a complement to the
left or to the right of a head: comp_-head and
head_comp.

* One rule for attaching a semantic comple-
ment to the right of a head: head_comp_sem.
This rule is used for building more complex
verb phrases such as “ha ido” / “has gone” or
“comienza a cantar” / “begins to sing”.

Two rules for attaching a modifier to the left
or to the right of a head: mod_head and
head_mod.

One rule for attaching a clitic pronoun to the
left of a head: clitic_head.

One rule for attaching a relative clause to the
right of a head: head_rel.

Two rules for attaching a punctuation marker
to the left or to the right of a head:
punct_head and head_punct.

Two rules for binarizing coordinated struc-
tures: coord_left and coord_right.

Consider the following sample sentence:

[El nifio come una manzana roja | |

(The boy eats a red apple) W

The parse tree for sentence 1 using our grammar

is shown in figure 4. Although the figure shows

a simplified version of the tree (with only one ex-

panded node for the main verb and substituting the

non-leaf nodes for the name of the applied rule)

each node in the tree is a complete feature struc-

ture with reentrancies to other parts of the tree that

indicate the syntactic and semantic argument struc-
tures.

2.3 Composition of the corpus

Our experiments use a corpus of about half a mil-
lion words annotated with our grammar based on
the AnCora (Taulé et al., 2008) Spanish corpus that
contains approximately 17,000 sentences labeled
with CFG-style syntactic annotations and other in-
formation such as the semantic arguments structure.
The corpus was transformed semi-automatically
into our grammar (Chiruzzo and Wonsever, 2016,
2018). The transformation process involved using

134

heuristics for identifying heads, binarizing phrases
and finding the grammar rules to apply, and re-
parsing the corpus using unification over feature
structures while manually correcting the conver-
sion errors. The training, development and test
partitions used in this work are the standard An-
Cora partitions used for the CoNLL-2009 shared
task (Haji¢ et al., 2009), around 418K words for
training, 50K for development and 50K for test.

spec_head

spec_head head_comp

[word

HEAD v
SPEC
COMP

SYN

VAL

El nifio spec_head

SEM

ARGO
ARG1
TEXT come

una head_mod

manzana roja

Figure 4: Simplified tree for “El nifio come una man-
zana roja” / “The boy eats a red apple”. Only the node
for “come” is expanded, but each of the nodes in the
tree is a feature structure that contains the correspond-
ing combinatorial and semantic information.

3 Parser development

This section describes the LSTM top-down parsing
architecture we use in this work and the baselines
we compare it to.

3.1 Top-down parser

Our parsing approach divides the parsing process
into two steps: first creating a basic binary tree
of phrases, where each non-leaf node is annotated
with the corresponding rule, and then finding which
of the phrases should act as arguments to their re-
spective heads.

3.1.1 Split and rule calculation

The first step is a top-down process that takes as
input a sequence of words and decides how to split
the sequence in two so that the sub-sequences are
valid constituents, indicating which grammar rule
should be applied in that node. For example, if we
take sentence 1 as input, the output would look like
following:
[El nifio]| [come una manzana roja |
Rule: spec_head

The method proceeds recursively for each con-

stituent that has at least two words. In this case, it

will take the sequence “El nifio” and split it so as
to separate the determiner from the noun:
[EL] [nifio]
Rule: spec_head
The second sub-sequence would be split so as
to separate the main verb from the noun phrase
complement of the verb, resulting in the following:

[come] [una manzana roja |
Rule: head_comp

This top-down process is iterated until there are
no more sub-sequences left to split, effectively
transforming the original sentence into a binary tree
of words, labeled with the corresponding grammar
rules for each non-leaf node. The result is shown
in figure 5.

spec_head
spec_head head_comp
/\ /\
El nifio come spec_head
una head_mod
/\

manzana

Figure 5: Binary tree with rule labels for the sentence
“El nifio come una manzana roja” / “The boy eats a red
apple”, result of the first step of the parsing process.

3.1.2 Arguments calculation

Once this basic tree is created, using the calculated
rules it is possible to derive the syntactic features
and mark the heads for each node in the tree. With
the syntactic features in place, the second step tries
to determine which of the syntactic arguments of
the predicates should also be set as semantic argu-
ments.

This step considers each head that could be taken
as predicate (in our case verbs, nouns and adjec-
tives are possible predicates), and each syntactic
argument, and calculates if it should be applied as a
semantic feature, and which label it should use. In
practice, the method takes the following elements
as input:

* The sequence of words corresponding to the
top-most constituent that includes the predi-
cate, the head, and the argument.

* The candidate argument being classified.
* The word marked as head.

¢ The feature that relates the head and the can-
didate argument.

135

roja

The result of the method could be none (if the
candidate should not be considered an argument)
or a feature between arg0 and argM. The input
values and expected outcomes for our example are
the following:

[El nifios prc comen gap una manzana roja | — argQ
[El nifio come g g Ap una manzana rojacomp]— argl

[una manzanapgeap rojapiop 1= none

After this step is finished, the tree will look like
the one in figure 4.

3.2 Implementation

Both steps of the process are implemented using
neural networks. The first step is a neural network
whose input is a sequence of words and whose out-
put is the probability of splitting the sentence at
each point in the sequence, and the probabilities
of rules for each split point. The method proceeds
greedily selecting only the split point with maxi-
mum probability and the corresponding rule.

Split
Probability

Figure 6: Architecture of the neural network for the
sequence split and rule calculation step.

The network (shown in figure 6) is built using
stacked bidirectional LSTM layers: the first layer
contains a word embeddings model (300 dimen-
sions, trained using word2vec for a 6 billion
words Spanish corpus); then three layers of stacked
bidirectional LSTMs of size 300; then a fully con-
nected layer of size 150; and finally a softmax layer
that outputs, for each word in the sequence, the
grammar rule to apply or none if the word should
not be used for splitting in the current step. The
probability of the none label is used as the proba-
bility of splitting at each point in the sequence.

The second step is implemented using a neural
network that takes a word (the head), a sequence
of words representing the argument to classify, an-
other sequence that represents the outer constituent
that contains both the head and the argument, and

Outer Syntacti
. Argumen
Constituent ? 8 9 Head ? Rule'

Semantic 6
Role Label
Figure 7: Architecture of the neural network for the
argument identification step.

the syntactic rule used to associate the head to the
argument. It returns the probability for each argu-
ment category (or none). The network (as shown
in figure 7) has an embeddings layer for the words;
then three layers of stacked bidirectional LSTMs
of size 150 (in this case they output only one repre-
sentation for each sequence, instead of one for each
word); then a fully connected layer of size 150; and
finally a softmax layer that gives the probability
distribution for the labels.

We trained several instances of both networks
varying the number and sizes of the differ-
ent layers using keras (Chollet, 2015) over
tensorflow (Abadi et al., 2015), optimizing
against the development partition. The number
of units for the LSTM and dense layers varied be-
tween 150 and 600, and we tried using one, two or
three LSTM layers and different values of dropout.
Only the results for the best models are reported.

3.3 Baseline CKY parser

In order to compare our parser to more standard
HPSG parsing approaches, we implemented an-
other statistical parsing strategy for this grammar,
with a bottom-up approach similar to (Matsuzaki
et al., 2007): using the CKY algorithm with a prob-
abilistic model to find the best tree. The simplest
implementation of the CKY algorithm for HPSG
would imply applying all rules to the pairs of ex-
pressions found at each step. However, the feature
unification method proved to be too slow for doing
this in reasonable time, so we relied on a simpli-
fication to speed up the process: We designed a
set of supertags based on the grammar categories
that contain the necessary information to infer the
possible rules to apply given a pair of supertags.
Considering sample sentence 1, the main verb of
the sentence (“come” / “eats”) has a noun phrase
specifier to its left (“El nifio” / “The boy”), which

also acts as ARGO, and a noun phrase complement
to its right (“una manzana roja” / “a red apple”),
which also acts as ARG1. This will be the infor-
mation conveyed by the supertag for come, which
is v—snaO-x-cnal. The leftmost character is
the part-of-speech of the word and the rest is a de-
scription of the use of the word in context, where x
represents the position of the word. This tag means:
a verb that expects a noun phrase acting as speci-
fier on its left (sn) coindexed with ARGO, plus a
noun phrase acting as a complement on its right
(cn) coindexed with ARG1. The corresponding
supertags for the whole sentence are the following:

El/d—x nifio/n—-sd-x come/v—-snaO—-x—cnal
unal/d-x manzana/n-sd-x roja/la-mn-x

The possible rules to apply to a pair of words
depend on the supertags associated to those words.
Once they are combined following a certain rule,
the resulting phrase will have a new tag that could
be used to continue the parsing process. The tag
structure is simple enough so that the possible rules
to apply can be predicted in terms of regular ex-
pressions over the supertags (much faster than the
unification method) but also expressive enough so
that the invalid combinations are filtered out.

3.3.1 Probabilistic Model

We created a probabilistic model in a way similar
to a PCFG. One way of doing this would be consid-
ering each possible supertag as a non terminal, the
problem with this approach is that the number of su-
pertags is very large: 4146 different supertags in the
training corpus. Consequently, the number of times
the combination of a particular pair of supertags ap-
pears in the corpus is very low (sparsity problem).
To mitigate this, we created simpler models for
abstracting the non terminals by reducing the infor-
mation in the supertags and calculated the rule prob-
abilities based on those abstractions. For example,
a supertag v—sna0-x—cnal-csa2 could have
the abstract tag vcs, that indicates only the POS
(verb) and the features it expects (complements and
specifier) but not the finer grained information. Our
model uses an average of probabilities calculated
over these abstract tags, and assigns a very small
probability to unseen tag combinations in order to
avoid giving rare examples zero probability. Notice
that the abstract tags have no effect in the process
of determining the possible rules to apply (the full
supertag is used for that), but only for estimating
the probability of application of a rule.

136

3.3.2 Supertagger

The CKY algorithm relies on knowing the exact
categories of the words to find the valid rules to ap-
ply, but when parsing a sentence from scratch that
information would not be available. As the number
of possible categories per word is large, we trained
a supertagger for calculating the most suitable su-
pertags given a sentence. Its inputs are the sentence
words and POS-tags and it returns a sequence of
supertags. The architecture for this supertagger is
similar to the top-down parser: the first layer con-
tains a word embeddings model (300 dimensions)
and a POS embeddings model (5 dimensions); then
three layers of stacked bidirectional LSTMs of size
450; then a fully connected layer of size 450; and
finally a softmax layer that selects one out of 4146
possible supertags. The network achieves 89.1%
accuracy over the development corpus and 88.7%
for the test corpus considering the top selected tag.

As the performance is not perfect, the sequence
of supertags selected might be invalid for forming
a tree according to the grammar rules. To mitigate
this problem, if a tree is not found we enable two
fallback rules with low probability (head_none
and none_head) that combine two arbitrary nodes
and take either the left one or the right one as heads.
These rules guarantee that a tree will be found, but
they make the process much slower as many more
subtrees are tried during parsing.

4 Experimental results

In this section we present the experimental re-
sults for our LSTM top-down neural network ar-
chitecture and the baselines in terms of syntac-
tic parsing and semantic role labeling. We also
present an analysis of execution time for the dif-
ferent approaches. We compare our method to the
CKY baseline defined before and six well estab-
lished baselines for Spanish parsing. Three of the
baselines are the parsers contained in the Freel-
ing library (Padré and Stanilovsky, 2012), which
include both dependency parsing and SRL: Tx-
ala (Batalla et al., 2005), Treeler! and a LSTM
implementation. The other baselines are the pre-
trained Spanish models Spanish of spaCy? (mod-
elses_core_news_smand es_core_news_md)
and UDPipe (Straka and Strakova, 2017) (model
Spanish-AnCora), which only include depen-
dency parsing but no SRL. We show the perfor-

Uhttp://treeler.Isi.upc.edu/
*https://spacy.io

mance of the (unrealistic) CKY parser using gold
supertags as an upper bound for the CKY perfor-
mance, but also the more realistic CKY using the
tags predicted by the supertagger.

4.1 Syntactic parsing

The performance metrics used for the syntactic
parsing results are the following:

Constituency F1: The F1 score for the predicted
constituents against the expected constituents in
a tree. This metric is very strict and penalizes
strongly any deviations in the order of application
of rules, as swapping the order of only two rules
could change many different constituents inside
a tree. There are Labeled (L-Cons) or Unlabeled
(U-Cons) versions of this metric with or without
considering the correct grammar rule.

Dependency Accuracy: As all the rules are bi-
nary and they all define a head, it is possible to
infer a dependency structure where each word is
associated to a corresponding head. This structure
contains the same information as the constituent
trees except the information about the order of the
rules application. This metric calculates the accu-
racy of assigning each word to its appropriate head,
and it is more relaxed compared to constituency F1.
Labeled (L-Dep) and Unlabeled (U-Dep) versions
of this metric (with or without the grammar rule)
are defined.

137

Model U-Cons | L-Cons | U-Dep | L-Dep
LSTM Top-down 87.57 82.06 91.32 88.96
CKY Gold tags 77.16 72.72 92.07 92.05
CKY Supertagger 66.08 59.33 83.34 81.03
FreeLing LSTM - - 83.15 -
FreeLing Treeler - - 83.61 -
FreeLing Txala - - 69.75 -
spaCy es_sm - - 83.01 -
spaCy es_md - - 83.69 -
UDPipe - - 82.09 -

Table 1: Results of the syntactic parsing experiments
over the test set.

Table 1 shows the performance results for the dif-
ferent experiments. The “CKY Gold tags” model
is the unrealistic model that we consider as upper
bound for the CKY process, the more realistic ver-
sion is the “CKY Supertagger”. As seen in the
table, the best performing model in constituency
and dependency metrics is the LSTM top-down
approach. The CKY model does not perform well
in terms of constituency even when using the gold
supertags, probably because it mixes the order of
application of rules: it gets only up to 77%, but

for the dependency metrics (which ignore the rule
application order) it gets around 92%. The CKY
using the supertagger, as expected, performs worse
than that. On the other hand, the performance of
the top-down approach is very robust, outperform-
ing even the CKY with gold supertags for the con-
stituency metrics, and achieving comparable results
for the dependency metrics.

The top-down parser also outperforms the ex-
ternal baselines for this corpus. Notice, however,
that a direct comparison is difficult given that we
are using a different grammar formalism. The only
metric that could be considered comparable across
the different parsers in this context would be the
U-Dep, analogous to the UAS metric in depen-
dency parsing, but even for this not all parsers are
trained using the same dependency frameworks and
they might have differences in how they determine
which words are heads. For example, spacy and
UDPipe are trained on corpora annotated using the
Universal Dependencies framework (Nivre et al.,
2016), which prefers using content words over func-
tion words as heads (Alonso and Zeman, 2016).
In order to compare to these parsers, we post-
processed the results and transformed the heads
of prepositional phrases, copulas and other struc-
tures in order to adapt it to our format. Section 4.4
shows other approaches to the evaluation of some
aspects of the results, considering some particu-
lar phenomena of the language and how well the
different parsers deal with them. In these cases it
was also necessary to post-process the results to
adapt the different ways the parsers represent these
phenomena in order to compare them.

4.2 Semantic role labeling

The performance metric used in this case is the F1
measure for SRL taken as bi-lexical dependencies.
We report two versions of the metric: the unlabeled
version (U-SRL) measures if the argument was cor-
rectly matched as a semantic argument of its head
regardless of the selected label, while the labeled
version (L-SRL) also considers if the appropriate
semantic role label was selected.

Table 2 shows the results for the semantic role
labeling experiments. In this case, the (unrealis-
tic) CKY using gold tags is the best performing
method, and can be seen as an upper bound for per-
formance. Our top-down approach gets almost as
good results for the unlabeled metric, but performs
a little worse for selecting the correct labels. The

138

Model U-SRL | L-SRL
LSTM Top-down 87.68 80.66
CKY Gold tags 88.51 87.51
CKY Supertagger | 81.48 75.78
FreeLing LSTM 68.50 60.74
FreeLing Treeler 69.10 61.53
FreeLing Txala 52.17 45.73

Table 2: Results of the semantic role labeling experi-
ments over the test set.

top-down approach also outperforms all the other
baselines.

4.3 Execution time

Model Time (ms)

LSTM Top-down 86.1
CKY Gold tags 288.7
CKY Supertagger 1,237.3
FreeLing LSTM 60.3
FreeLing Treeler 948.5
FreeLing Txala 41.8
spaCy es_sm (no SRL) 9.3
spaCy es_md (no SRL) 19.8
UDPipe (no SRL) 21.8

Table 3: Average time in milliseconds for parsing a sen-
tence in the test set.

Table 3 shows the average time for parsing a
sentence in the test set (1,692 sentences) for the
different models. The experiments were run on
an Intel 17, 2.7GHz, 16GB RAM, without GPU
acceleration. The metrics in the table are an aver-
age over all sentence lengths, but figure 8 shows
a breakdown of execution times for different sen-
tence length ranges (up to 80) for our approaches.

12

10 20 30 40 50 60 70 80

== CKY Gold == CKY Super LSTM Top-down

Figure 8: Breakdown of execution time in seconds for
different input sizes.

In this case, the parsers based on neural networks
seem to have an advantage over the others in terms
of speed. The fastest parsers are the spaCy and
UDPipe models, but we must take in consideration

LSTM CKY CKY | Freeling | Freeling | Freeling | spaCy | spaCy
Top-down | Gold | Supert. Txala LSTM Treeler | es.sm | es.md | UDPipe
Postponed P 82.22 99.25 | 84.25 60.00 69.74 74.07 60.11 | 59.92 57.37
Subjects R 64.02 98.89 | 76.01 19.92 65.49 62.73 56.45 | 59.59 52.39
F 71.99 99.07 | 79.92 2991 67.55 67.93 5823 | 59.75 54.77
Clitics P 98.76 100. 98.71 96.44 78.25 80.67 84.99 | 83.47 82.33
Identification R 99.03 100. 95.46 85.83 88.58 88.44 97.38 | 97.93 96.83
F 98.90 100. 97.06 90.82 83.09 84.38 90.76 | 90.12 89.00
Acc 85.28 95.46 | 83.63 75.10 80.47 80.88 - - -
Clitics MP 76.20 98.46 | 65.05 72.03 82.67 83.50 - - -
Classification MR 66.52 88.18 | 57.80 44.02 51.51 54.60 - - -
MF 70.60 92.78 | 61.00 49.20 56.37 58.63 - - -
Clitics P 32.69 100. 75.00 8.33 22.05 30.23 - - -
Reduplication R 35.41 81.25 | 18.75 2.08 31.25 27.08 - - -
F 34.00 89.65 | 30.00 3.33 25.86 28.57 - - -
Relatives P 90.60 100. 92.27 72.84 76.59 78.23 69.16 | 70.85 66.49
Identification R 89.00 99.72 | 81.00 54.95 58.61 59.02 55.08 | 55.35 52.23
F 89.80 99.86 | 86.27 62.64 66.41 67.28 61.32 | 62.05 58.51
Acc 76.12 81.14 | 57.67 4.21 43.15 42.06 - - -
Relatives MP 64.73 84.36 | 54.32 30.54 40.75 40.76 - - -
Classification MR 55.32 7847 | 37.82 7.63 24.78 24.39 - - -
MF 59.02 72.39 | 43.29 6.54 29.18 28.62 - - -
Relative P 73.61 77.68 | 67.69 37.23 60.46 63.30 54.17 | 55.53 49.56
Referents R 72.32 7747 | 59.43 28.08 46.26 47.76 43.14 | 43.55 38.94
F 72.96 77.58 | 63.29 32.01 5242 54.44 48.03 | 48.82 43.61
Coordinations P 65.49 74.02 | 5492 24.48 56.53 56.09 41.39 | 4247 37.22
Identification R 65.22 7723 | 4825 22.20 53.49 53.00 43.85 | 44.34 39.59
F 65.36 75.59 | 51.37 23.28 54.96 54.50 42.59 | 43.38 38.37

Table 4: Results of the experiments for some language phenomena in Spanish. We show precision, recall and F1
score for identification tasks, and accuracy and macro metrics for classification tasks.

that they only perform dependency parsing and not
SRL. Our LSTM top-down approach, and FreeL-
ing LSTM and Txala (rule-based) parsers are in
intermediate positions, while the CKY approaches
and the FreeLing Treeler parser are way behind. If
we break down the execution time of our top-down
process, we get that there is a balance in the time
spent at each step: 54.1 ms for syntactic parsing
and 31.9 ms for argument identification. This could
be sped up using a unified architecture.

As seen in figure 8, the top-down approach exe-
cution time seems to grow close to linearly while
for CKY it grows faster, particularly for the CKY
with supertagger. This is because, especially for
longer sentences, the probability of obtaining a se-
quence of tags that does not form a correct tree is
much higher as the sentence grows, so the fallback
rules have to be enabled more frequently, rendering
the process much slower.

4.4 Analysis

Besides the global metrics shown so far, we wanted
to test the performance of the parsers for some of
the Spanish language characteristics that inspired
the grammar rules and behavior in the first place
(see Section 2.2). We tested the parsers on how
well they detect the following phenomena:

139

Postponed subjects: Identifying a subject that oc-
curs on the right of the verb, as opposed to the more
usual left position.

Clitics identification and classification: Detect-
ing the clitic pronouns that accompany a verb and
classifying them according to SRL.

Clitics reduplication: In Spanish, clitic pronouns
can be used in lieu of an explicit object, but it is
also possible to include both the object and the
corresponding clitic at the same time. This is called
clitic reduplication or clitic doubling.

Relatives identification and classification: De-
tecting the relative pronouns and expressions
that are attached to some verbs creating relative
sentences, and classifying them according to SRL.

Relatives referent identification: Besides identi-
fying the relative pronoun and its verb, the parser
must also properly identify the nominal referent for
the relative pronoun.

Coordinations identification: Finding chains of
(two or more) coordinated elements.

Table 4 shows the results for these experiments
over the test set for the different parsers. In the
results, we can see that the LSTM Top-down parser
performs better for most experiments, except for
the postponed subject identification where CKY
with supertagger performs better. At least for these

phenomena, the results seem to indicate that both
parsers outperform the other baselines. However,
we must take in consideration that, as mentioned
in section 4.1, the output of the different parsers
had to be post-processed in order to recognize the
different phenomena, so there could be some noise
in the evaluation introduced by this transformation.

5 Related work

Most of the work over the last years on deep pars-
ing using neural network architectures has been
done for the CCG formalism and for English lan-
guage. For example (Xu et al., 2015) uses a re-
current neural network for improving the supertag-
ging and parsing accuracy for CCG, while (Ambati
et al., 2016) describes a neural networks architec-
ture that performs CCG parsing. For HPSG, the
work by (Zhou and Zhao, 2019) is very relevant
as they try to derive a HPSG grammar from the
Penn Treebanks in English and Chinese and use
an self-attention based mechanism followed by a
CKY decoder to parse them, obtaining very good
results. In our work, however, we focus in HPSG
for the Spanish language and define a different ar-
chitecture for parsing: a top-down approach with
LSTMs.

Our approach to HPSG development is similar
to another relevant statistical parser for HPSG in
English, the Enju parser (Matsuzaki et al., 2007;
Zhang et al., 2010), which was created by trans-
forming the English Penn Treebank through a set of
rules into HPSG format and used this transformed
corpus to train a statistical model. Another relevant
precedent for HPSG is the LKB (Copestake, 2002)
platform together with the PET (Callmeier, 2000)
parser, used to define HPSG grammars in English
and other languages (in particular the Spanish Re-
source Grammar (Marimon, 2010)), although they
do not use neural networks for the parsing process.
We differ from the Spanish Resource Grammar in
that we derive the feature structures from a large
corpus instead of building them manually, with
the aim of building a purely statistical parser that
could, for example, handle slightly ungrammatical
sentences or out of vocabulary concepts better.

The CKY with supertagging method we com-
pare to in this work follows a similar approach to
the parsing methods used for deep syntactic gram-
mars such as CCG (Curran et al., 2006; Lewis and
Steedman, 2014), HPSG (Matsuzaki et al., 2007;
Dridan, 2009; Zhang et al., 2010) and TAG (Kasai

140

et al., 2017; Friedman et al., 2017).

Much more work on applying neural network
architectures to parsing has been done for the two
more classical syntactic paradigms: constituency
and dependency parsing. For constituency parsing,
(Socher et al., 2013) defines a class of recurrent
neural networks that combine pairs of words and
builds a tree bottom-up, with the aim of improving
sentiment analysis in English sentences. On the
other hand, (Vinyals et al., 2015) frames the pars-
ing process as a translation between a sentence in
natural language and the bracketed representation
of its parse tree. Other authors train neural models
to predict the actions to be performed in a transition
based shift-reduce constituency parser (Dyer et al.,
2016), combining it with a sequence-to-sequence
modeling (Liu and Zhang, 2017), or encoding the
parsing stack using a recurrent network (Watanabe
and Sumita, 2015). In (Cross and Huang, 2016)
a transition based constituency parser gets good
results for English and French using LSTMs for
representing word spans instead of partially derived
trees.

Another approach that focuses on determining
the word spans in the tree is used in (Stern et al.,
2017), which describes a top-down parser that
greedily splits a sentence in constituents and as-
signs labels to them, processing the text spans with
LSTMs in order to generate an intermediate rep-
resentation. This approach is the most similar we
found to the one we use, the main differences are
that they work for French, they use a standard con-
stituency grammar while ours is a strictly binarized
HPSG grammar, and we add a further step for pre-
dicting the argument structure of predicates for the
generated trees. Related approaches for English
include: (Gaddy et al., 2018), that calculates the
score and label for each sentence span then uses
CKY to find the optimal tree; (Shen et al., 2018),
that predicts the syntactic distances for words and
builds the tree top-down using these distances.

Compared to English, there are few works that
focus on Spanish parsing. For constituency parsing,
(Cowan and Collins, 2005) tries two approaches
to improve standard PCFG parsers: including mor-
phological information in the probabilistic model,
and a reranking method with max-margin criterion
trained over a set of global features from the parse
trees. Their evaluation against the Cast3LB cor-
pus, a subset of AnCora, achieves a constituent
F1 of 83.6 and 85.1 respectively. (Le Roux et al.,

2012) experiments with Spanish parsing using a
PCFG with latent annotations with a simplified
tagset, achieving 85.47 F1 over the Cast3LB cor-
pus.

There is considerably more work done for de-
pendency parsing and SRL in Spanish, beginning
in the CoNLL-X (Buchholz and Marsi, 2006) and
CoNLL-2009 (Haji€ et al., 2009) shared tasks. The
best LAS achieved for Spanish were 82.3 (max
span tree approach) and 81.3 (transition based
approach). Later on, (Lloberes et al., 2010) de-
scribes a dependency grammar and a rule-based
dependency parser for Spanish (one of the Freel-
ing parsers (Padr6 and Stanilovsky, 2012)) trans-
forming the result of a shallow parser, achieving
81.13 UAS and 73.88 LAS. In (Ballesteros et al.,
2010) they describe a set of experiments using Malt-
Parser (Nivre et al., 2007) to determine how much
corpus size, sentence length or other factors con-
tribute to the dependency Spanish parsing perfor-
mance. The latest efforts in dependency parsing
have generally focused on using the Universal De-
pendencies (Nivre et al., 2016) framework. For
example in CoNLL 2017 (Zeman et al., 2017) and
CoNLL 2018 (Zeman et al., 2018) shared tasks
on multilingual parsing from raw text to Univer-
sal Dependencies the best parsers achieve LAS of
87.29 (Dozat et al., 2017) and 90.93 (Che et al.,
2018) respectively for Spanish.

6 Conclusions

We presented a statistical deep parser for Spanish
that outputs trees in the HPSG formalism. The
parser uses a top-down approach for building the
tree followed by a second step for calculating
the arguments, both steps are implemented using
LSTM neural networks. The parser gets good re-
sults for performance compared to a CKY baseline
and to other parsing baselines in Spanish, achiev-
ing 87.57% unlabeled and 82.06% labeled con-
stituency F1, and 91.32% unlabeled and 88.96%
labeled dependency accuracy. It also achieves good
performance for SRL, getting 87.68% unlabeled
and 80.66% labeled F1, and beats the baselines for
some particular Spanish phenomena we analyzed.

Although the results improve over the baseline
methods, there is still room for improvement, espe-
cially in terms of execution time. We plan to build
a unified architecture that could perform both the
syntactic and the arguments step at the same time,
which could help lower the execution times and it

141

might also help the network generalize better in
order to improve the prediction of labels in SRL. It
would be also very interesting to try this approach
to other languages such as English, and also lan-
guages that share some of the characteristics we
analyzed such as Italian or French.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, lan Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
giang Zheng. 2015. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems. Soft-
ware available from tensorflow.org.

Héctor Martinez Alonso and Daniel Zeman. 2016. Uni-
versal dependencies for the ancora treebanks. Proce-
samiento del Lenguaje Natural, 57:91-98.

Bharat Ram Ambati, Tejaswini Deoskar, and Mark
Steedman. 2016. Shift-reduce ccg parsing using
neural network models. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 447-453.

Miguel Ballesteros, Jests Herrera, Virginia Francisco,
and Pablo Gervias. 2010. Improving parsing accu-
racy for spanish using maltparser. Procesamiento
del Lenguaje Natural, 44.

Jordi Atserias Batalla, Elisabet Comelles Pujadas, and
Aingeru Mayor. 2005. Txala un analizador libre de
dependencias para el castellano. Procesamiento del
Lenguaje Natural, 35.

Claire Bonial, Olga Babko-Malaya, Jinho D Choi, Jena
Hwang, and Martha Palmer. 2010. PropBank an-
notation guidelines. Center for Computational Lan-
guage and Education Research Institute of Cognitive
Science University of Colorado at Boulder.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the tenth conference on computa-
tional natural language learning, pages 149-164.
Association for Computational Linguistics.

Ulrich Callmeier. 2000. Pet—a platform for experi-
mentation with efficient hpsg processing techniques.
Natural Language Engineering, 6(1):99-107.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55-64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Luis Chiruzzo and Dina Wonsever. 2016. Transform-
ing the AnCora corpus to HPSG. In Proceedings of
the Joint 2016 Conference on Head-driven Phrase
Structure Grammar and Lexical Functional Gram-
mar, Polish Academy of Sciences, Warsaw, Poland,
pages 182—193, Stanford, CA. CSLI Publications.

Luis Chiruzzo and Dina Wonsever. 2018. Span-
ish HPSG Treebank based on the AnCora Cor-
pus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC-2018).

Francois Chollet. 2015. Keras.
com/fchollet/keras.

Ann Copestake. 2002. Implementing typed feature
structure grammars, volume 110. CSLI publica-
tions Stanford.

https://github.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A Sag. 2005. Minimal recursion semantics: An
introduction. Research on language and computa-

tion, 3(2-3):281-332.

Brooke Cowan and Michael Collins. 2005. Morphol-
ogy and reranking for the statistical parsing of span-
ish. In Proceedings of the conference on Human
Language Technology and Empirical Methods in
Natural Language Processing, pages 795-802. As-
sociation for Computational Linguistics.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1-11. Associ-
ation for Computational Linguistics.

James R Curran, Stephen Clark, and David Vadas.
2006. Multi-tagging for lexicalized-grammar pars-
ing. In Proceedings of the 21st International Confer-
ence on Computational Linguistics and the 44th an-
nual meeting of the Association for Computational
Linguistics, pages 697-704. Association for Compu-
tational Linguistics.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20-30, Vancouver, Canada. Association for
Computational Linguistics.

Rebecca Dridan. 2009. Using lexical statistics to im-
prove HPSG parsing. Ph.D. thesis, University of
Saarland.

142

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199-209. Association for Com-
putational Linguistics.

Dan Friedman, Jungo Kasai, R. Thomas McCoy,
Robert Frank, Forrest Davis, and Owen Rambow.
2017. Linguistically rich vector representations
of supertags for TAG parsing. In Proceedings of
the 13th International Workshop on Tree Adjoining
Grammars and Related Formalisms, pages 122—131,
Umed, Sweden. Association for Computational Lin-
guistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999—-1010.
Association for Computational Linguistics.

Jan Haji¢, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antonia Marti, Lluis
Marquez, Adam Meyers, Joakim Nivre, Sebastian
Pado, Jan étepa’mek, Pavel Stranak, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The conll-2009
shared task: Syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural Lan-
guage Learning (CoNLL 2009): Shared Task, pages
1-18. Association for Computational Linguistics.

Aravind Krishna Joshi. 1985. Tree adjoining gram-
mars: How much context-sensitivity is required to
provide reasonable structural descriptions?

Jungo Kasai, Robert Frank, R Thomas McCoy, Owen
Rambow, and Alexis Nasr. 2017. Tag parsing with
neural networks and vector representations of su-
pertags. In Conference on Empirical Methods in
Natural Language Processing, pages 1712—1722.

Joseph Le Roux, Benoit Sagot, and Djamé Seddah.
2012. Statistical parsing of spanish and data driven
lemmatization. In ACL 2012 Joint Workshop on
Statistical Parsing and Semantic Processing of Mor-
phologically Rich Languages (SP-Sem-MRL 2012),
pages 6—pages.

Mike Lewis and Mark Steedman. 2014. Improved ccg
parsing with semi-supervised supertagging. Trans-
actions of the Association for Computational Lin-
guistics, 2:327-338.

Jiangming Liu and Yue Zhang. 2017. Encoder-decoder
shift-reduce syntactic parsing. In Proceedings of
the 15th International Conference on Parsing Tech-
nologies, pages 105114, Pisa, Italy. Association for
Computational Linguistics.

Marina Lloberes, Irene Castellon, and Lluis Padro.
2010. Spanish freeling dependency grammar. In
LREC, volume 10, pages 693—699.

Montserrat Marimon. 2010. The spanish resource
grammar. In Proceedings of the International Con-
ference on Language Resources and Evaluation,
LREC, pages 17-23, Valletta, Malta.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2007. Efficient hpsg parsing with supertagging and
cfg-filtering. In IJCAI, pages 1671-1676.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659-1666.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Giilsen Eryigit, Sandra Kiibler, Svetoslav
Marinov, and Erwin Marsi. 2007. MaltParser: A
language-independent system for data-driven depen-
dency parsing. Natural Language Engineering,
13(2):95-135.

Lluis Padr6 and Evgeny Stanilovsky. 2012. Freeling
3.0: Towards wider multilinguality. In LREC2012.

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.

Ivan A Sag, Thomas Wasow, Emily M Bender, and
Ivan A Sag. 1999. Syntactic theory: A formal in-
troduction, volume 92. Center for the Study of Lan-
guage and Information Stanford, CA.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1171-1180, Melbourne, Australia. Association for
Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631-1642. Association for Computational
Linguistics.

Mark Steedman. 1996. A very short introduction to
ccg. Unpublished paper. http://www. cogsci. ed. ac.
uk/steedman/paper. html.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A Minimal Span-Based Neural Constituency Parser.

143

In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818-827. Association for Com-
putational Linguistics.

Milan Straka and Jana Strakova. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88-99, Vancouver, Canada.
Association for Computational Linguistics.

Mariona Taulé, M. Antonia Marti, and Marta Recasens.
2008. AnCora: Multilevel Annotated Corpora for
Catalan and Spanish. In Proceedings of the Sixth
International Conference on Language Resources
and Evaluation (LREC’08), Marrakech, Morocco.
European Language Resources Association (ELRA).
Http://www.lrec-conf.org/proceedings/Irec2008/.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of the
28th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’ 15, pages
2773-2781, Cambridge, MA, USA. MIT Press.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1169—1179. Associ-
ation for Computational Linguistics.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
Ccg supertagging with a recurrent neural network.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
250-255.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. Conll 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, pages 1-21, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Haji¢, Joakim Nivre, Filip Ginter, Juhani Luoto-
lahti, Sampo Pyysalo, Slav Petrov, Martin Pot-
thast, Francis Tyers, Elena Badmaeva, Memduh
Gokirmak, Anna Nedoluzhko, Silvie Cinkova, jr.
Jan Hajic¢, Jaroslava Hlavacov4, Vaclava Kettnerova,
Zdeiika UreSovd, Jenna Kanerva, Stina Ojala, Anna
Missild, Christopher Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
de Paiva, Kira Droganova, Héctor Martinez Alonso,
Cagr1 Coltekin, Umut Sulubacak, Hans Uszkoreit,

Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayade-
len, Mohammed Attia, Ali Elkahky, Zhuoran Yu,
Emily Pitler, Saran Lertpradit, Michael Mandl a! nd
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
nadova, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonga, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. Conll 2017 shared task: Multilingual
parsing from raw text to universal dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 1-19, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Y. Zhang, Takuya Matsuzaki, and Jun’ichi Tsujii. 2010.
Forest-guided supertagger training. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics, pages 1281-1289. Association
for Computational Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on Penn treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396-2408, Florence, Italy. Association for Compu-
tational Linguistics.

144

The Importance of Category Labels in Grammar Induction with
Child-directed Utterances

Lifeng Jin and William Schuler
Department of Linguistics
The Ohio State University, Columbus, OH, USA
{jin, schuler}@ling.osu.edu

Abstract

Recent progress in grammar induction has
shown that grammar induction is possible
without explicit assumptions of language-
specific knowledge. However, evaluation of
induced grammars usually has ignored phrasal
labels, an essential part of a grammar. Ex-
periments in this work using a labeled eval-
vation metric, RH, show that linguistically
motivated predictions about grammar spar-
sity and use of categories can only be re-
vealed through labeled evaluation. Further-
more, depth-bounding as an implementation
of human memory constraints in grammar in-
ducers is still effective with labeled evaluation
on multilingual transcribed child-directed ut-
terances.

1 Introduction

Recent work in probabilistic context-free grammar
(PCFQG) induction has shown that it is possible to
learn accurate grammars from raw text (Jin et al.,
2018b, 2019; Kim et al., 2019), which is significant
in addressing the issue of the poverty of the stimulus
(Chomsky, 1965, 1980) in linguistics. Although
phrasal categories and morphosyntactic features
can be induced from raw text (Jin and Schuler,
2019; Jin et al., 2019), most unsupervised pars-
ing work has been evaluated using unlabeled pars-
ing accuracy scores (Seginer, 2007; Ponvert et al.,
2011; Jin et al., 2018b; Shen et al., 2018, 2019;
Shi et al., 2019). This is potentially distortative
because children and adults can distinguish cate-
gories of phrases and clauses (Tomasello and Ol-
guin, 1993; Valian, 1986; Kemp et al., 2005; Pine
et al., 2013), and much of acquisition modeling
research has been directed at simulating the de-
velopment of abstract linguistic categories in first
language acquisition (Bannard et al., 2009; Perfors
et al., 2011; Kwiatkowski et al., 2012; Abend et al.,
2017; Jin et al., 2018b).

145

Recent work proposed a labeled parsing accu-
racy evaluation metric called Recall-V-Measure
(RVM) as a method for evaluating unsupervised
grammar inducers (Jin et al., 2019), but this met-
ric counts categories as incorrect if they are finer-
grained than reference categories or if they repre-
sent binarizations of n-ary branches in reference
trees, which may be linguistically acceptable. We
therefore further modify it to Recall-Homogeneity
(RH) calculated as the homogeneity (Rosenberg
and Hirschberg, 2007) of the labels of matching
constituents of the induced and gold trees, weighted
by unlabeled recall. This work uses transcribed
child-directed utterances from multiple languages
as input to a grammar inducer with hyperparam-
eters tuned using either unlabeled F1 or labeled
RH. Results show that: (1) the induced grammars
capture the preference of sparse concentrations in
human grammars only when using labeled evalua-
tion; (2) grammar accuracy increases as the number
of labels grows only when using labeled evaluation;
(3) depth-bounding (Jin et al., 2018a, limiting cen-
ter embedding) is still effective when tuned to max-
imize labeled parsing accuracy.

2 Model

All experiments described in this paper use a
Bayesian Dirichlet-multinomial model (Jin et al.,
2018a) to induce PCFGs without assuming any lan-
guage specific knowledge. This model defines a
Chomsky normal form (CNF) PCFG with C non-
terminal categories as a matrix G of binary rule
probabilities which is first drawn from the Dirich-
let prior with a concentration parameter :

G ~ Dirichlet(B) (1)

Trees for sentences 1..N in a corpus are then drawn
from a PCFG parameterized by G:

TI.N ~ PCFG(G), (2)

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 145-150
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

=

0.6

Unlabeled F1
Homogeneity

%)

0.0

0.5

0.4

0.:

RH

0.2

0.1

T

0.0

é ? iA] |
0.01 0.1 0.2 0.5 1.0 5.0
5

(a) Unlabeled F1 scores with s

(b) Homogeneity scores with Bs

0.01 0.1 0.2
5 5

0.5 1.0 5.0

(c) RH scores with s

=y
T

0.6 al
? |

o

=

V-Measure

0.0

'@@$é°

(d) V-measure scores with s

0.01 0.1 0.2 0.5

B

1.0 5.0

(e) RVM scores with Bs

Figure 1: Different evaluation metrics on the Adam dataset with different 8 values.

and each tree 7 is a set {T¢, T1, T2, T11, T12, T215 --}
of category node labels 7, where 17 € {1,2}" defines
a path of left or right branches from the root to that
node. Category labels for every pair of left and
right children 7, 7 are drawn from a multino-
mial distribution defined by the grammar G and the
category of the parent 7,

Ty1, Ty2 ~ Multinomial(6," G)

3)

where 0, is a Kronecker delta function equal to 1 at
value x and O elsewhere. Terminal expansions are
treated as expanding into a terminal node followed
by a special null node.

Inference in this model uses Gibbs sampling to
produce samples of grammars and trees with the
most probable parses obtained with the Viterbi al-
gorithm.

3 Data and hyperparameters

Experiments here use transcribed child-directed ut-
terances from the CHILDES corpus (Macwhinney,
1992) in three languages with more than 15,000 sen-
tences each. English hand-annotated constituency
trees are taken from the Adam and Eve portions of
the Brown Corpus (Brown, 1973). Mandarin (Tong,
Deng et al., 2018) and German (Leo, Behrens,
2006) data are collected from CHILDES with refer-
ence trees automatically generated using the state-
of-the-art Kitaev and Klein (2018) parser. Disflu-
encies are removed, and only sentences spoken by
caregivers are kept in the data. Models are run 10

- 0.6 e
=z
[
T 0.4
K ° @ 5
c
= &=
001 01 02 05 10 50
i
(a) Unlabeled F1 scores with s
04{ ©
=
To2{ o ﬁ ?
= I
001 01 02 05 10 50
B
(b) RH scores with Bs
Figure 2: Different evaluation metrics on the

WSJ20Dev dataset with different 8 values.

times with 700 iterations with random seeds fol-
lowing previous work (Jin et al., 2018a). The last
sampled grammar is used to generate Viterbi parses
for all sentences. All punctuation is retained during
induction and then removed in evaluation. Signif-
icance testing uses permutation tests on concate-
nations of Viterbi trees from all test runs. We use
Adam for exploratory experiments and the other
three sets for confirmatory experiments.

146

0.80 - 0.30 o

=T
0.75 —‘V 0.25 —‘V

0.70 0.20
0.65 ° 0.15 ’ ‘
0.60 0.10

Unlabeled F1
RH

0.05
0.55
0.00 —

RH

0.3
o

o T4
LE,

15 3 45 60 75 90 105 15 30 45
C

(a) Unlabeled F1 with Cs and 8 = 1

60 75 90 105 15 30 45 60 75 90 105
C C

(b) RH scores with Cs and 8 = 1

(c) RH scores with Cs and § = 0.01

Figure 3: Different evaluation metrics on the Adam dataset with different C values at high and low Ss.

0.3

0.54
o
I
& 04 %
)
1 2 3 00

Depth

Figure 4: Depth-bounding on Adam

3.1 Recall-Homogeneity

RH is calculated by multiplying unlabeled recall of
bracketed spans in the predicted Viterbi trees with
the homogeneity score (Rosenberg and Hirschberg,
2007) of the predicted labels of the matching spans,
This is different from RVM (Jin et al., 2019), which
is the product of unlabeled recall and V-measure.
The metric is insensitive to the branching factor of
the grammar by the use of unlabeled recall. Un-
like RVM, it is also insensitive to the precision
of predicted labels to gold labels, indicating that
models are not penalized by hypothesizing more
refined categories, as long as these categories all
fall into the confines of a gold category. RVM, on
the other hand, would penalize both underpropos-
ing and overproposing categories compared to the
ones in the annotation, but the gold categories, like
nouns and verbs, are defined on a very high level
that languages almost always further specify, rep-
resented usually as subcategories or features in
linguistic theories. Unary branches in gold and
predicted trees are removed, and the top category
is used as the category for the constituent.

4 Experiments

4.1 Experiment 1: Labeled evaluation shows
preference of grammar sparsity

Human grammars are sparse (Johnson et al., 2007;
Goldwater and Griffiths, 2007). For example, in the

Penn Treebank (Marcus et al., 1993), there are 73
unique nonterminal categories. In theory, there can
be more than 28 million possible unary, binary and
ternary branching rules in the grammar. However,
only 17,020 unique rules are found in the corpus,
showing the high sparsity of attested rules. In other
frameworks like Combinatory Categorial Grammar
(Steedman, 2002) where lexical categories can be
in the thousands, the number of attested lexical
categories is still small compared to all possible
ones.

The Dirichlet concentration hyperparameter 5
in the model controls the probability of a sampled
multinomial distribution concentrating its probabil-
ity mass on only a few items. Previous work using
similar models usually sets this value low (Johnson
et al., 2007; Goldwater and Griffiths, 2007; Graca
et al., 2009; Jin et al., 2018b) to prefer sparse gram-
mars (i.e. grammars in which most of the probabil-
ity mass is allocated to a small number of rules),
with good results. The prediction based on the pref-
erence of sparsity is that the best 5 value should be
much lower than 1.

Figure 1a shows unlabeled F1 scores with dif-
ferent 3 values on Adam.! Contrary to the predic-
tion, grammar accuracy peaks at high values for
B when measured using unlabeled F1. However,
these grammars with high unlabeled F1 are almost
purely right-branching grammars, which performs
very well on English child-directed speech in un-
labeled parsing evaluation, but the right-branching
grammars have phrasal labels that do not correlate
with human annotation when evaluated with Ho-
mogeneity, shown in Figure 1b. This indicates that
instead of capturing human intuitions about syn-
tactic structure, such grammars have only captured
broad branching tendencies. The same grammars
are evaluated again with RH, shown in Figure 1c.

!The results shown in the figure use C=30. We also tested
other C values from 15 to 105 and the trend is almost identical.

147

When both structural and labeling accuracy is taken
into account, results correctly capture the intuition
that grammar accuracy has a low peaking concen-
tration hyperparameter. Figure 1d and le shows
the same experiments evaluated with the labeled
evaluation metric RVM. Because of the sensitivity
to labeling accuracy, results in VM and RVM also
show the similar trend as Homogeneity and RH
where labeling quality decreases as 8 increases. Jin
et al. (2018b) noted that induced grammars high in
unlabeled bracketing scores are low in NP discov-
ery scores, which is a category-specific evaluation
metric. This can also be explained by the induced
grammars with high bracketing scores only capture
a broad right-branching bias without accurately
clustering words and phrases based on their distri-
butional properties.

Figure 2 shows the same experiments on a cor-
pus of formal English written text, the WSJ20dev?
dataset. The pattern is similar but less extreme than
on CHILDES. The higher SBs at the range of 0.1-0.2
still show better performance on unlabeled F1 than
the sparser models, consistent with previous results
in Jin et al. (2018b). However RH scores reveal
that the labels induced by the denser models are
less accurate, manifesting as the overall lower peak
for B using RH than using unlabeled F1.

4.2 Experiment 2: Performance increases
with the number of categories

Previous research (Jin et al., 2018a) also reported
that the number of categories C used by the induc-
tion models was relatively low compared to the
number of categories in human annotation. For ex-
ample, there are 63 unique tags in the Adam dataset.
This is in contrast to 30 or fewer categories used in
previous induction work. The bias brought by high
B values and unlabeled evaluation together may be
masking the real relationship between the number
of categories and grammar accuracy.

Figures 3a and 3b show unlabeled and labeled
evaluation on different grammars induced with the
best performing 8 on Adam tuned by unlabeled
F1. With F1, increasing the number of categories
beyond 30 yields no improvement as most of the in-
duced grammars are purely right-branching gram-
mars. RH results confirm this: as grammars ap-
proach the pure right-branching solution when C in-
creases, the similarity between induced and gold la-

2The first half of the Wall Street Journal part of the Penn
Treebank with sentences with 20 words or fewer.

148

bels of constituents deteriorates quickly. RH scores
from grammars induced with 8 = 0.01 are more
indicative of the interaction between the number of
categories and grammar accuracy. Grammar accu-
racy increases as C gets larger initially and peaks
at C = 75. The results confirm the importance of
labeled evaluation, because the trend from labeled
evaluation shows that there should be a sufficient
number of categories to account for different syn-
tactic structures, and models with small numbers
of categories are limited in their ability to do this.

4.3 Experiment 3: Depth-bounding is still
effective with RH

Previous work showed that depth-bounding is ef-
fective in helping grammar inducers induce more
accurate grammars (Shain et al., 2016; Jin et al.,
2018a), because it removes the parse trees with
deeply nested center-embeddings, which cannot be
produced by humans due to memory constraints
(Chomsky and Miller, 1963), from grammar induc-
tion inference. However the unlabeled evaluation
metric used in previous work may lead to unhelp-
ful conclusions. In order to revisit this claim with
labeled evaluation, experiments are first conducted
on Adam exploring the interaction between depth
and labeled performance, and subsequently on the
Eve (English), Tong (Chinese Mandarin) and Leo
(German) portions of the CHILDES corpus. All
experiments use hyperparameters tuned with RH.>

Figure 4 shows the interaction between depth
and RH scores on Adam. Performance of the un-
bounded models can be lower than all bounded
models, showing that unbounded inducers can in-
duce grammars inconsistent with human mem-
ory constraints. The labeled performance peaks
at depth 3, which is significantly more accurate
(p < 1 x 1073) than unbounded models. This is
consistent with previous results that over 97% of
trees in English contain 3 or fewer nested center
embeddings (Schuler et al., 2010).

Experiments on Eve, Tong and Leo replicate this
result. Figure 5 shows that the models bounded at
depth 3 are more accurate than unbounded models
with both unlabeled and labeled evaluation metrics.
Significance testing with unlabeled F1* shows the

3The optimal C is 75 from previous experiments, but we
used 30 in all depth-bounding experiments due to hardware
constraints at high depth bounds.

“Neither RH nor RVM were used in permutation signifi-
cance testing, because labels with the same values from dif-
ferent induced grammars may represent different linguistic
categories, therefore two parses of the same sentence from

RH Unlabeled F1 RH Unlabeled F1 RH Unlabeled F1
o
. 0.7 .60
0.6
0.5
205 g, g
= ° I I
s o > > 050
0.4
0.4
@ 0.3 é 045
o
0.3
3 9] 3 00 3 00 3 00 3 S 3 00
Depth Depth Depth Depth Depth Depth

(a) Depth-bounding on Eve

(b) Depth-bounding on Tong

(c) Depth-bounding on Leo

Figure 5: Comparison of labeled and unlabeled evaluation of grammars bounded at depth 3 and unbounded gram-
mars on English (Eve), Chinese Mandarin (Tong) and German (Leo) datasets from CHILDES.

performance differences across three datasets are
all highly significant (p < 0.001). Therefore, the
claim that depth-bounding is effective in grammar
induction is still supported when the models are
developed and evaluated with labeled evaluation.

5 Conclusion

Unlabeled evaluation has been used in grammar
induction, but experiments presented in this pa-
per show that unlabeled evaluation can reveal un-
expected bias in the data which may lead to un-
helpful conclusions compared to labeled evalua-
tion. Results show that trends of preference of
sparsity and use of categories that are consistent
with linguistic annotation can only be discovered
with labeled evaluation. Furthermore, human mem-
ory constraints are still effective in grammar induc-
tion when labeled evaluation is used throughout all
stages of development.

References

Omri Abend, Tom Kwiatkowski, Nathaniel J. Smith,
Sharon Goldwater, and Mark Steedman. 2017. Boot-
strapping language acquisition. In Cognition, vol-
ume 164, pages 116-143. Elsevier B.V.

Colin Bannard, Elena Lieven, and Michael Tomasello.
2009. Modeling children’s early grammatical
knowledge. Proceedings of the National Academy
of Sciences of the United States of America,
106(41):17284-9.

Heike Behrens. 2006. The input—output relationship in
first language acquisition. Language and Cognitive
Processes, 21(1-3):2-24.

Roger Brown. 1973. A first language: The early stages.
Harvard U. Press.

Noam Chomsky. 1965. Aspects of the Theory of Syntax.
MIT Press, Cambridge, MA.

different runs are not exchangeable.

149

Noam Chomsky. 1980. On cognitive structures and
their development: A reply to Piaget. In Massimo
Piattelli-Palmarini, editor, Language and learning:
the debate between Jean Piaget and Noam Chom-
sky, chapter 49, pages 751-755. Harvard University
Press.

Noam Chomsky and George A Miller. 1963. Introduc-
tion to the formal analysis of natural languages. In
Handbook of Mathematical Psychology, pages 269—
321. Wiley, New York, NY.

Xiangjun Deng, Virginia Yip, Brian Macwhinney,
Stephen Matthews, Mai Ziyin, Zhong Jing, and Han-
nah Lam. 2018. A Multimedia Corpus of Child Man-
darin: The Tong Corpus. The Journal of Chinese
Linguisticsvol, 46(1):69-92.

Sharon Goldwater and Tom Griffiths. 2007. A fully
Bayesian approach to unsupervised part-of-speech
tagging. Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
744-751.

Jodo V. Graga, Kuzman Ganchev, Taskar Ben, and Fer-
nando Pereira. 2009. Posterior vs. Parameter spar-
sity in latent variable models. In Advances in Neural
Information Processing Systems, pages 664—-672.

Lifeng Jin, Finale Doshi-Velez, Timothy Miller, Lane
Schwartz, and William Schuler. 2019. Unsupervised
Learning of PCFGs with Normalizing Flow. In
ACL.

Lifeng Jin, Finale Doshi-Velez, Timothy A Miller,
William Schuler, and Lane Schwartz. 2018a. Depth-
bounding is effective: Improvements and evaluation
of unsupervised PCFG induction. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

Lifeng Jin, Finale Doshi-Velez, Timothy A Miller,
William Schuler, and Lane Schwartz. 2018b. Un-
supervised Grammar Induction with Depth-bounded
PCFG. Transactions of the Association for Compu-
tational Linguistics.

Lifeng Jin and William Schuler. 2019. Variance of aver-
age surprisal: a better predictor for quality of gram-
mar from unsupervised PCFG induction. In ACL.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2007. Bayesian Inference for PCFGs via
Markov chain Monte Carlo. Proceedings of Hu-
man Language Technologies: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 139-146.

Nenaugh Kemp, Elena Lieven, and Michael Tomasello.
2005. Young Children’s Knowledge of the
“Determiner” and “Adjective” Categories. Jour-
nal of Speech, Language, and Hearing Research,
48(June):592-609.

Yoon Kim, Chris Dyer, and Alexander M Rush. 2019.
Compound Probabilistic Context-Free Grammars
for Grammar Induction. In ACL.

Nikita Kitaev and Dan Klein. 2018. Constituency Pars-
ing with a Self-Attentive Encoder. In ACL.

Tom Kwiatkowski, Sharon Goldwater, Luke Zettle-
moyer, and Mark Steedman. 2012. A probabilistic
model of syntactic and semantic acquisition from
child-directed utterances and their meanings. Pro-
ceedings of the 13th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 234-244.

Brian Macwhinney. 1992. The CHILDES Project:
Tools for Analyzing Talk, third edition. Lawrence
Elrbaum Associates, Mahwah, NJ.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Amy Perfors, Joshua B Tenenbaum, and Terry Regier.
2011. The learnability of abstract syntactic princi-
ples. Cognition, 118:306-338.

Julian M. Pine, Daniel Freudenthal, Grzegorz Krajew-
ski, and Fernand Gobet. 2013. Do young children
have adult-like syntactic categories? Zipf’s law and
the case of the determiner. Cognition, 127(3):345—
360.

Elias Ponvert, Jason Baldridge, and Katrin Erk. 2011.
Simple unsupervised grammar induction from raw
text with cascaded finite state models. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics, pages 1077-1086.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proceedings of the 2007
Jjoint conference on empirical methods in natural
language processing and computational natural lan-
guage learning (EMNLP-CoNLL).

William Schuler, Samir AbdelRahman, Tim Miller, and
Lane Schwartz. 2010. Broad-coverage parsing using
human-Like memory constraints. Computational
Linguistics, 36(1):1-30.

150

Yoav Seginer. 2007. Fast Unsupervised Incremental
Parsing. In Proceedings of the Annual Meeting of
the Association of Computational Linguistics, pages
384-391.

Cory Shain, William Bryce, Lifeng Jin, Vic-
toria Krakovna, Finale Doshi-Velez, Timothy
Miller, William Schuler, and Lane Schwartz. 2016.
Memory-bounded left-corner unsupervised gram-
mar induction on child-directed input. In Proceed-
ings of the International Conference on Computa-
tional Linguistics, pages 964-975.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2018. Neural Language Modeling
by Jointly Learning Syntax and Lexicon. In ICLR.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered Neurons: Integrat-
ing Tree Structures into Recurrent Neural Networks.
In ICLR.

Haoyue Shi, Jiayuan Mao, Kevin Gimpel, and Karen
Livescu. 2019. Visually Grounded Neural Syntax
Acquisition. In ACL.

Mark Steedman. 2002. Formalizing Affordance. In
Proceedings of the Annual Meeting of the Cognitive
Science Society.

Michael Tomasello and Raquel Olguin. 1993. Twenty-
three-month-old children have a grammatical cate-
gory of noun. Cognitive Development, 8(4):451—
464.

Virginia Valian. 1986. Syntactic Categories in the
Speech of Young Children. Developmental Psychol-
0gy, 22(4):562-579.

Overview of the IWPT 2020 Shared Task on Parsing into Enhanced
Universal Dependencies

Gosse Bouma*

Djamé Seddah'

Daniel Zeman®

*University of Groningen, Centre for Language and Cognition
TINRIA Paris
°Charles University in Prague, Faculty of Mathematics and Physics, UFAL

g.bouma@rug.nl,

djame.seddah@inria.fr

zeman@ufal.mff.cuni.cz

Abstract

This overview introduces the task of pars-
ing into enhanced universal dependencies, de-
scribes the datasets used for training and eval-
uation, and evaluation metrics. We outline var-
ious approaches and discuss the results of the
shared task.

1 Introduction

Universal Dependencies (UD) (Nivre et al., 2020)
is a framework for cross-linguistically consistent
treebank annotation that has so far been applied
to over 90 languages. UD defines two levels of
annotation, the basic trees and the enhanced graphs
(EUD).

In 2017 (Zeman et al., 2017) and 2018 (Zeman
et al., 2018) there were CoNLL shared tasks on
multilingual UD parsing that attracted a substan-
tial number of participants. While the previous
tasks evaluated morphology and prediction of basic
dependencies on the UD data, the current task’s
focus is on predicting enhanced dependency rep-
resentations. The evaluation was done on datasets
covering 17 languages from four language families.
The current task was organized as a part of the 16th
International Conference on Parsing Technologies'
(IWPT), collocated with ACL 2020, as a follow-up
to stimulate research on parsing natural language
into richly annotated structures.

2 Motivation

The basic dependency annotation in the Universal
Dependencies format introduces labeled edges be-
tween tokens in the input string, where each token
is a dependent of exactly one other token, with the
exception of the root token. While such an annota-
tion layer supports many downstream tasks, there
are also phenomena that are hard to capture using

"https://iwpt20.sigparse.org

151

single edges between tokens only. The enhanced
dependency layer therefore supports a richer level
of annotation, where tokens may have more than
one parent, and where additional ‘empty’ tokens
may be added to the input string. The enhanced
level can be used to account for a range of linguistic
phenomena (see Section 3) and to support down-
stream applications that require representations that
capture more aspects of the semantic interpretation
of the input.

There are now a number of treebanks that in-
clude enhanced dependency annotation. Further-
more, the recent shared tasks on dependency pars-
ing and subsequent work have shown that consid-
erable progress has been made in multilingual de-
pendency parsing. It remains to be seen, however,
whether the same is true for enhanced dependency
parsing. The challenge is both formal and practical.
First, the enhanced representation is a connected
graph, possibly containing cycles, while previous
work on dependency parsing mostly dealt with
rooted trees. Second, as some dependency labels
incorporate the lemma of certain dependents and
other additional information, the set of labels to be
predicted is much larger and language-dependent.

On the other hand, it has been shown that much
of the enhanced annotation can be predicted on
the basis of the basic UD annotation (Schuster
et al., 2017; Nivre et al., 2018). Moreover, most
state of the art work in dependency parsing uses a
graph-based approach, where the assumption that
the output must form a tree is only used in the fi-
nal step from predicted links to final output. And
finally, work on deep-syntax and semantic parsing
has shown that accurate mapping of strings into
rich graph representations is possible (Oepen et al.,
2014, 2015, 2019) and could even lead to state of
the art performance for downstream applications
as shown by the results of the Extrinsic Evaluation
Parsing shared-task (Oepen et al., 2017).

Proceedings of the 16th International Conference on Parsing Technologies and the INPT 2020 Shared Task, pages 151-161
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

3 Enhanced Universal Dependencies

UD version 22 states that apart from the morpholog-
ical and basic dependency annotation layers, strings
may be annotated with an additional, enhanced, de-
pendency layer, where the following phenomena
can be captured:

e Gapping. To support a linguistically more
satisfying treatment of ellipsis, empty tokens
can be introduced into the string to represent

missing predicates in gapping constructions.

Coordination. Dependency relations are prop-
agated from the parent of the coordination
structure to each conjunct, and from each con-
junct to a shared dependent, e.g., a shared
subject or object of coordinate verbs.

Control and raising constructions. The exter-
nal subject of xcomp dependents, if present,
can be explicitly marked.

Relative clauses. The antecedent noun of a
relative clause is annotated as a dependent of
a node within the relative clause (thus intro-
ducing a cycle) and the relative pronoun is an-
notated as a ref dependent of the antecedent
noun.

Case information. Selected dependents (in
particular ob1 and nmod), if they are marked
by morphological case and/or by an adposi-
tional case dependent, can now be labeled
as obl:marker or nmod:marker where
marker is the lemma of the case dependent
and/or the value of the morphological feature
Case.

All enhancements are optional, so a UD treebank
may contain enhanced graphs with one type of
enhancement and still lack the other types.

4 Data

The evaluation was done on 17 languages from
4 language families: Arabic, Bulgarian, Czech,
Dutch, English, Estonian, Finnish, French, Ital-
ian, Latvian, Lithuanian, Polish, Russian, Slovak,
Swedish, Tamil, Ukrainian. The language selec-
tion is driven simply by the fact that at least partial
enhanced representation is available for the given
language.

https://universaldependencies.org/u/
overview/enhanced-syntax.html

152

[nummod] [punct] orphan]
VT AN B
Sue has 5 euros Pat 6 and Kim 3

>

Figure 1: A basic tree of a gapping structure.

Y
| |

Pat _ 6 and Kim _ 3

Sue has 5 euros

>

Figure 2: The correct enhanced graph of the gapping
structure from Figure 1. “_” are empty nodes.

Training and development data were based on
the UD release 2.5 (Zeman et al., 2019) but for
several treebanks the enhanced annotation is richer
than in UD 2.5. Our goal was to have annotations
as uniform and complete as possible. There are
only 6 treebanks of 3 languages in UD 2.5 that
contain all types of enhancements: Dutch (Alpino
and LassySmall), English (EWT and PUD), and
Swedish (Talbanken and PUD). For several other
languages we obtained new annotations that be-
came part of UD from the next release (2.6) on.
For the remaining languages, we applied simple
heuristics and added at least some enhancements
for the purpose of the shared task, but these anno-
tations are not yet part of the regular UD releases.
We only applied our heuristics to the missing en-
hancement types; we did not attempt to modify
the enhancements provided by the data providers.
Table 1 gives an overview of enhancements in indi-
vidual treebanks.

The enhancements differ in how easily and ac-
curately they can be inferred from the basic UD
annotation:

e Enhancing relation labels with case informa-
tion is deterministic. We apply it to the rela-
tions obl, nmod, advcl and acl. If they
have a case or mark dependent, we add its
lowercased lemma (for fixed multiword ex-
pressions we glue the lemmas with the “_”
character). For obl and nmod we further
examine the Case feature and add its lower-
cased value, if present.

Treebank UD 2.5 Task 2.6
Arabic PADT PS Gps rC | vV
Bulgarian BTB PSXRC | GPSXRC
Czech CAC PS GPSXRC | v
Czech FicTree PS GpsxrC | v/
Czech PDT PS GPSXRC | v
Czech PUD GP XRC | v/
Dutch Alpino GPSXRC | GPSXRC | v/
Dutch LassySmall GPSXRC | GPSXRC | v/
English EWT GPSXRC | GPSXRC | v/
English PUD GPSXRC | GPSXRC | v/
Estonian EDT GPS RC | (v)
Estonian EWT G GP RC
Finnish PUD GP GP RC
Finnish TDT GPSX GPSXRC
French FQB PSX
French Sequoia PSX
Italian ISDT PSXRC | GPSXRC
Latvian LVTB GPSX C | GPSXRC
Lithuanian ALKS. PS GPSXRC | v
Polish LFG PSX C | PSXRC
Polish PDB PS GPSXRC
Polish PUD PS GPSXRC
Russian SynTagRus | G GP XRC
Slovak SNK PS GPSXRC | v
Swedish PUD GPSXRC | GPSXRC | v/
Swedish Talbanken | GPSXRC | GPSXRC | v/
Tamil TTB PS ps c| vV
Ukrainian IU GPSXR GPSXRC

Table 1: New annotation for the shared task. Abbre-

viations: G = gapping; P = parent of coordination; S
= shared dependent of coordination; X = external sub-
ject of controlled verb; R = relative clause; C = case-
enhanced relation label. The check mark in the last col-
umn indicates whether the shared task additions also
became part of UD 2.6 (only some types for Estonian
EDT).

e Linking the parent of coordination to all con-
juncts is deterministic.

e Recognizing and transforming relative clauses
is easy if relative pronouns can be recognized.
This can be tricky in languages where the
same pronouns can be used relatively (Fig-
ure 3) and interrogatively (Figure 4). We can-
not recognize all instances of the latter case
reliably; fortunately they do not seem to be
too frequent.

153

the man who will come

Figure 3: Enhanced graph of a relative clause.

fac)

the question who will come

Figure 4: Enhanced graph of an interrogative clause.

e External subjects of xcomp clauses are sub-
jects, objects or oblique dependents of the
matrix clause. To find them, we need to know
whether the governing verb has subject or ob-
ject control. We use language-specific verb
lists, which can resolve many cases, but not
all. If a verb is not on any list, we skip it.

e Gapping can be easily identified by the pres-
ence of the orphan relation in the basic tree,
insertion of empty nodes is thus trivial. How-
ever, we do not know the type of the relation
between the empty node and the orphaned de-
pendents. Figure 2 shows a graph where each
empty node has one nsub j and one ob Jj de-
pendent. We cannot infer these labels from the
basic tree (Figure 1), so we use dep instead.

e Linking conjuncts to shared dependents can-
not be done reliably because we cannot know
whether a dependent should be shared (this
may be sometimes difficult even for a human
annotator!) Therefore we do not attempt to
add this enhancement to the datasets that do
not have it.

Although the UD releases distinguish several
different treebanks for some languages, for the pur-
pose of the shared task evaluation we merged all
test sets of each language. We wanted to promote
robust parsers that are not tightly tied to one particu-
lar dataset. Merging treebanks of one language was
possible because for almost all languages it holds
that treebanks participating in the present task are
maintained by the same team, hence no significant
treebank-specific annotation decisions are expected.
There is one exception, though: Polish. The LFG

Treebank edeps % new % str.n

Arabic PADT 300776 33.88 7.00
Bulgarian BTB 160838 15.30 3.86
Czech CAC 542902 27.61 10.80
Czech FicTree 181370 21.20 9.46
Czech PDT 1612550 24.39 8.20
Czech PUD 20681 26.87 11.42
Dutch Alpino 215595 16.86 4.36
Dutch LassySmall 102130 18.10 4.90
English EWT 267247 1740 5.17
English PUD 22173 19.58 5.28
Estonian EDT 440974 23.81 1.77
Estonian EWT 29046 2623 7.52
Finnish PUD 17034 2627 843
Finnish TDT 220061 2594 9.19
French FQB 24513 2.88 1.55
French Sequoia 73982 6.03 4.70
Italian ISDT 311341 2139 5.16
Latvian LVTB 238416 2398 9.56
Lithuanian ALKSNIS 77868 32.25 10.68
Polish LFG 134732 11.17 2.89
Polish PDB 376601 22.82 8.23
Polish PUD 19752 24.61 8.02
Russian SynTagRus 1170014 2245 6.17
Slovak SNK 111823 2047 6.12
Swedish PUD 21101 2525 10.95
Swedish Talbanken 102912 21.19 7.15
Tamil TTB 10408 32.87 7.94
Ukrainian IU 138275 26.48 12.27
total 6945115 23.13 7.09

Table 2: Comparing impact of enhancements in the
shared task treebanks where ‘edeps’ is the number
of enhanced dependencies, ‘new’ is the percentage of
edeps that is new when compared to basic UD relations,
and ‘strnew’ are the ‘structurally new’ dependencies,
i.e. dependencies that do not just differ from the basic
dependency in having an enhanced dependency label.

treebank uses a different set of relation subtypes
than the PDB and PUD treebanks. This is true
in the basic trees and it naturally projects to the
enhanced graphs. Thus, for example, in LFG the
aux relation occurs without a subtype (21%), or
subtyped aux :aglt (65%) or aux:pass (14%).
In PDB, aux occurs without a subtype (21%), or
subtyped aux:clitic (40%), aux:cnd (12%),
aux:imp (1%) or aux:pass (26%). A parser
can hardly get the subtypes right when we do not
tell it what label dialect is used in the gold data.
We can thus expect the labeled attachment score

154

to be less informative in Polish than in the other
languages (see Section 6 for alternative evaluation
metrics).

Table 2 shows that the effect of enhancements
differs quite a bit between the various languages.
For instance, the percentage of enhanced dependen-
cies thatis ‘new’, i.e. does not have a corresponding
dependency in the basic tree, ranges from 6 to over
30%. Many of these are a consequence of the deci-
sion to add the case information to ob1 and other
relations, extensions which are relatively easy to
capture using a few simple heuristics. Enhanced
dependencies that introduce truly novel edges or la-
bels are rarer. The percentage of ‘structurally new’
relations, i.e. dependencies that differ from the ba-
sic dependency in more than just the enhanced la-
bel, varies between 2 and 12%.

There are slight differences in how individ-
ual languages implement particular enhancement
types. Some languages follow earlier proposals
for enhanced relation subtypes that are not sup-
ported by the current UD guidelines, e.g., external
subjects are labeled nsub j : xsub j, antecedents
of relative clauses are nsubj:relsubj or
obj:relobi, the “case” information is extended
to showing conjunction lemma with conjuncts
(conj:and, conj:or etc.) Empty nodes are
occasionally used for other ellipsis types than gap-
ping or stripping. A special case is French where
diathesis neutralization is encoded in the spirit of
Candito et al. (2017).

The data used in the shared task will be per-
manently available after the shared task at http:
//hdl.handle.net/11234/1-3238.

5 Task

As in the previous dependency parsing shared tasks,
participants were expected to go from raw, un-
tokenized, strings to full dependency annotation.
The evaluation focused on the enhanced annotation
layer, but the participants were encouraged to pre-
dict all annotation layers, and the evaluation of the
other layers is available on the shared task website.>
The task was open, in the sense that participants
were allowed to use any additional resources they
deemed fit (with the exception of UD 2.5 test data)
as long as this was announced in advance and the
additional resource was freely available to every-
body.

*https://universaldependencies.org/
iwpt20/

The submitted system outputs had to be valid
CoNLL-U files; if a file was invalid, its score would
be zero.* The official UD validation script® was
used to check validity, although only at ‘level 2°,
which means that only basic file format was
checked and not the annotation guidelines (e.g.,
an unknown relation label would not render the file
invalid). Still, certain aspects of level-2 validity
complicate the prediction of the enhanced graphs,
and as the participants were not alerted to individ-
ual restrictions beforehand, these restrictions were
an unwelcome surprise to them. So the relations
can be unknown but can only contain characters
from a limited set. The enhanced graph can con-
tain cycles, but not self-loops (a node depending
on itself). And most crucially, there must be at
least one root node and every node must be reach-
able via a directed path from at least one root node
(rootedness and connectedness). When we saw dur-
ing the test phase that some teams might not be
able to comply with these restrictions, we created
a quick-fix script that tries to make the submission
valid; however, the solution the script provided for
unconnected graphs is not optimal.

In addition to CoNLL-U validity, we also re-
quired that systems do not alter any non-whitespace
characters when processing the input. This is
a pre-requisite for the evaluation, where system-
predicted tokens must be aligned with gold-
standard tokens; files with modified word forms
would be rejected.

6 Evaluation Metrics

The main evaluation metric is ELAS (labeled at-
tachment score on enhanced dependencies), where
ELAS is defined as Fl-score over the set of en-
hanced dependencies in the system output and the
gold standard. Complete edge labels are taken into
account, i.e. obl : on differs from ob1l. A second
metric is EULAS, which differs from ELAS in that
only the universal part of the dependency relation
label is taken into account. Relation subtypes are
ignored, i.e., obl:on, obl:auf, and obl are
treated as identical.

As is apparent from Table 1, despite our effort
to obtain consistent annotation across all treebanks,
there are still treebanks that do not include all en-
hancements listed in the UD guidelines. Therefore,

4https ://universaldependencies.org/
format.html

Shttps://universaldependencies.org/
release_checklist.html#validation

155

conj>obj

conj>cc

conj>punct

nummod

Sue has 5 euros Pat 6 and Kim 3

>

Figure 5: The enhanced graph from Figure 2 after col-
lapsing empty nodes and reflecting the paths in depen-
dency labels.

systems that try to predict all enhancement types
for all treebanks might in fact be penalized for
predicting more than has been annotated. To give
such systems a fair chance, we perform two types
of evaluation: ‘coarse’ and ‘qualitative’. In the
latter, we ignore dependencies that are specific to
enhancement E if the given gold-standard dataset
does not include enhancement E. We can trigger
individual enhancements on and off separately for
each treebank—while the blind input data only dis-
tinguishes languages but not treebanks, we still
know where each sentence comes from and we
can take this information into account during eval-
uation. The two evaluation methods should give
roughly the same result for systems that during
training learned to adapt their output to a given
treebank, whereas for systems that generally try
to predict all possible enhancements, the second
method should give more informative results.

A final issue we address is the evaluation of
empty nodes. A consequence of the treatment of
gapping and ellipsis is that some sentences contain
additional nodes (numbered 1.1 etc.). It is not guar-
anteed that gold and system agree on the position
in the string where these should appear, but the in-
formation encoded by these additional nodes might
nevertheless be identical. Thus, such empty nodes
should be considered equal even if their string in-
dex differs. To ensure that this is the case, we
have opted for a solution that basically compiles
the information expressed by empty nodes into the
dependency label of its dependents. lL.e. if a de-
pendent with dependency label L2 has an empty
node 12 .1 as parent which itself is an L1 depen-
dent of i1, its dependency label will be expanded
into a path 11:L1>L2. This preserves the infor-

mation that the dependent was an 1.2 dependent of
‘something’ that was itself an L1 dependent of 11,
while at the same time removing the potentially
conflicting 12 . 1 (Figure 5).°

7 Approaches

There is quite a bit of variation in the way various
teams have addressed the task. For the initial stages
of the analysis (tokenization, lemmatization, POS-
tagging) some version of UDPipe’ (Straka et al.,
2016), Udify® (Kondratyuk and Straka, 2019),
and/or Stanza® (Qi et al., 2020) is often involved.

Several teams (Orange (Heinecke, 2020), FAST-
PARSE (Dehouck et al., 2020), UNIPI (Attardi
et al., 2020), CLASP (Ek and Bernardy, 2020),
ADAPT (Barry et al., 2020)) concentrate on pars-
ing into standard UD, and then add hand-written
enhancement rules, sometimes in combination
with data-driven heuristics to improve robustness.
TurkuNLP (Kanerva et al., 2020) transforms EUD
into a representation that is compatible with stan-
dard UD by combining multiple edges into a single
edge with a complex label, and compiling edges in-
volving empty nodes into complex edge labels (as
is done by the evaluation script as well). The total
number of edge-labels is reduced by de-lexicalising
enhanced edge labels and storing a pointer to the de-
pendent from which the lemma of an enhancement
originates in the de-lexicalized edge label. A wide
range of parsers (graph-based biaffine, transition-
based), and pre-trained embeddings (XLM-R or
mBERT or language specific BERTS) is used. Fi-
nally, several teams (Emory NLP (He and Choi,
2020), ShanghaiTech (Wang et al., 2020), ADAPT,
Kgpsala (Hershcovich et al., 2020), RobertNLP
(Griinewald and Friedrich, 2020)) do not use con-
version (or only to restore de-lexicalized labels),
but instead use a graph-based parser that can di-
rectly produce enhanced dependency graphs. The
output of the graph-based parser is often combined
with information from a standard UD parser to
ensure well-formedness and connectedness of the
resulting graph.

STf there are multiple empty nodes in the sentence, we lose
the information which orphans were siblings and which were
not. Nevertheless, multiple empty nodes in one sentence are
extremely rare.

"http://ufal.mff.cuni.cz/udpipe

$https://github.com/Hyperparticle/
udify

‘https://stanfordnlp.github.io/stanza/

156

8 Results

We include two baseline results:'” baselinel was
obtained by taking gold basic UD trees and copying
these into the enhanced layer without any modifi-
cations. Baseline2 uses UDPipe 1.2 trained on UD
2.5 treebanks!! and again copies basic UD to the
enhanced layer. Both baselines give an impression
of how much the enhanced layer differs from the
basic layer, where baselinel makes the unrealistic
assumption that parsing into basic UD is perfect.

Table 3 shows that the best three submissions
achieve ELAS comparable to LAS for multilingual
UD parsing (Zeman et al., 2018; Kondratyuk and
Straka, 2019; Kulmizev et al., 2019).

If we compare scores for LAS, EULAS, and
ELAS, it can be observed that usually there is
a small drop in accuracy when going from LAS
to EULAS to ELAS, although the drop from
LAS/EULAS to ELAS seems to be larger for some
of the systems in the lower half of the table. This
suggests that predicting the correct label enhance-
ment is problematic for some approaches.

The EULAS and ELAS scores for the qualitative
evaluation (which takes into account differences
in the enhancement level of treebanks) are only
slightly higher than in the coarse evaluation. It
should be noted though, that scores cannot be com-
pared directly, as the coarse evaluation is a macro
average over languages, whereas most scores in
the qualitative evaluation are macro averages over
treebanks. This implies that the data is weighted
slightly differently in both averages, which plays a
role in the LAS scores being generally a bit higher
in the qualitative evaluation. When the qualita-
tive ELAS is averaged over languages (the ELAS-1
column in Table 3), the scores become similar to
coarse ELAS and no general trend is observable.

Difference between coarse and qualitative eval-
uation is small. This is due to (a) the fact that this
makes a difference for 9 of 28 treebanks only and
(b) the fact that some of the phenomena that are
ignored in the qualitative evaluation are relatively
rare in the data (e.g. ellipsis).

Table 4 shows the best ELAS per language.
More detailed results (per language, unofficial re-

!%We did not include our baseline3 architecture here due
to technical issues that prevented us to parse all languages.
Encouraging partial results are however available on the shared
task website.

"Ppretrained models (Straka and Strakovd, 2019) used with
default settings, always using the largest available model for
the given language. No pretrained word embeddings.

Coarse Qualitative
Team LAS EULAS ELAS LAS EULAS ELAS-t ELAS-1
baselinel 100.00 96.37 79.86 100.00 96.22 80.70 79.92
baseline2 75.41 7297 61.07 76.39 73.80 62.32 60.99
TurkuNLP 87.31 85.83 84.50 87.94 86.36 84.63 84.19
Orange 86.79 84.62 82.60 87.78 85.46 83.07 82.52
Emory NLP 86.14 81.26 79.84 87.20 82.34 80.87 79.64
FASTPARSE 77.57 75.96 74.04 78.63 76.99 74.77 73.95
UNIPI 80.74 78.82 72.76 81.61 79.60 73.48 72.82
ShanghaiTech 0.99 73.01 71.74 1.00 73.77 72.40 71.70
CLASP 82.66 80.18 67.85 83.13 80.60 69.20 68.16
ADAPT 84.09 69.42 67.23 84.73 70.10 67.49 67.17
Kgpsala 75.41 6493 6291 76.39 65.10 62.67 62.72
RobertNLP 5.11 5.26 5.23 6.21 6.39 6.36 5.24

Table 3: Evaluation results on the test data. LAS is the evaluation of the basic tree, EULAS and ELAS evaluate
the enhanced graph. In Coarse, the score is the macro average over languages, in Qualitative, the score for LAS
and EULAS is the macro average over treebanks. ELAS-t gives the macro average over treebanks, and ELAS-I the
macro average over languages. RobertNLP submitted only the English data.

Language Team ELAS
Arabic TurkuNLP 77.82
Bulgarian ~ TurkuNLP 90.73
Czech TurkuNLP 87.51
Dutch Orange 85.14
English RobertNLP 88.94
Estonian TurkuNLP 84.54
Finnish TurkuNLP 89.49
French Emory NLP 86.23
Italian TurkuNLP 91.54
Latvian TurkuNLP 84.94
Lithuanian TurkuNLP 77.64
Polish TurkuNLP 84.64
Russian TurkuNLP 90.69
Slovak TurkuNLP 88.56
Swedish TurkuNLP 85.64
Tamil Orange 64.23
Ukrainian TurkuNLP 87.22

Table 4: Best results per language (Coarse).

sults) are available on the results page of the shared
task website.!?

9 Post Shared Task Unofficial Results

A number of teams have submitted runs on the test
data after the deadline for the official evaluation, an
overview in given in Table 5. In some cases, these

Phttps://universaldependencies.org/
iwpt20/Results.html

are runs that fix validation issues and that result in
considerably higher scores (i.e., ShanghaiTech). In
other cases, these unofficial runs are experiments
with various components of the system architecture.
The reader should consult the system description
papers for further discussion of these results.

10 Conclusions

This shared task was the first attempt at a coordi-
nated evaluation effort on parsing enhanced univer-
sal dependencies. While a large part of the method-
ology could be adopted from the previous CoNLL
shared tasks on parsing into UD, a number of issues
did require attention.

First, providing training and test data is com-
plicated by the fact that not all treebanks in the
UD repository include the same level of enhance-
ments. This makes training a single, multilingual,
model, harder than it ought to be, as annotation
style differs per treebank. For evaluation, different
enhancement levels pose a problem as it is unclear
to what extent ‘overannotating’ data should be con-
sidered an error. As Table 1 illustrates, the situation
has improved already considerably for UD release
2.6.

Another issue for validation is the status of
‘empty’ nodes. The position in the string of such
nodes is not defined by the guidelines, and there-
fore one may expect mismatches between gold and
system data. Our solution to this issue is described
in Section 6. For future tasks, however, it might

157

Coarse Qualitative
Team LAS EULAS ELAS LAS EULAS ELAS-t ELAS-1
ShanghaiTech 1.05 86.54 85.06 1.04 87.23 85.63 84.96
ADAPT 8491 82.25 79.95 85.60 83.12 80.15 79.89
FASTPARSE 79.85 78.27 76.48 80.82 79.20 77.13 76.36
Kgpsala 75.41 7892 7648 76.39 79.28 76.33 76.28
UNIPI 84.32 82.32 7592 85.76 83.60 77.16 75.92

Table 5: Post Shared Task evaluation results on the test data.

be worthwhile to investigate whether a different
representation of such nodes in the data files or an
alternative evaluation strategy is needed.

Several systems struggled with the validation re-
quirements of enhanced UD. While an enhanced
graph may contain nodes with more than one par-
ent, may contain cycles, and may have multiple
root nodes, there are still constraints that an en-
hanced UD graph must comply with, such as that
the graph must be connected and that there should
be one or more ‘root’ nodes from which all other
nodes are reachable. In future tasks, the restrictions
should be more carefully described in advance.

The results of the shared task illustrate that there
is quite a wide variety in the way that the problem
of parsing into enhanced universal dependencies
can be approached, with some systems sticking
closer to traditional approaches for parsing UD,
and dealing with the enhancements in a conver-
sion script, while other systems output a graph
directly. The scores indicate that while parsing into
enhanced UD is harder than parsing into UD, the
drop in performance is minimal for most systems,
which suggests that the challenges posed by the an-
notation format of enhanced UD are not an obstacle
for accurate parsing.

Acknowledgments

We heartily thank everyone involved in the devel-
opment of the Enhanced UD treebanks and who
made this shared task possible.

This work has been partially supported by the
LUSyD project, grant 20-16819X of the Czech
Science Foundation (GACR). The second author
was partly funded by two French National Research
Agency projects, PARSITI (ANR-16-CE33-0021)
and SoSweet (ANR-15-CE38-0011).

158

References

Giuseppe Attardi, Daniele Sartiano, and Maria Simi.
2020. Linear neural parsing and hybrid enhance-
ment for Enhanced Universal Dependencies. In Pro-
ceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (this volume). Association for Computational
Linguistics.

James Barry, Joachim Wagner, and Jennifer Foster.
2020. The ADAPT Enhanced Dependency Parser
at the IWPT 2020 Shared Task. In Proceedings of
the 16th International Conference on Parsing Tech-
nologies and the IWPT 2020 Shared Task on Pars-
ing into Enhanced Universal Dependencies (this vol-
ume). Association for Computational Linguistics.

Marie Candito, Bruno Guillaume, Guy Perrier, and
Djamé Seddah. 2017. Enhanced UD dependencies
with neutralized diathesis alternation. In Proceed-
ings of the Fourth International Conference on De-
pendency Linguistics (Depling 2017), pages 42-53,
Pisa, Italy.

Mathieu Dehouck, Mark Anderson, and Carlos Gémez-
Rodriguez. 2020. Efficient EUD parsing. In Pro-
ceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (this volume). Association for Computational
Linguistics.

Adam Ek and Jean-Philippe Bernardy. 2020. How
much of enhanced UD is contained in UD? In Pro-
ceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (this volume). Association for Computational
Linguistics.

Stefan Griinewald and Annemarie Friedrich. 2020.
Robertnlp at the IWPT 2020 Shared Task: Surpris-
ingly Simple Enhanced UD Parsing for English. In
Proceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (this volume). Association for Computational
Linguistics.

Han He and Jinho D. Choi. 2020. Adaptation of Mul-
tilingual Transformer Encoder for Robust Enhanced

Universal Dependency Parsing. In Proceedings of
the 16th International Conference on Parsing Tech-
nologies and the IWPT 2020 Shared Task on Pars-
ing into Enhanced Universal Dependencies (this vol-
ume). Association for Computational Linguistics.

Johannes Heinecke. 2020. Hybrid Enhanced Universal

Dependencies Parsing. In Proceedings of the 16th
International Conference on Parsing Technologies
and the IWPT 2020 Shared Task on Parsing into En-
hanced Universal Dependencies (this volume). As-
sociation for Computational Linguistics.

Daniel Hershcovich, Miryam de Lhoneux, Artur Kul-

mizev, Elham Pejhan, and Joakim Nivre. 2020.
Kgpsala: Transition-Based Graph Parsing via Effi-
cient Training and Effective Encoding. In Proceed-
ings of the 16th International Conference on Pars-
ing Technologies and the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies
(this volume). Association for Computational Lin-
guistics.

Jenna Kanerva, Filip Ginter, and Sampo Pyysalo. 2020.

Turku Enhanced Parser Pipeline: From Raw Text to
Enhanced Graphs in the IWPT 2020 Shared Task.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (this volume). Association for Computational
Linguistics.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-

guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779-2795.

Artur Kulmizev, Miryam de Lhoneux, Johannes

Gontrum, Elena Fano, and Joakim Nivre. 2019.
Deep contextualized word embeddings in transition-
based and graph-based dependency parsing - a tale
of two parsers revisited. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 27552768, Hong Kong,
China. Association for Computational Linguistics.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-

ter, Jan Haji¢, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection. In
Proceedings of the Twelfth International Confer-
ence on Language Resources and Evaluation (LREC
2020), pages 4027-4036, Paris, France. European
Language Resources Association.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna

Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing universal de-
pendency treebanks: A case study. In Proceedings

159

of the Second Workshop on Universal Dependencies
(UDW 2018), pages 102-107.

Stephan Oepen, Omri Abend, Jan Haji¢, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeiika
UreSova. 2019. MRP 2019: Cross-framework mean-
ing representation parsing. In Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning, pages 1-27, Hong Kong. Asso-
ciation for Computational Linguistics.

Stephan Oepen, Jari Bjorne, Richard Johansson,
Emanuele Lapponi, Filip Ginter, Erik Velldal, and
Lilja @vrelid. 2017. The 2017 Shared Task on Ex-
trinsic Parser Evaluation (EPE 2017).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015). As-
sociation for Computational Linguistics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina
Ivanova, and Yi Zhang. 2014. Semeval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63-72.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In In Association for Compu-

tational Linguistics (ACL) System Demonstrations,
Seattle, WA, USA.

Sebastian Schuster, Eric De La Clergerie, Marie
Candito, Benoit Sagot, Christopher D. Manning,
and Djamé Seddah. 2017. Paris and Stanford at
EPE 2017: Downstream evaluation of graph-based
dependency representations.

Milan Straka, Jan Haji¢, and Jana Strakova. 2016.
Udpipe: trainable pipeline for processing conll-u
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 4290-
4297.

Milan Straka and Jana Strakova. 2019. Universal de-
pendencies 2.5 models for UDPipe (2019-12-06).
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (UFAL), Fac-
ulty of Mathematics and Physics, Charles Univer-
sity.

Xinyu Wang, Yong Jiang, and Kewei Tu. 2020. En-
hanced Universal Dependency Parsing with Second-
Order Inference and Mixture of Training Data. In
Proceedings of the 16th International Conference

on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies (this volume). Association for Computational
Linguistics.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-

thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1-21, Brussels, Belgium.
Association for Computational Linguistics.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Noémi

Aepli, Zeljko Agi¢, Lars Ahrenberg, Gabrielé Alek-
sandravicitté, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, Victoria Basmov, Colin
Batchelor, John Bauer, Sandra Bellato, Kepa Ben-
goetxea, Yevgeni Berzak, Irshad Ahmad Bhat,
Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick,
Agné Bielinskiené, Rogier Blokland, Victoria Bo-
bicev, Loic Boizou, Emanuel Borges Volker, Carl
Borstell, Cristina Bosco, Gosse Bouma, Sam Bow-
man, Adriane Boyd, Kristina Brokaité, Aljoscha
Burchardt, Marie Candito, Bernard Caron, Gauthier
Caron, Tatiana Cavalcanti, Giilsen Cebiroglu Eryigit,
Flavio Massimiliano Cecchini, Giuseppe G. A.
Celano, Slavomir Céplé, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Yongseok Cho, Jayeol
Chun, Alessandra T. Cignarella, Silvie Cinkova,
Aurélie Collomb, Cagr1 Coltekin, Miriam Con-
nor, Marine Courtin, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Elvis
de Souza, Arantza Diaz de Ilarraza, Carly Dicker-
son, Bamba Dione, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam
Ephrem, Olga Erina, TomaZz Erjavec, Aline Eti-
enne, Wograine Evelyn, Richard Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Claudia Fre-
itas, Kazunori Fujita, Katarina GajdoSov4, Daniel
Galbraith, Marcos Garcia, Moa Girdenfors, Se-
bastian Garza, Kim Gerdes, Filip Ginter, lakes
Goenaga, Koldo Gojenola, Memduh Gokirmak,
Yoav Goldberg, Xavier Gémez Guinovart, Berta
Gonzalez Saavedra, Bernadeta Griciuté, Matias Gri-
oni, Normunds Griizitis, Bruno Guillaume, Céline
Guillot-Barbance, Nizar Habash, Jan Haji¢, Jan
Haji¢ jr., Mika Hamaldinen, Linh Ha M§, Na-Rae
Han, Kim Harris, Dag Haug, Johannes Heinecke, Fe-
lix Hennig, Barbora Hladka, Jaroslava Hlavacova,
Florinel Hociung, Petter Hohle, Jena Hwang,
Takumi Ikeda, Radu Ion, Elena Irimia, Ol4jidé
Ishola, Tomas Jelinek, Anders Johannsen, Fredrik
Jgrgensen, Markus Juutinen, Hiiner Kasikara, An-
dre Kaasen, Nadezhda Kabaeva, Sylvain Kahane,
Hiroshi Kanayama, Jenna Kanerva, Boris Katz,
Tolga Kayadelen, Jessica Kenney, Viclava Ket-
tnerova, Jesse Kirchner, Elena Klementieva, Arne

160

Ko6hn, Kamil Kopacewicz, Natalia Kotsyba, Jolanta
Kovalevskaité, Simon Krek, Sookyoung Kwak,
Veronika Laippala, Lorenzo Lambertino, Lucia
Lam, Tatiana Lando, Septina Dian Larasati, Alexei
Lavrentiev, John Lee, Phng Lé H 6ng, Alessandro
Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying
Li, Josie Li, Keying Li, KyungTae Lim, Maria Li-
ovina, Yuan Li, Nikola Ljubesi¢, Olga Loginova,
Olga Lyashevskaya, Teresa Lynn, Vivien Macke-
tanz, Aibek Makazhanov, Michael Mandl, Christo-
pher Manning, Ruli Manurung, Cétédlina Mardnduc,
David Marecéek, Katrin Marheinecke, Héctor
Martinez Alonso, André Martins, Jan Masek, Yuji
Matsumoto, Ryan McDonald, Sarah McGuinness,
Gustavo Mendoncga, Niko Miekka, Margarita Misir-
pashayeva, Anna Missild, Citélin Mititelu, Maria
Mitrofan, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Keiko Sophie
Mori, Tomohiko Morioka, Shinsuke Mori, Shigeki
Moro, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Robert Munro, Yugo Murawaki,
Kaili Miiiirisep, Pinkey Nainwani, Juan Igna-
cio Navarro Horfniiacek, Anna Nedoluzhko, Gunta
Nespore-Bérzkalne, Lng Nguyén Thi, Huy'én
Nguy™én Thi Minh, Yoshihiro Nikaido, Vitaly
Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina
Ojala, Atul Kr. Ojha, Adédayo Oluokun, Mai
Omura, Petya Osenova, Robert Ostling, Lilja @vre-
lid, Niko Partanen, Elena Pascual, Marco Pas-
sarotti, Agnieszka Patejuk, Guilherme Paulino-
Passos, Angelika Peljak-Lapiriska, Siyao Peng,
Cenel-Augusto Perez, Guy Perrier, Daria Petrova,
Slav Petrov, Jason Phelan, Jussi Piitulainen,
Tommi A Pirinen, Emily Pitler, Barbara Plank,
Thierry Poibeau, Larisa Ponomareva, Martin Popel,
Lauma Pretkalnina, Sophie Prévost, Prokopis Proko-
pidis, Adam Przepiérkowski, Tiina Puolakainen,
Sampo Pyysalo, Peng Qi, Andriela Ridbis, Alexan-
dre Rademaker, Loganathan Ramasamy, Taraka
Rama, Carlos Ramisch, Vinit Ravishankar, Livy
Real, Siva Reddy, Georg Rehm, Ivan Riabov,
Michael RieBler, Erika Rimkuté, Larissa Rinaldi,
Laura Rituma, Luisa Rocha, Mykhailo Romanenko,
Rudolf Rosa, Davide Rovati, Valentin Rosca, Olga
Rudina, Jack Rueter, Shoval Sadde, Benoit Sagot,
Shadi Saleh, Alessio Salomoni, Tanja SamardZic,
Stephanie Samson, Manuela Sanguinetti, Dage
Sarg, Baiba Saulite, Yanin Sawanakunanon, Nathan
Schneider, Sebastian Schuster, Djamé Seddah, Wolf-
gang Seeker, Mojgan Seraji, Mo Shen, Atsuko
Shimada, Hiroyuki Shirasu, Muh Shohibussirri,
Dmitry Sichinava, Aline Silveira, Natalia Silveira,
Maria vSimi, Radu Simionescu, Katalin Simko,
Maria Simkova, Kiril Simov, Aaron Smith, Isabela
Soares-Bastos, Carolyn Spadine, Antonio Stella,
Milan Straka, Jana Strnadova, Alane Suhr, Umut
Sulubacak, Shingo Suzuki, Zsolt Szinté, Dima
Taji, Yuta Takahashi, Fabio Tamburini, Takaaki
Tanaka, Isabelle Tellier, Guillaume Thomas, Li-
isi Torga, Trond Trosterud, Anna Trukhina, Reut
Tsarfaty, Francis Tyers, Sumire Uematsu, Zdetika
UreSova, Larraitz Uria, Hans Uszkoreit, Andrius
Utka, Sowmya Vajjala, Daniel van Niekerk, Gert-

jan van Noord, Viktor Varga, Eric Villemonte de la
Clergerie, Veronika Vincze, Lars Wallin, Abigail
Walsh, Jing Xian Wang, Jonathan North Washing-
ton, Maximilan Wendt, Seyi Williams, Mats Wirén,
Christian Wittern, Tsegay Woldemariam, Tak-sum
Wong, Alina Wréblewska, Mary Yako, Naoki Ya-
mazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Zhuoran Yu, Zdenék Zabokrtsk}’/, Amir
Zeldes, Manying Zhang, and Hanzhi Zhu. 2019.
Universal dependencies 2.5. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Ap-
plied Linguistics (UFAL), Faculty of Mathematics
and Physics, Charles University.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Haji¢, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkov4, Jan Haji¢ jr.,
Jaroslava Hlavacova, Vaclava Kettnerova, Zdenka
UreSovd, Jenna Kanerva, Stina Ojala, Anna Mis-
sild, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
de Paiva, Kira Droganova, Héctor Martinez Alonso,
Cagn Coltekin, Umut Sulubacak, Hans Uszkoreit,
Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayadelen,
Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily
Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirch-
ner, Hector Fernandez Alcalde, Jana Strnadova,
Esha Banerjee, Ruli Manurung, Antonio Stella, At-
suko Shimada, Sookyoung Kwak, Gustavo Men-
donca, Tatiana Lando, Rattima Nitisaroj, and Josie
Li. 2017. Conll 2017 shared task: Multilingual pars-
ing from raw text to universal dependencies. In Pro-
ceedings of the CoNLL 2017 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependen-
cies, pages 1-19, Vancouver, Canada. Association
for Computational Linguistics.

161

Turku Enhanced Parser Pipeline: From Raw Text to Enhanced Graphs in
the IWPT 2020 Shared Task

Jenna Kanerva*

Filip Ginter

Sampo Pyysalo

TurkuNLP group, Department of Future Technologies
University of Turku, Finland
first.lastQutu.fi

Abstract

We present the approach of the TurkuNLP
group to the IWPT 2020 shared task on Mul-
tilingual Parsing into Enhanced Universal De-
pendencies. The task involves 28 treebanks in
17 different languages and requires parsers to
generate graph structures extending on the ba-
sic dependency trees. Our approach combines
language-specific BERT models, the UDify
parser, neural sequence-to-sequence lemmati-
zation and a graph transformation approach
encoding the enhanced structure into a depen-
dency tree. Our submission averaged 84.5%
ELAS, ranking first in the shared task. We
make all methods and resources developed for
this study freely available under open licenses
from https://turkunlp.org.

1 Introduction

The Universal Dependencies1 (UD) effort (Nivre
et al.,, 2016, 2020) seeks to create cross-
linguistically consistent dependency annotation
and has to date produced more than 150 treebanks
in 90 languages. UD is a broad and open commu-
nity effort with more than 300 contributors (Ze-
man et al., 2019), and the resources they have cre-
ated have been instrumental in driving progress
in dependency parsing in recent years, also serv-
ing as the basis of widely attended CoNLL shared
tasks on multilingual parsing in 2017 and 2018 (Ze-
man et al., 2017, 2018). While UD resources, the
CoNLL shared tasks, and recent advances in deep
learning-based parsing technology (Dozat et al.,
2017; Kanerva et al., 2018; Kondratyuk and Straka,
2019) have contributed substantially to accurate de-
pendency parsing using a consistent syntactic rep-
resentation for a wide range of human languages,
these efforts have focused almost exclusively on
the basic UD dependency trees. UD defines also an

*Equal contribution by all three authors
"https://universaldependencies.org/

162

enhanced graph representation, which allows more
detailed representation of the sentence. Common
types of enhancements include null nodes for elided
predicates, propagation of conjuncts for making
connections between words more explicit, and aug-
mentation of modifier labels with prepositional or
case-marking information. The ability to produce
enhanced UD graphs from raw text, previously ex-
plored by e.g. Schuster and Manning (2016), Nivre
et al. (2018), and Schuster et al. (2018), would
represent a further advance over existing tools.

The IWPT 2020 Shared Task on Multilingual
Parsing into Enhanced Universal Dependendies®
(Bouma et al., 2020) is the first shared task evalu-
ation targeting the enhanced UD graph. The task
was organized using data from 28 UD treebanks
covering 17 languages, representing Baltic, Finnic,
Germanic, Romance, Semitic, Slavic, and Southern
Dravidian languages. We participated in the IWPT
shared task with our parsing pipeline consisting of
components for segmentation, part-of-speech and
morphological tagging, lemmatization, dependency
parsing, and enhanced dependency graph analysis.
Our approach builds on custom pre-trained deep
language models (Devlin et al., 2018), a deep neu-
ral network-based parser (Kondratyuk and Straka,
2019), a character-level sequence-to-sequence lem-
matizer (Kanerva et al., 2020), and a custom graph
transformation approach encoding an enhanced de-
pendency graph in a labeled tree structure. The
parsing pipeline is fully language agnostic, and
therefore trainable with any UD treebank. Our sub-
mission to IWPT achieved an average enhanced
labeled attachment score (ELAS) of 84.5%, the
best performance among the 35 evaluated submis-
sions from ten participating groups with an approx-
imately 2% point margin to the second-best sub-
mission.

https://universaldependencies.org/
iwpt20/

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 162—-173
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

2 Shared Task Data

The shared task data invoves 28 UD treebanks for
17 languages, representing the subset of treebanks
for which enhanced dependencies are available.
The enhanced dependencies fall into five types:
gapping, propagation of conjuncts, controlled and
raised subjects, relative clause antecedents, and
case information. However, not all treebanks have
all of these types. While the training data is di-
vided according to individual treebanks, test data
is divided on language level through pooling of
the individual treebank test sets, without any direct
possibility to identify which test set sentence orig-
inates from which source treebank. We note that
this is a departure from previous UD parsing shared
tasks, where the treebank distinction was preserved
also in the test data. The training and development
data range from less than 10,000 words for Tamil
to over a million for Czech. Table 1 gathers statis-
tics of the enhanced dependencies, compared to
the base parse trees. We can see that the number
of unique relation types increases by an order of
magnitude, yet roughly 70-80% of the enhanced
dependencies are copied unmodified from the base
tree, and roughly 90-95% are a base dependency
with its relation type modified.

3 System Overview

We next introduce our system and our approach to
predicting enhanced dependencies.

3.1 Segmentation

For tokenization, multiword token expansion and
sentence splitting we apply the Stanza toolkit by Qi
et al. (2020) and its downloadable models trained
on UD version 2.5 treebanks. Stanza implements a
neural model that treats segmentation as a tagging
problem over sequences of characters, where for
a given character the model predicts whether it is
the end of a token, the end of a sentence, or the
end of a multiword token. Predicted multiword
tokens are then expanded using a combination of
a dictionary compiled from the training data and a
sequence-to-sequence generation model.

3.2 Base Parser

We use the UDify dependency parser introduced by
Kondratyuk and Straka (2019). UDify is a multi-
task model for part-of-speech and morphological
tagging, lemmatization and dependency parsing
supporting fine-tuning of pre-trained BERT models

163

Treebank Base Enh R% UR%
Arabic-PADT 36 1074 66.1 929
Bulgarian-BTB 36 173 84.7 96.1
Czech-CAC 43 639 724 893
Czech-FicTree 42 295 787 90.5
Czech-PDT 43 759 756 918
Dutch-Alpino 35 416 833 957
Dutch-LassyS. 35 293 822 953
English-EWT 49 375 823 947
Estonian-EDT 38 560 76.1 98.3
Estonian-EWT 39 178 74.1 92.6
Finnish-TDT 45 418 74.1 91.1
French-Sequoia 46 71 939 953
Italian-ISDT 44 348 78.6 948
Latvian-LVTB 40 133 759 90.6
Lithuanian-A. 35 194 66.9 88.8
Polish-LFG 40 178 88.8 97.1
Polish-PDB 67 859 772 918
Russian-SynTag. 40 635 775 939
Slovak-SNK 41 268 81.0 943
Swedish-Talbank. 40 302 79.1 932
Tamil-TTB 28 116 693 973
Ukrainian-IU 57 351 775 91.6

Table 1: Statistics of base and enhanced relations from
the training sections of the treebanks: Base is the num-
ber of unique relations in the base tree, Enh is the num-
ber of unique relations in the enhanced graph, R% is
the proportion of enhanced dependencies also present
in the base tree, and UR% is the proportion of unla-
belled enhanced dependencies also present in the base
tree. The letter R refers to recall.

on UD treebanks. UDify implements a multi-task
network where a separate prediction layer for each
task is added on top of the pre-trained BERT en-
coder. Additionally, instead of using only the top
encoder layer representation in prediction, UDify
adds attention vertically over the 12 layers of BERT,
calculating a weighted sum of all intermediate rep-
resentations of BERT layers for each token. All
prediction layers as well as layer-wise attention are
trained simultaneously, while also fine-tuning the
pre-trained BERT weights.

In our shared task system we use UDify for part-
of-speech tagging (UPOS), predicting morpholog-
ical features (FEATS) as well as for dependency
parsing. By contrast to the original UDify work,
we train separate language-specific models rather
than one model covering all languages.

3.3 Lemmatizer

For lemmatization we use the Universal Lemma-
tizer by Kanerva et al. (2020) trained on the shared
task training data. The lemmatizer casts the task as
a sequence-to-sequence rewrite problem where the
input token is represented as a sequence of charac-
ters followed by a sequence of its part-of-speech

and morphological tags, and the desired lemma is
then generated a character at time from the input.
Following this approach, the contextual informa-
tion needed for disambiguating between possible
lemmas for ambiguous words is obtained directly
from the predicted morphological tags, thus creat-
ing a compact context representation which gener-
alizes well. In order to obtain predicted tags for
lemmatization, we apply the lemmatizer as the final
component in our pipeline.

3.4 Enhanced Representation

Since our base parser is only capable of reproduc-
ing trees, the enhanced representation needs to ei-
ther be encoded into the base trees by enriching the
set of dependency types, or alternatively introduced
in a separate step after base parsing. In our system
submission, we chose the former, but have also ex-
perimented with the latter approach. The overall
approach of encoding the graph into a tree is well-
known and has been applied previously, e.g. by a
number of teams in the SemEval tasks on semantic
dependency parsing (Oepen et al., 2014, 2015).
Our choices adhered to the following princi-
ples: (a) the LAS of the base parser must not be
compromised, (b) the encoding must be language-
independent and applicable to any treebank, and
(c) the method must be sufficiently simple to be
included in a production-grade parsing pipeline.

3.4.1 Encoding into Base Tree

In order to encode enhanced dependencies into
the base tree, we focused on a just four structures,
which nevertheless cover the vast majority of the
edges in the enhanced representation (see Table 2
below). The four structures and their encoding are
shown in Figure 1. In the encoding, the base tree
structure does not change; the enhanced relations
are encoded into the base tree relations, also record-
ing whether the enhanced dependency goes from
or to the head in the base tree, or from or to the
head of the head in the base tree. This encoding
makes the decoding process straightforward and
deterministic, because there can be at most one
head and at most one head of head in the parse tree.
The downside of this approach is that the number
of unique relation types which the parser needs to
predict increases substantially. Note that this en-
coding applies straightforwardly to cases where a
token is the head or dependent in several enhanced
relations; their encoding is simply concatenated.
The main reason for the increase in the num-

e [e

wl w2 wl w2

o [S|

wl w2 wl w2
e e S " Gl
wi w2 w3 wl w2 w3
@% D/b1>Ub2+e<HH~AD
wli w2 w3 owl w2 w3

Figure 1: The four enhanced dependency structures cur-
rently captured in our encoding. The base (b) and en-
hanced (e) relations in the left column are encoded in
a tree structure as in the right column. In the encoding,
the symbol > stands for “relation from”, < stands for
“relation to”, H is the head in the base tree, and HH is
the head of the head in the base tree.

ber of unique relation types is the lexicalized rela-
tions which encode the lemma of a functional word
(e.g. the case dependent) into the enhanced relation.
To address this issue in a language-independent
manner, we scan the enhanced relations for occur-
rences of a lemma of a dependent of the head or
the dependent in the enhanced relation. If one is
found, it is replaced with a placeholder encoding
which position the lemma occurred at. For instance
{lemma-d-case} indicates that this placeholder is to
be replaced with the lemma of a case dependent of
the dependent in this enhanced relation. Similarly,
{lemma-h-case} indicates that this placeholder is
to be replaced with the lemma of a case dependent
of the head in this enhanced relation. Such delexi-
calization is once again straightforward to reverse
and in practice deterministic, although not so in
theory, since a word can have several dependents
of the same type.

The final feature of the enhanced representation
that we address is the empty nodes occuring in el-
liptic constructions. Here, we once again rely on
encoding of information into the base tree. The
shared task evaluation procedure includes a step
whereby empty nodes are removed and encoded in
the form of enhanced relations that every two rela-
tions (h,e,r1), (e,d,ry) produce a new enhanced
relation (h, d, r1 >r9) which encodes the presence
of an empty node. Once all relations of the empty
node are encoded in this manner, the empty node
is removed. This representation is easy to reverse,
and in practice allows one to reconstruct the empty

164

nodes in the enhanced representation except for
their position in the sentence, which is not par-
ticularly relevant nor evaluated in the shared task.
Only cases where a word has several empty node
dependents with the same relation type cannot be
reconstructed correctly.

The overall procedure for encoding the enhanced
representation is:

1. Encode empty nodes as enhanced relations, re-

move from the graph

. Replace all recognized function word lemmas
with their corresponding placeholders

. Encode all enhanced relations of the four types
using the encoding in Figure 1, discard any other
enhanced relations

This sequence of steps produces a tree represen-
tation that a standard dependency parser can be
trained on. The output of the parser is decoded
in the reverse order of the encoding steps, pro-
ducing the enhanced representation. The decod-
ing must take into account any errors the parser
produced which might impair the decoding of the
encoded representation, or produce an enhanced
graph which does not validate as Universal Depen-
dencies. In particular:

e Any relation headed by the root is given the type
root regardless of the parser’s prediction.

If a lemma placeholder cannot be reversed (e.g.
when a parser predicts a placeholder {lemma-
d-case} but there is no such dependent in the
tree, the enhanced relation is discarded. Note
that leads to unconnected words in the enhanced
graph.

Any word that remains unconnected in the en-
hanced graph is made the dependent of the same
head, with the same relation, as in the base tree.

For any (undirected) connected component that
does not include the root node, we identify a
word that all other words of the component can
be reached from in the directed graph, and make
this word a dependent of the root node. If no
such word can be found, then the set of words
with no incoming edge in the component are
made dependents of the root node. This latter
condition did not trigger in practice.

The encode-decode procedure can be evaluated
by first encoding the enhanced training graphs into

165

Treebank Rels ELAS
Arabic-PADT 1,108 99.28
Bulgarian-BTB 152 99.22
Czech-CAC 939 98.13
Czech-FicTree 355 98.38
Czech-PDT 1,079 98.75
Dutch-Alpino 569 99.16
Dutch-LassySmall 420 99.23
English-EWT 611 98.89
Estonian-EDT 359 99.88
Estonian-EWT 202 99.74
Finnish-TDT 451 97.96
French-Sequoia 79 99.09
Italian-ISDT 561 99.53
Latvian-LVTB 405 97.94
Lithuanian-ALKSNIS 267 98.12
Polish-LFG 146 99.21
Polish-PDB 845 98.34
Russian-SynTagRus 1,119 99.57
Slovak-SNK 281 99.44
Swedish-Talbanken 494 99.16
Tamil-TTB 78 99.79
Ukrainian-IU 363 98.88

Table 2: Number of unique dependency relations af-
ter the encoding procedure, and the ELAS value after
an encode-decode cycle. The latter number reflects to
what extent the original enhanced graphs can be recon-
structed after the encoding. The numbers are reported
on the training portions of the treebanks.

trees, decoding back, and measuring the ELAS of
the decoded data against the original. A lossless
representation would result in ELAS of 100%. As
shown in Table 2, this value is in the 97.9-99.9%
range across all treebanks, meaning the encoding
is not far from lossless, and only little gain can
be expected from encoding more complex struc-
tures. Note, however, that this reflects the compara-
tive structural simplicity of the enhanced relations
present in the UD data, rather than the generality of
our encoding. Table 2 also reports on the number of
unique dependency relations in the training section
of each treebank, showing an order of magnitude
increase compared to the base tree.

3.4.2 Enhanced Relations as Tagging

The encoding of the enhanced relations into the
base tree can also be seen as a tagging task, since
every word has exactly one base relation, and there-
fore also exactly one relation in the encoded tree.
It is therefore possible to first parse the sentence
with a parser that predicts the base tree, and then
subsequently tag the words with tags correspond-
ing to the encoding of the enhanced relations, as
introduced earlier, with the base parse tree serving
as a source of features. The main advantage of
such an approach would be guaranteeing that the

Model Languages References

Arabic-BERT Arabic

BERTje Dutch
BERT (original) English
FinBERT Finnish
CamemBERT French
Italian BERT Italian
RuBERT Russian
Slavic-BERT Slavic!
Swedish BERT Swedish
mBERT 104 lang.

https://github.com/alisafaya/Arabic-BERT
https://github.com/wietsedv/bert je; (de Vries et al., 2019)
https://github.com/google-research/bert; (Devlin et al., 2018)
https://turkunlp.org/FinBERT/; (Virtanen et al., 2019)
https://camembert-model. fr/; (Martin et al., 2020)
https://github.com/dbmdz/berts
https://github.com/deepmipt/deeppavlov/; (Kuratov and Arkhipov, 2019)
https://github.com/deepmipt/Slavic-BERT-NER; (Arkhipov et al., 2019)
https://github.com/Kungbib/swedish-bert-models
https://github.com/google-research/bert

Table 3: Previously released BERT models for shared task languages. !'Slavic-BERT is trained on Bulgarian,

Czech, Polish, and Russian.

base LAS of the parser does not change, while the
main disadvantage is the added complexity of an
additional step and the possibility of error chaining.
We pursued this alternative approach in parallel
to the main line of work. As the results presented
in Section 5 show, however, the encoding of the
enhanced dependencies does not negatively affect
the base LAS, undermining the motivation for a
separate tagging approach with its added software
complexity. In our preliminary experiments on the
development data, the tagging approach resulted in
a minimally worse performance than the primary
approach, and was therefore not pursued further.

4 Language Models

We apply transfer learning using pre-trained BERT
models, using multilingual BERT?> (mBERT) as
a starting point. Based on recent studies intro-
ducing language-specific BERT models (Arkhipov
et al., 2019; Virtanen et al., 2019; de Vries et al.,
2019; Martin et al., 2020), we anticipated that pars-
ing performance could be substantially improved
by replacing the multilingual model with dedi-
cated language-specific ones. To identify or cre-
ate a model that would improve on performance
with mBERT for every treebank in the shared task,
we adopted a three-stage approach: 1) use previ-
ously released models, 2) pre-train a new model
on Wikipedia data, and 3) continue pre-training on
texts from a web crawl.

4.1 Previously Released Models

We considered the previously released models sum-
marized in Table 3. Based on preliminary experi-
ments, we focused on cased models in cases where
both cased and uncased variants are available. We
evaluated mBERT for all shared task treebanks,

*https://github.com/google-research/
bert/blob/master/multilingual.md

Slavic-BERT for Bulgarian, Czech, Polish, and
Russian, and the other models for treebanks for the
individual languages that those models target.

4.2 Unannotated Texts

Our primary source of unannotated texts in various
languages is Wikipedia. To extract plain text, we
processed the full 2020/01/20 Wikipedia database
backup dumps* for the various languages with
WikiExtractor’. The basic statistics of extracted
Wikipedia texts for the IWPT languages are sum-
marized in Table 9 in the Appendix. We note that
the sizes of these unnanotated texts vary greatly
between languages, ranging just over 20 million
tokens for Latvian to nearly 3 billion for English.
In many cases, languages with large Wikipedias
also have large annotated treebanks, and vice versa;
the language with the smallest amount of annotated
training data in the shared task, Tamil, also ranks
second from bottom in terms of the available unan-
notated Wikipedia data. We augmented the col-
lection of unannotated texts for selected languages
with texts drawn from OSCAR® (Ortiz Sudrez et al.,
2019), using unshuffled versions provided by the
creators of the corpus (see Table 8§ in the Appendix).
The unshuffled version of the corpus is used since
BERT training is carried out on text segments of up
to 512 sub-words, far longer than most individual
sentences. To reduce the level of noise in the web-
crawled texts, we filtered the OSCAR source using
5-gram perplexity with a KenLM’ language model
estimated on Wikipedia data. In brief, we measured
the average sentence-level perplexity ¢ and filtered
out any document where the average perplexity was
greater than ¢. In terms of tokens, this procedure

*https://dumps.wikimedia.org/
Shttps://github.com/attardi/
wikiextractor
®https://tracesl.inria.fr/oscar/
"https://github.com/kpu/kenlm

166

Model

Treebank mBERT Language-specific
Arabic PADT 83.62 82.76 (Arabic-BERT)
Bulgarian BTB 90.75 91.83 (Slavic-BERT)
Czech CAC 91.80 92.99 (Slavic-BERT)
Czech FicTree 92.31 93.27 (Slavic-BERT)
Czech PDT 92.58 93.44 (Slavic-BERT)
Dutch Alpino 92.58 93.36 (BERTje)
Dutch LassySmall 88.30 87.69 (BERTje)
English EWT 90.08 91.82 (BERT-large)
Estonian EWT 71.27 73.08 (WikiBERT-et)
Finnish TDT 87.83 92.89 (FinBERT)
French Sequoia 93.12 9299 (CamemBERT)
Italian ISDT 92.75 93.44 (Italian BERT)
Latvian LVTB 86.71 85.96 (WikiBERT-1v)
Lithuanian ALKSNIS 83.02 85.26 (WikiBERT-It)
Polish LFG 95.34 96.22 (Slavic-BERT)
Polish PDB 91.90 93.37 (Slavic-BERT)
Russian SynTagRus 92.06 93.34 (RuBERT)
Slovak SNK 92.52 91.89 (WikiBERT-sk)
Swedish Talbanken 86.96 90.56 (Swedish BERT)
Tamil TTB 69.12 67.38 (WikiBERT-ta)
Ukrainian TU 89.60 91.25 (WikiBERT-uk)
Average 88.30 89.28

Table 4: UDify development set LAS performance with
mBERT compared to language-specific BERTs

filtered out approx. 10% of the OSCAR data for
Latvian and Slovak and 24 % for Tamil.

4.3 Pre-training

For pre-training new BERT models, we largely
follow the approach used to create the original
BERT-base English model by Devlin et al. (2018).
Specifically, we adapt the preprocessing pipeline
and pre-training process introduced by Virtanen
et al. (2019) for creating the Finnish BERT model.
In brief, we train BERT-base models for 1M steps,
the initial 900K with a maximum sequence length
of 128 and the last 100K with 512, using the orig-
inal BERT software® and the same optimizer pa-
rameters as Devlin et al. (2018) with the exception
of batch size. Due to memory limitations, a batch
size of 140 was used with 4 GPUs for the first
900K steps and a batch size of 20 with 8 GPUs
for the last 100K steps. Nvidia V100 GPUs with
32 GB memory were used for pre-training. For
comprehensive details of the preprocessing and
pre-training process, we refer to the documentation
of our pipeline.’

4.4 Language Model Evaluation

For evaluating pre-trained language models, we
trained UDify with the shared task training data for

dhttps://github.com/google-research/
bert
‘https://github.com/TurkuNLP/wikibert

167

Model
Treebank mBERT Language-specific
Arabic PADT 83.62 84.79 (WikiBERT-ar)
Dutch Alpino 92.58 93.47 (WikiBERT-nl)
Dutch LassySmall 88.30 89.23 (WikiBERT-nl)
French Sequoia 93.12 93.21 (WikiBERT-fr)
Average 89.41 90.18

Table 5: UDify development set LAS performance with
mBERT compared to additional WikiBERT's

Model
Treebank mBERT Language-specific
Latvian LVTB 86.71 88.47 (Wiki+OSCAR-BERT-1v)
Slovak SNK 92.52 92.52 (Wiki+OSCAR-BERT-sk)
Tamil TTB 69.12 71.02 (Wiki+OSCAR-BERT-ta)
Average 82.78 84.00

Table 6: UDify development set LAS performance with
mBERT compared to Wiki+OSCAR-BERT'

each language and evaluated on the corresponding
development dataset using gold standard tokeniza-
tion. The standard LAS metric was used to assess
model performance.

Table 4 summarizes evaluation results com-
paring parsing performance with mBERT and
language-specific models. As expected, we find
that language-specific models outperform the mul-
tilingual model in most cases, averaging approx-
imately 1% point higher LAS (~8% reduction
in error). There are nevertheless a number of
cases where UDify with mBERT outperforms the
language-specific model. To address these cases,
we introduced additional WikiBERT models for
Arabic, Dutch, and French. Results comparing
the performance of these models with mBERT are
summarized in Table 5. We find that in each case
using the WikiBERT model improves on results
with mBERT, with absolute differences around 1%
point for the Arabic and Dutch treebanks but very
limited (~0.1% point) difference for French, aver-
aging 0.8% point higher LAS than mBERT (~7%
reduction in error).

Finally, there are three languages for which no
previously released language-specific model was
available and the WikiBERT failed to improve on
performance with mBERT: Latvian, Slovak, and
Tamil. For these languages, we continued pre-
training with texts from OSCAR for an additional
300,000 steps. Table 6 summarizes performance
with these models. For Slovak, the new model
improves over the WikiBERT model performance
but merely matches the performance with mBERT,
while the Latvian and Tamil models outperform

Team
Language | adapt clasp emory fastparse koebsala orange robert shanghai turku unipi
Arabic 57.19 51.26 67.26 66.92 60.84 70.96 0.0 6341 7782 57.79
Bulgarian 7729 84.90 88.19 84.86 68.88 89.42 0.0 78.67 90.73 84.93
Czech 6641 67.13 85.51 77.21 61.11 86.95 0.0 7543 87.51 75.99
Dutch 67.67 78.93 80.72 77.37 62.93 85.14 0.0 7094 8473 77.62
English 70.44 82.87 85.30 78.45 65.37 85.21 88.94 72.34 87.15 83.95
Estonian 61.12 60.44 81.36 74.09 59.07 81.03 0.0 7491 84.54 57.24
Finnish 72.37 65.96 82.96 75.73 67.54 86.24 0.0 75.99 89.49 72.13
French 74.74 72.76 86.23 77.77 67.93 83.63 0.0 76.99 8590 78.85
Italian 7198 87.14 88.52 84.77 69.08 90.83 0.0 73.08 91.54 89.14
Latvian 7241 66.01 79.19 75.57 64.75 82.11 0.0 77777 8494 68.23
Lithuanian | 58.36 52.56 66.12 61.41 56.28 75.89 0.0 66.85 77.64 61.06
Polish 65.86 71.22 82.39 74.54 61.34 80.39 0.0 71.01 84.64 70.61
Russian 7527 70.37 88.60 80.35 64.23 89.84 0.0 78.26 90.69 76.90
Slovak 68.43 65.16 82.72 73.46 64.08 84.36 0.0 73.14 88.56 81.40
Swedish 68.39 71.35 78.19 75.24 64.50 83.27 0.0 69.60 85.64 78.73
Tamil 48.47 42.15 54.26 46.99 47.44 64.23 0.0 4820 57.83 48.50
Ukrainian 66.43 63.24 79.69 74.02 64.17 84.64 0.0 7298 87.22 73.90
Average 67.23 67.85 79.84 74.04 62.91 82.60 5.23 71.74 84.50 72.76

Table 7: ELAS results for submissions to IWPT 2020 shared task. Team names abbreviated for space: emory =
emorynlp, orange = orange_deskin, robert = robertnlp, shanghai = shanghaitech_alibaba, turku = turkunlp.

mBERT with a nearly 2% point absolute differ-
ence in LAS. On average, the new models improve
on mBERT by 1.2% points, again an approx. 7%
reduction in error.

5 Results

For our final submission, we trained a model for
each language using the largest treebank (in terms
of token count) for the language in the shared task
data release. All segmentation, tagging, parsing,
and lemmatization models are thus monolingual
and trained using only a single treebank. Each UD-
ify model is fine-tuned for 160 epochs using a num-
ber of warm-up steps'® roughly equal to a single
pass over the training dataset. For each language
the fine-tuning is based on a custom pre-trained
BERT model selected as detailed in Section 4.4.
Lemmatization models do not require any exter-
nal resources, and all hyperparameters follow the
values used in Kanerva et al. (2020).

The primary evaluation metric in the shared task
is ELAS (Labeled Attachment Score on Enhanced
dependencies), which calculates F-score over the
set of enhanced dependencies in the system out-
put and gold standard.!! Table 7 summarizes the
ELAS results for all ten teams participating the
shared task. We note that in addition to achieving

During warm-up, the learning rate is gradually increased
from zero to its initial value, so as to avoid large changes at
the very beginning of the training.

"Note that in UD many of the base layer relations are re-
peated in the enhanced graph, and therefore the ELAS metric

evaluates a combination of basic dependencies and enhance-
ments as seen in statistics presented in Table 1.

the best average ELAS performance, our system
also outperforms all other submissions for 13 out
of the 17 individual languages included in the task.
For these 13 languages, the largest absolute dif-
ferences for the second-best result are for Arabic
(~6.9% points), Slovak (~4.2% points), Estonian,
and Finnish (both slightly above 3% points).

For the four languages where our system did not
achieve the highest ELAS results, the differences
to the highest-performing submission are small
(0.3-0.4% points) for Dutch and French, and 1.8%
points for English. However, there is a more than
6% point difference to the top result for Tamil, the
language with the smallest treebank in the shared
task. This difference indicates a tradeoff of our ap-
proach in training monolingual models: languages
with particularly limited resources do not gain sup-
port from annotations in other languages as they
would in multilingual training.

Table 10 in the Appendix shows average re-
sults for all metrics excepting for XPOS, which
due time limitations we decided not to predict,
and AllTags, which is not meaningfully defined
when not predicting XPOS. We note that our sys-
tem achieves the best performance for all but two
metrics, outperforming other systems in segmen-
tation (Tokens, Words, Sentences), part-of-speech
tagging (UPOS), lemmatization (Lemmas) as well
as for all but one of the seven dependency attach-
ment score (*AS) metrics. Our system falls behind
the best-performing submission (orange_deskin)
for the UFeats and MLAS metrics. As MLAS
(Morphology-Aware Labeled Attachment Score)

168

requires selected features to match, the results for
these two metrics likely both reflect performance
for morphological features. The absolute differ-
ence of our system to the top result for UFeats is
1.2% points, reflecting a 20% relative increase in
error and indicating a clear remaining point for
improvement in our system.

6 Discussion

Cross-lingual compatibility is a major goal of the
UD effort and the ability to train multilingual mod-
els where lower-resourced languages can benefit
from data in higher-resourced languages a clearly
desirable aim in language modeling. While our
approach — which trains monolingual models and
uses language-specific pre-trained models — can
be seen as running counter to these goals, we do
nevertheless share them. Our choice to train sepa-
rate models for each language for the shared task is
based in part in awareness of remaining compatibil-
ity issues in UD treebanks, even within languages.
We hope contrasting results for joint and language-
specific models for this shared task will help iden-
tify and resolve some of these challenges. Regard-
ing multilingual language models, we note that in
aiming to cover more than 100 languages without
a corresponding increase in model and vocabulary
size, mBERT faces multiple challenges in its ca-
pacity, and the model training does not fully bal-
ance lower- and higher-resourced languages. While
we here found language-specific models to outper-
form a specific mBERT model, highly multilingual
models addressing these challenges might well be
competitive with language-specific ones, and the
creation of such models would greatly benefit prac-
tical parsing efforts targeting a large number of
languages.

To study the impact of the language-specific lan-
guage models in our shared task results, we re-
produce our pipeline using exactly same configu-
rations except for replacing all language-specific
BERT models with the multilingual mBERT. In this
experiment, all languages are using the same multi-
lingual language model as a starting point, later in-
dividually fine-tuned for each language while train-
ing the language-specific parsing models. When
comparing these models to the official submissions
of all 10 teams, the average ELAS is approximately
1.7% points below our own primary submission
(~11% increase in error), but still slighty above
the second best submission by approximately 0.2%

points. This means that, our pipeline would have
reached the highest average ELAS score among
the official submissions also without the language-
specific BERT models, but only with a very thin
margin to the next best team.

7 Conclusions

We have presented the approach of the TurkuNLP
group to the IWPT 2020 shared task on Multi-
lingual Parsing into Enhanced Universal Depen-
dencies. Our approach is based on deep transfer
learning with language-specific models, the state-
of-the-art UDify neural parsing pipeline, sequence-
to-sequence lemmatization, and a graph transforma-
tion approach to predicting enhanced dependency
graphs. Our submission to the shared task achieved
the highest performance for the primary evaluation
metric (ELAS) both on average as well as for 13
out of the 17 languages involved in the task, also
achieving the highest average performance for most
other evaluation metrics.

All of the methods and resources developed for
this study are made freely available under open
licenses from https://turkunlp.org.

Acknowledgments

We gratefully acknowledge the support of the
Academy of Finland, and CSC — the Finnish IT
Center for Science for providing computational re-
sources. We also thank the creators of the OSCAR
corpus for making unshuffled versions of their cor-
pus available for this work.

References

Mikhail Arkhipov, Maria Trofimova, Yurii Kuratov,
and Alexey Sorokin. 2019. Tuning multilingual
transformers for language-specific named entity
recognition. In Proceedings of the 7th Workshop on
Balto-Slavic Natural Language Processing, pages
89-93.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

169

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 Shared Task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Farsing from Raw Text to Universal Dependencies,
pages 20-30.

Jenna Kanerva, Filip Ginter, Niko Miekka, Akseli
Leino, and Tapio Salakoski. 2018. Turku neu-
ral parser pipeline: An end-to-end system for the
CoNLL 2018 Shared Task. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual parsing
from raw text to universal dependencies, pages 133—
142.

Jenna Kanerva, Filip Ginter, and Tapio Salakoski. 2020.
Universal Lemmatizer: A sequence to sequence
model for lemmatizing Universal Dependencies tree-
banks. Natural Language Engineering. To appear.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing Universal Dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779-2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Yuri Kuratov and Mikhail Arkhipov. 2019. Adap-
tation of deep bidirectional multilingual trans-
formers for Russian language. arXiv preprint
arXiv:1905.07213.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suérez, Yoann Dupont, Laurent Romary, Eric Ville-
monte de la Clergerie, Djamé Seddah, and Benoit
Sagot. 2020. CamemBERT: a Tasty French Lan-
guage Model. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Haji¢, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
vl: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659-1666.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Haji¢, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An Evergrowing Multilingual Treebank Collection.
In Proceedings of The 12th Language Resources and
Evaluation Conference, pages 4027-4036. European
Language Resources Association.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing Universal De-
pendency Treebanks: A Case Study. In Proceedings
of the Second Workshop on Universal Dependencies

170

(UDW 2018), pages 102—-107. Association for Com-
putational Linguistics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkov4, Dan Flickinger, Jan
Haji¢, and Zdetika UreSovd. 2015. SemEval 2015
Task 18: Broad-Coverage Semantic Dependency
Parsing. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015),
pages 915-926. Association for Computational Lin-
guistics.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Haji¢, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 Task 8:
Broad-Coverage Semantic Dependency Parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63-72.
Association for Computational Linguistics.

Pedro Javier Ortiz Sudrez, Benoit Sagot, and Laurent
Romary. 2019. Asynchronous Pipeline for Process-
ing Huge Corpora on Medium to Low Resource In-
frastructures. In 7th Workshop on the Challenges
in the Management of Large Corpora (CMLC-7).
Leibniz-Institut fiir Deutsche Sprache.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza: A
Python Natural Language Processing Toolkit for
Many Human Languages. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), System Demonstrations.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An Im-
proved Representation for Natural Language Under-
standing Tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 2371-2378. European Lan-
guage Resources Association (ELRA).

Sebastian Schuster, Joakim Nivre, and Christopher D.
Manning. 2018. Sentences with Gapping: Parsing
and Reconstructing Elided Predicates. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1156-1168, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Lu-
oma, Juhani Luotolahti, Tapio Salakoski, Filip Gin-
ter, and Sampo Pyysalo. 2019. Multilingual is
not enough: BERT for Finnish. arXiv preprint
arXiv:1912.07076.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. BERTje: A Dutch BERT
Model. arXiv preprint arXiv:1912.09582.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and

Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual parsing from raw text to univer-
sal dependencies, pages 1-21.

Daniel Zeman, Joakim Nivre, Mitchell Abrams, Noémi

Aepli, Zeljko Agi¢, Lars Ahrenberg, Gabrielé Alek-
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, Victoria Basmov, Colin
Batchelor, John Bauer, Sandra Bellato, Kepa Ben-
goetxea, Yevgeni Berzak, Irshad Ahmad Bhat,
Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick,
Agné Bielinskiené, Rogier Blokland, Victoria Bo-
bicev, Loic Boizou, Emanuel Borges Volker, Carl
Borstell, Cristina Bosco, Gosse Bouma, Sam Bow-
man, Adriane Boyd, Kristina Brokaité, Aljoscha
Burchardt, Marie Candito, Bernard Caron, Gauthier
Caron, Tatiana Cavalcanti, Giilsen Cebiroglu Eryigit,
Flavio Massimiliano Cecchini, Giuseppe G. A.
Celano, Slavomir Céplé, Savas Cetin, Fabri-
cio Chalub, Jinho Choi, Yongseok Cho, Jayeol
Chun, Alessandra T. Cignarella, Silvie Cinkova,
Aurélie Collomb, Cagr1 Coltekin, Miriam Con-
nor, Marine Courtin, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Elvis
de Souza, Arantza Diaz de Ilarraza, Carly Dicker-
son, Bamba Dione, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam
Ephrem, Olga Erina, Tomaz Erjavec, Aline Eti-
enne, Wograine Evelyn, Richdrd Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Claudia Fre-
itas, Kazunori Fujita, Katarina Gajdosov4, Daniel
Galbraith, Marcos Garcia, Moa Gairdenfors, Se-
bastian Garza, Kim Gerdes, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gokirmak,
Yoav Goldberg, Xavier Gémez Guinovart, Berta
Gonzalez Saavedra, Bernadeta Griciuté, Matias Gri-
oni, Normunds Griizitis, Bruno Guillaume, Céline
Guillot-Barbance, Nizar Habash, Jan Haji¢, Jan
Haji¢ jr., Mika Hamaildinen, Linh Ha MJ, Na-Rae
Han, Kim Harris, Dag Haug, Johannes Heinecke, Fe-
lix Hennig, Barbora Hladkd, Jaroslava Hlavacova,
Florinel Hociung, Petter Hohle, Jena Hwang,
Takumi Ikeda, Radu Ion, Elena Irimia, Ol4jidé
Ishola, Tomas Jelinek, Anders Johannsen, Fredrik
Jgrgensen, Markus Juutinen, Hiiner Kasikara, An-
dre Kaasen, Nadezhda Kabaeva, Sylvain Kahane,
Hiroshi Kanayama, Jenna Kanerva, Boris Katz,
Tolga Kayadelen, Jessica Kenney, Viclava Ket-
tnerovd, Jesse Kirchner, Elena Klementieva, Arne
Kohn, Kamil Kopacewicz, Natalia Kotsyba, Jolanta
Kovalevskaité, Simon Krek, Sookyoung Kwak,
Veronika Laippala, Lorenzo Lambertino, Lucia
Lam, Tatiana Lando, Septina Dian Larasati, Alexei
Lavrentiev, John Lee, Phuong L& H 6ng, Alessandro
Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying
Li, Josie Li, Keying Li, KyungTae Lim, Maria
Liovina, Yuan Li, Nikola Ljubesi¢, Olga Logi-

171

nova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Catélina
Mairinduc, David Marecek, Katrin Marheinecke,
Héctor Martinez Alonso, André Martins, Jan Masek,
Yuji Matsumoto, Ryan McDonald, Sarah McGuin-
ness, Gustavo Mendongca, Niko Miekka, Mar-
garita Misirpashayeva, Anna Missild, Citdlin Mi-
titelu, Maria Mitrofan, Yusuke Miyao, Simonetta
Montemagni, Amir More, Laura Moreno Romero,
Keiko Sophie Mori, Tomohiko Morioka, Shin-
suke Mori, Shigeki Moro, Bjartur Mortensen,
Bohdan Moskalevskyi, Kadri Muischnek, Robert
Munro, Yugo Murawaki, Kaili Miiilirisep, Pinkey
Nainwani, Juan Ignacio Navarro Horfiiacek, Anna
Nedoluzhko, Gunta NeSpore-Bérzkalne, Luong
Nguy™én Thi, Huy én Nguy™@n Thi Minh, Yoshi-
hiro Nikaido, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Atul Kr. Ojha, Mai
Oliokun, Adédayoand Omura, Petya Osenova,
Robert Ostling, Lilja @vrelid, Niko Partanen, Elena
Pascual, Marco Passarotti, Agnieszka Patejuk, Guil-
herme Paulino-Passos, Angelika Peljak-Lapifiska,
Siyao Peng, Cenel-Augusto Perez, Guy Perrier,
Daria Petrova, Slav Petrov, Jason Phelan, Jussi
Piitulainen, Tommi A Pirinen, Emily Pitler, Bar-
bara Plank, Thierry Poibeau, Larisa Ponomareva,
Martin Popel, Lauma Pretkalnina, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiérkowski, Tiina
Puolakainen, Sampo Pyysalo, Peng Qi, Andriela
Rédbis, Alexandre Rademaker, Loganathan Ra-
masamy, Taraka Rama, Carlos Ramisch, Vinit Rav-
ishankar, Livy Real, Siva Reddy, Georg Rehm, Ivan
Riabov, Michael RieBler, Erika Rimkuté, Larissa Ri-
naldi, Laura Rituma, Luisa Rocha, Mykhailo Ro-
manenko, Rudolf Rosa, Davide Rovati, Valentin
Rosca, Olga Rudina, Jack Rueter, Shoval Sadde,
Benoit Sagot, Shadi Saleh, Alessio Salomoni, Tanja
Samardzi¢, Stephanie Samson, Manuela Sanguinetti,
Dage Sirg, Baiba Saulite, Yanin Sawanakunanon,
Nathan Schneider, Sebastian Schuster, Djamé Sed-
dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Hiroyuki Shirasu, Muh Shohibus-
sirri, Dmitry Sichinava, Aline Silveira, Natalia Sil-
veira, Maria Simi, Radu Simionescu, Katalin Simko,
Mairia éimkové, Kiril Simov, Aaron Smith, Isabela
Soares-Bastos, Carolyn Spadine, Antonio Stella,
Milan Straka, Jana Strnadova, Alane Suhr, Umut
Sulubacak, Shingo Suzuki, Zsolt Szint6, Dima
Taji, Yuta Takahashi, Fabio Tamburini, Takaaki
Tanaka, Isabelle Tellier, Guillaume Thomas, Li-
isi Torga, Trond Trosterud, Anna Trukhina, Reut
Tsarfaty, Francis Tyers, Sumire Uematsu, Zdeiika
UreSova, Larraitz Uria, Hans Uszkoreit, Andrius
Utka, Sowmya Vajjala, Daniel van Niekerk, Gert-
jan van Noord, Viktor Varga, Eric Villemonte de la
Clergerie, Veronika Vincze, Lars Wallin, Abigail
Walsh, Jing Xian Wang, Jonathan North Washing-
ton, Maximilan Wendt, Seyi Williams, Mats Wirén,
Christian Wittern, Tsegay Woldemariam, Tak-sum
Wong, Alina Wréblewska, Mary Yako, Naoki Ya-
mazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Zhuoran Yu, Zdenék Zabokrtsky, Amir

Zeldes, Manying Zhang, and Hanzhi Zhu. 2019.
Universal Dependencies 2.5. LINDAT/CLARIAH-
CZ digital library at the Institute of Formal and Ap-
plied Linguistics (UFAL), Faculty of Mathematics
and Physics, Charles University.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Hajic¢, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Haji¢ jr.,
Jaroslava Hlavacova, Vaclava Kettnerova, Zdenka
Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
sild, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
dePaiva, Kira Droganova, Héctor Martinez Alonso,
Cagrt Coltekin, Umut Sulubacak, Hans Uszkoreit,
Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayadelen,
Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily
Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirch-
ner, Hector Fernandez Alcalde, Jana Strnadova,
Esha Banerjee, Ruli Manurung, Antonio Stella, At-
suko Shimada, Sookyoung Kwak, Gustavo Men-
donca, Tatiana Lando, Rattima Nitisaroj, and Josie
Li. 2017. CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies.
In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal De-
pendencies, pages 1-19. Association for Computa-
tional Linguistics.

172

A Appendix

Table 8 shows the same statistics for the OSCAR
corpora of selected languages, and Table 9 sum-
marizes the basic statistics of extracted Wikipedia
texts for the IWPT languages. Table 10 shows aver-
age results for various metrics for all submissions
to IWPT 2020 shared task.

Language Docs Sents Tokens Chars
Latvian I.eM 34M 628M 4.0B
Slovak 55M 99M 1.5B 9.1B
Tamil I3M 39M 528M 3.8B

Table 8: OSCAR source statistics for selected IWPT
2020 shared task languages

Language Docs Sents Tokens Chars

Arabic I.OM 80M 184M §889M
Bulgarian 259K 4.1M 71IM 397M
Czech 444K 79M 143M 804M
Dutch 2.0M I9M 300M 1.7B

English 59M 124M 2.7B 14B
Estonian 205K 2. 7M 38M 252M
Finnish 477K 7.4M 97M 731M

French 2.2M 34M 858M 4.5B
Italian 1.6M 22M 579M 3.0B
Latvian 9K 1.3M 2IM 126M
Lithuanian 196K 2.3M 34M 207TM
Polish 1.4M 16M 282M 1.7B
Russian 1.6M 31IM 565M 3.5B
Slovak 232K 2.8M 3OM 229M
Swedish 3.7M 30M 364M 2.1B
Tamil 132K 1.9M 26M 195M

Ukrainian 979K 15M 260M 1.5B

Table 9: Wikipedia source statistics for IWPT 2020
shared task languages

Team
Metric adapt clasp emory fastparse Kkoebsala orange robert shanghai turku unipi
Tokens 99.54 99.72 99.66 99.66 99.66 99.68 5.85 99.67 99.74 99.63
Words 98.96 99.12 99.06 99.06 99.06 99.09 5.85 99.08 99.13 99.03
Sentences | 89.22 92.34 91.25 91.18 91.25 90.24 5.07 9197 9241 90.56
UPOS 95.88 95.48 93.63 93.60 93.63 96.69 5.63 0.63 96.75 92.78
UFeats 91.36 90.66 87.35 88.11 87.35 93.98 5.57 32.84 9277 86.02
Lemmas 95.40 95.15 92.30 92.23 92.30 95.80 5.62 0.02 9596 9135
UAS 87.18 86.41 88.95 82.55 79.97 89.45 5.26 13.01 89.92 84.90
LAS 84.09 82.66 86.14 77.57 75.41 86.79 5.11 0.99 8731 80.74
CLAS 81.56 79.66 83.81 72.97 71.18 84.42 5.00 122 8523 7742
MLAS 72.57 69.55 67.84 60.82 60.54 71.75 4.51 0.01 76.63 62.73
BLEX 78.11 76.00 76.11 66.70 65.38 80.86 4.73 0.00 8193 70.03
EULAS 69.42 80.18 81.26 75.96 64.93 84.62 5.26 73.01 8583 78.82
ELAS 67.23 67.85 79.84 74.04 62.91 82.60 5.23 71.74 84.50 72.76

Table 10: Average results for different metrics for submissions to IWPT 2020 shared task. Team names abbreviated
for space: emory = emorynlp, orange = orange_deskin, robert = robertnlp, shanghai = shanghaitech_alibaba, turku
= turkunlp.

173

Hybrid Enhanced Universal Dependencies Parsing

Johannes Heinecke
Orange / Data Al / AITT / Deskiii
2 avenue Marzin
22307 Lannion cedex, France
johannes.heineckel@orange.com

Abstract

This paper describes our system to predict en-
hanced dependencies for Universal Dependen-
cies (UD) treebanks, which ranked 2" in the
Shared Task on Enhanced Dependency Pars-
ing with an average ELAS of 82.60%. Our
system uses a hybrid two-step approach. First,
we use a graph-based parser to extract a basic
syntactic dependency tree. Then, we use a set
of linguistic rules which generate the enhanced
dependencies for the syntactic tree. The appli-
cation of these rules is optimized using a classi-
fier which predicts their suitability in the given
context. A key advantage of this approach is
its language independence, as rules rely solely
on dependency trees and UPOS tags which are
shared across all languages.

1 Introduction

Parsing Enhanced Universal Dependencies (EUD)
(Schuster and Manning, 2016) is an interesting ex-
tension of dependency parsing. EUDs provide syn-
tactic information which can be crucial for any
NLP processing based on syntactic analysis.

The shared task on EUD parsing (Bouma et al.,
2020) provided the platform to develop and com-
pare various systems. Our team participated using a
hybrid system (machine learning/rule-based) which
came second in both metrics, ELAS (82,6%) and
EULAS (84,6%).

1.1 Related Work

Whereas basic dependencies are strict surface syn-
tax trees, enhanced dependencies are implicite
syntactic links in constructions like coordina-
tions, raise/control constructions or relative clauses.
EUDs also enrich existing basic dependencies such
as obl and nmod relations by adding information
about the adposition used and morphological cases.
Finally EUDs propose the syntactic annotation of
elided words, absent in the actual sentence (Nivre

174

et al., 2018). Even though the basic dependen-
cies tree (apart from the orphan relation) is part
of the EUD graph, the latter is no longer a tree,
since individual tokens can have more than one
head. Most of the EUDs can be predicted deter-
ministically (Nivre et al., 2018), others, notably
the prediction of EUDs for elided words, are more
complex (Schuster et al., 2018).

2 System description

The data of Universal Dependencies treebanks
(Nivre et al., 2016)' used for the shared task and
annotated with enhanced dependencies (other than
copied basic dependencies) is small. In total, all
training treebanks contain about 5.1 million words,
only 5.6% of those have a second enhanced depen-
dency attached to them (the first being the copied
basic dependency). Another 7.2% and 8.3% of
words have an enhanced dependency like ob1l: . ..
or nmod: . .. which correspond to the basic de-
pendency but also give the adposition and morpho-
logical case (if existing in the language in question).
In total, only 21.1% or 1 million words have any
non basic enhanced dependency.

The enhanced dependencies address specific and
well known linguistic phenomena, and are rela-
tively deterministic (Nivre et al., 2018), once the
basic dependency tree is available. For this rea-
son, we decided to utilise a hybrid system, using a
graph-based parser to produce first a dependency
tree and a rule system which uses the generated
dependency tree to determin the enhanced depen-
dencies. The latter uses a (learned) filter to control
the application of rules in certain contexts. The
system functions as a pipeline (cf. Figure 1). Thus
errors in earlier parts of the pipeline will impact
the results of the following components.

"https//universaldependencies.org/

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 174—180
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

Ig.txt [c'] XLM-R/ Ig.conllu
(raw text) langBERT (result)
' ' T
[c] tagging
[a] tokenisation [b] correct + parsing |l [d1] enhance-dep
(UDPipe 1.2) quotes (modified script
UDPipeFuture) i
[ti;lfl";’fnﬁi [£] ICSIBoost |_, [[¢] ICSIBoost
model (classify)

[£"]
threshold

Figure 1: System architecture: gray boxes indicate data,
white boxes indicate processing

2.1 Sentence segmentation, tokenisation

For sentence segmentation and tokenisation of the
incoming raw text, we use UDPipe 1.2 (Straka and
Strakovd, 2017) ([a] in Figure 1%). We trained a
tokenizer per language using the training files ([a’]
in Fig. 1) of each treebank. For languages with
more than one treebank, we chose the one with
the largest training file. A python postprocessing
script ([b] in Fig. 1) deals with obvious tokenization
errors, such as quotes concatenated to letters (e.g.
like word" , word” or "word) and separates
these tokens into two.

2.2 Tagging and parsing

To tag and parse the texts, we use a special version
of UdpipeFuture ([c] in Fig. 1) (Straka, 2018), win-
ner in terms of the Morphology-aware Labeled At-
tachment Score (MLAS)? metric of the shared task
on Dependency Parsing in 2018. In our version, we
also use contextual embeddings, however instead of
using ELMo (Peters et al., 2018), we experimented
with a range of contextual embeddings, either mul-
tilingual as BERT (Devlin et al., 2019) or XLM-R
(Conneau et al., 2019), or language specific mod-
els like RoBERTa-large (English, Liu et al. (2019)),
CamemBERT (French, Martin et al. (2019)). Exper-
iments with these embeddings on the CoNLL 2018
Shared Task (Zeman et al., 2018) data show that
XLM-R outperforms the best score for nearly all
treebanks of the 2018 Shared Task. The Content-
Word Labeled Attachment Score (CLAS)* scores

2Letters in brackets refer to the architecture diagrams
shown in Figures 1 and 4. Identical letters refer to the same
component.

3MLAS is metric inspired by the Content-Word Labeled
Attachment Score (CLAS) (Zeman et al., 2018) which takes
into account POS tags and morphological features.

*CLAS is a variant or the classical Labeled Attachment
Score (Nivre and Fang, 2017). It only takes into account de-
pendency reations between content words, in order to be able

175

for these experiments on the treebanks which are
used for the Enhanced Dependencies Shared Task
are given in Table 1.

treebank BERT XLM-R CoNLL 2018
best score
ar-padt 80.35 8243 74.00
bg-btb 88.49 90.23 88.40
cs-cac 89.79 92.08 90.06
cs-fictree 87.89 90.22 89.61
cs-pdt 90.09 92.18 90.53
cs-pud 7997 7997 83.57
en-ewt 86.89 87.24 81.64
en-pud 87.60 87.60 85.68
et-edt 83.46 86.07 83.74
fi-pud 88.15 90.00 88.72
fi-tdt 86.65 89.90 87.42
fr-sequoia 90.03 90.47 87.26
it-isdt 89.11 90.01 88.32
Iv-lvtb 79.75 83.18 81.17
nl-alpino 85.57 88.20 85.23
nl-lassysmall 84.07 85.18 81.71
pl-Ifg 93.02 94.28 93.18
ru-syntagrus 91.60 93.30 91.00
sk-snk 87.42 89.35 87.01
sv-pud 81.19 82.25 79.01
sv-talbanken 86.68 88.72 86.94
uk-iu 83.83 86.97 85.99

Table 1: Results (CLAS) on CoNLL 2018 Shared Tasks
treebanks also present in the IWPT 2020 Shared Task
(best values in bold)

Although the CoNLL 2018 Shared Task is based
on UD v2.2, we were able to produce similar
promising results with the data provided by the
current shared task, based on UD v2.5.

To prepare for the shared task, we first merged
treebanks of the same language when more than
one was available: this was the case for Czech,
Dutch, Estonian and Polish. Then, we trained and
tested the tagging and parsing using UDPipeFu-
ture with all contextual word embedding models
available for the given language (unless the tree-
bank did not provide a dev-file, as e.g. the PUD
treebanks). In addition to the multilingual contex-
tual embeddings BERT and XLM-R, we also tested
some language-specific transformers such as Ara-
bic BERT?, CamemBERT® (French, Martin et al.

to compare parsing results of typologically different languages
Shitps://github.com/alisafaya/Arabic-BERT
®https://camembert-model.fr/

(2019)), Finnish BERT’ (Virtanen et al., 2019), Ital-
ian BERT®, Swedish BERT?, Slavic BERT!? (Czech,
Bulgarian, Polish, Russian; Arkhipov et al. (2019))
and BERTje!! (Dutch, Vries et al. (2019)). The
results are shown in Table 2.

lang. XLMR BERT language specific

(ml) embeddings
ar 84.44 8286 84.86 Arabic BERT
bg 91.30 90.52 91.45 Slavic BERT
cs 93.95 92.35 93.29 Slavic BERT
en 90.56 89.03 90.11 RoBERTa
et 89.13 86.68 (no emb. available)
fi 90.69 87.96 90.98 Finnish BERT
fr 92.70 9291 93.43 CamemBERT
it 93.04 9246 93.25 Italian BERT
It 84.92 81.82 (no emb. available)
Iv 89.03 86.14 (no emb. available)
nl 90.79 90.63 91.78 BERTje
pl 93.16 91.63 9247 Slavic BERT
ru 93.65 92.04 92.73 Slavic BERT
sk 90.85 89.94 88.79 Slavic BERT!?
sV 87.78 86.46 89.29 Swedish BERT
ta 72.84 69.44 (no emb. available)
uk 90.78 88.86 85.84 Slavic BERT

Table 2: Parsing test results (LAS) using different con-
textual word embeddings, best results in bold (train/dev
corpora of the shared task)

Evaluations on the development corpora showed
that XLM-R gave the best results for nearly all lan-
guages, with some exceptions: for Arabic (Arabic
BERT), Bulgarian (Slavic BERT), Finnish (Finnish
BERT), French (CamemBERT), Italian (Italian
BERT) and Dutch (Dutch BERT) the language-
specific versions of BERT gave better results in
terms of Labeled Attachment Score (LAS) for the
parsing.

2.3 Determining enhanced dependencies

To extract enhanced dependencies we implemented
a script ([d1] in Figure 1) which interprets the basic

https://huggingface.co/TurkuNLP/
bert-base- finnish-cased-v1
8https://huggingface.co/dbmdz/bert-base-italian-cased
“https://huggingface.co/KB/bert-base-swedish-cased
Ohttps://huggingface.co/DeepPavlov/
bert-base-bg-cs-pl-ru-cased
"https://huggingface.co/wietsedv/bert-base-dutch-cased
12Slavic BERT works nearly as well as XLM-R for Polish
and Russian. However, for Ukrainian and Slovak, which are
not part of Slavic BERT), the comparatively lower result is not
surprising.

dependency tree and applies some linguistic rules.
We built the rules by analysing manually the differ-
ent types of EUDs in all the provided treebanks.

To obtain a language-independent system which
can predict enhanced dependencies on any lan-
guage, we need homogeneous annotations in all
the treebanks. Since these annotations, which re-
quire time-consuming manual work, are currently
missing in many UD treebanks, and the existing
annotations are not always homogeneous, we opted
for a rule-based system. For example, dep is
used frequently as an additional'? enhanced depen-
dency in the Czech and Arabic treebanks. Other
differences stem from language differences, e.g.
in Finnish-TDT and Polish-PDB case informa-
tion is sometimes given with the nmod:poss
enhanced dependency, which is absent in other
treebanks for languages without morphological
case. Similarly, the conj enhanced dependency
is enriched with the lemma of the cc relation
only in the treebanks of Dutch, English, Ital-
ian and Swedish. Similar differences can be ob-
served for relative pronouns or case information
for oblique nominals (obl:<prep>:<case>)
or nominal modifiers (nmod : <prep>:<case>).
The French-Sequoia treebank frequently em-
ploys nmod: enh, amod:enh, nsubj:enh and
nsubj:passxoxobjenh which are not defined
in the guidelines.

Our script takes into account these language spe-
cific differences. For example, it discards preposi-
tions and case information in nmod/ob1 enhanced
dependencies for languages where this informa-
tion has not been annotated. In general, the script
mainly exploits basic dependencies and UPOS, i.e.
universal information, to determine the enhanced
dependencies.

The script first initialises enhanced dependen-
cies by copying all basic dependencies (except
orphan). In a second step we look for all words
with a obl and nmod relation and check whether
they have a case-dependant. If so, we enrich the
enhanced dependencies with the lemma of this de-
pendant. If present, we add the Case-feature to
obl:<ADP> and nmod: <ADP> as well.

For coordinations of nouns, we simply take the
heads of words with a con j-relation (cf. relation
(A) in Figure 2) and determine the dependency
relation of its head (relation (B) in Fig. 2). With this

Le. an enhanced dependency which is not a basic depen-
dency.

176

information we can add the enhanced dependency
relation of the coordinated noun to its enhanced
head (relation (C) in Fig. 2). We also enrich the
conj-relation (relation (D) in Fig. 2) using the
lemma of the cc-dependant (relation (E) in Fig. 2).

nsubj (B)

I
A

Paul and Mary are running
\{conj:cc (E)}j\—(nsubj (C))—/

Figure 2: Rule to predict EUDs for coordination:
A+B—=CandA+D —E

xcomp (relation (F) in Fig. 3) relations are pro-
cessed in a similar way by going through the de-
pendency tree to find the subject (rel. (G) in Fig.
3) of the head of the xcomp. We then can add the
enhanced dependency relation nsubj (rel. (H) in
Fig. 3). Referents for relative clauses are processed
in an equivalent manner too.

[root|

~Lobi)—

nsubj (G) (mark)\ [(det] |

v WV v oo\

John wanted to buy a hat
nsubj (H)

Figure 3: Rule to predict EUDs for xcomp subjects:
F+G—H

In order to insert elided nodes, we interpret the
orphan relation. Whereas the insertion itself
works fine, we were not able to predict correctly
the needed enhanced dependencies for elided nodes
and have abandoned this prediction for the shared
task.

We validated the rules for enhanced dependency
extraction on gold basic dependencies from the
validation corpora to avoid the accumulation of
errors from the tagging and parsing step. This
yielded encouraging results presented in Table 3.

To further improve the performance of the rule-
based approach, and to take into account the errors
in the tagging/parsing step, we add the ICSIBoost'#
classifier (Favre et al., 2008).

This classifier (cf. [g] in Figures 1 and 4) esti-
mates the probability of success of a given rule in

"“https://github.com/benob/icsiboost

177

Language ELAS EULAS
ar 95.18 96.84
bg 97.84 98.34
cs 94.67 95.79
en 98.04 98.96
et 92.61 95.90
fi 94.40 97.07
fr 96.42 98.21
it 98.41 99.32
It 94.55 96.61
v 91.03 95.74
nl 94.40 98.42
pl 91.13 97.23
ru 95.42 96.94
sk 95.44 96.42
Y 96.07 98.38
ta 96.95 99.54
uk 94.58 96.64
Average 95.13 97.43

Table 3: Enhanced dependencies on gold basic depen-
dencies (development files; without ICSIBoost)

a given context. For this task, we trained a single
classifier using the following features:

rule name

treebank language

enhanced dependency label

UPOS of enhanced dependency head

(basic) dependency relation of the enhanced
dependency head,

distance (in words) of the basic dependency
head

o distance of the enhanced dependency head

To generate the training corpus of ICSIBoost,
we ran our enhance-script ([d2] in Fig. 4) on the
training CoNLL-U files ([a’] in Fig. 4), with gold
UPOS and basic dependencies) of each language
to obtain the list of appropriate features and the
information whether the rule produced a correct
EUD or not within the given context ([d’] in Fig. 4).
We then trained ICSIBoosts on this list to obtain a
classifier model ([f’] in Fig. 4) which we integrated
into the enhance-script ([d3] in Fig. 4) to obtain
more accurate predictions.

To get the best threshold for each language, we
ran our script ([d3]) on the development CoNLL-U
files with various thresholds for each language with
UPOS and basic dependencies predicted by Ud-
pipeFuture using contextual embeddings. Rules

list of thresholds [i] iwpt20
to test (30, 35, ..., 60) _xud_eval.py
A
Y —a A/
[a'] lang-ud [g] ICSIBoost [d3] enhance-dep
-train.conllu (classify) script
[d2] enhance-dep [f'] ICSIBoost [f"] best
script model threshold

v

[d'] ICSIBoost
train corpus

i

[f] ICSIBoost
training

Figure 4: ICSIBoost training

whose score fell below the threshold, in a given
context, were not applied. It turned out that thresh-
olds between 30% and 60% gave the best result
in terms of ELAS (cf. Table 4). However, the
gain from this classification is small for most lan-
guages. We observed the biggest increase in ELAS
for Estonian, where a threshold of 40% results in
2.13 percent points more than without any filter,
whereas for Bulgarian or Italian the difference is
only 0.12 or 0.14 points, respectively. On average,
the gain is about 0.7 points.

Arabic 40% Latvian 50%
Bulgarian 55% Dutch 40%
Czech 40% Polish 40%
English 55% Russian 35%
Estonian 40% Slovak 30%
Finnish 47% Swedish 40%
French 50% Tamil 55%
Italian 60% Ukrainian 50%
Lithuanian 60%

Table 4: ICSIBoost thresholds to apply a rule in a given
context

Running our entire pipeline on gold UPOS and
basic dependencies shows that we can predict en-
hanced dependencies with a very high precision (cf.
Table 5).

Applying the entire pipeline on the raw text files
provided for the evaluation produced the results
shown in Table 6. Since the script which gener-
ates the enhanced dependencies depends on basic
dependencies and indirectly on the UPOS tags, a
lower LAS yields a lower ELAS. By definition,
EULAS is always slightly above ELAS. We do not
exploit XPOS, since they are too language-specific.
Thus the bad results for Finnish XPOS tags do not
have an impact on the E(U)LAS score (Table 6).
Interestingly the poor sentence segmentation re-

178

Language ELAS FEULAS
ar 95.33 97.06
bg 97.74 98.27
cs 94.74 95.88
en 98.19 99.02
et 92.40 96.08
fi 94.94 97.02
fr 97.69 99.10
it 98.18 99.34
It 93.88 96.10
Iv 90.65 95.62
nl 96.36 98.36
pl 88.85 97.08
ru 95.58 97.12
sk 96.00 96.80
Y% 95.93 97.86
ta 98.11 99.58
uk 94.82 96.91
Average 95.26 97.48

Table 5: Predicting enhanced dependencies on gold ba-
sic dependencies

sults for Arabic, English and Dutch did not impact
the final results since tagging (UPOS) and parsing
(LAS) nevertheless gave good results.

3 Conclusion and perspectives

Considering that training data was heterogeneous,
partially incomplete, and in general not very volu-
minuous, our hybrid machine-learning (ML)/rule-
based approach gave very good results for the
shared task. A possible extension would be the
processing of elided nodes.

Even if for the long term a purely ML-based
approach may prove more efficient, at least our
language-independent system can help to pre-
annotate existing UD treebanks which, after human
validation, can be the basis of an ML approach on
predicting enhanced dependencies.

Acknowledgments

We are grateful to two reviewers for constructive
comments on the first version of the paper.

References

Mikhail Arkhipov, Maria Trofimova, Yuri Kuratov, and
Alexey Sorokin. 2019. Tuning Multilingual Trans-
formers for Language-Specific Named Entity Recog-
nition. In ACL 2019, pages 89-93, Florence.

Language Tokens Words Sent. UPOS XPOS
ar 99.97 9457 81.67 91.87 89.54
bg 99.89 99.89 93.63 99.17 97.40
cs 99.85 99.85 9255 9898 96.95
en 99.22 99.22 81.19 96.21 95.47
et 99.70 99.70 88.02 97.45 98.10
fi 99.69 99.68 88.52 98.11 56.30
fr 99.54 99.13 9327 96.04 99.13
it 9990 99.82 96.29 9846 98.34
lv 99.34 99.34 9836 96.69 90.25
It 9994 9994 8746 96.57 91.05
nl 99.71 99.71 7723 96.75 95.52
pl 9933 99.79 96.73 98.58 94.36
ru 99.48 9948 9793 98.80 99.48
sk 99.99 99.99 84.06 97.16 88.14
se 99.72 99.72 88.02 97.51 95.64
ta 99.49 9496 93.83 8741 80.36
uk 99.79 99.75 9531 98.03 94.69
Average 99.68 99.09 90.24 96.69 91.81

Lemmas UAS LAS CLAS MLAS EULAS ELAS
90.58 7939 7554 7273 6743 7291 70.96
98.30 9446 91.83 89.09 86.11 90.40 89.42
98.83 9393 9225 O91.18 87.16 88.38 86.95
96.88 89.21 8694 8437 78.78 86.02 85.21
95.18 88.69 8620 8496 8031 84.70 81.03
92.12 9197 9031 89.07 85.13 87.79 86.24
96.53 90.98 86.47 81.11 70.69 85.81 83.63
98.50 94.74 93.09 89.61 86.84 91.99 90.83
96.28 90.69 8796 8585 7845 84.51 82.11
9429 8491 8154 79.84 69.95 77.61 75.89
97.19 90.57 88.05 8325 7873 86.58 85.14
98.01 9426 92.11 90.58 80.97 89.15 80.39
9826 9441 9331 9224 8993 90.97 89.84
96.63 9120 89.06 87.37 78.03 86.17 84.36
9339 88.65 8591 8428 69.67 84.36 83.27
90.09 71.85 6623 63.71 5437 65.68 64.23
9747 90.72 8859 8598 79.26 8546 84.64
95.80 89.45 86.79 8442 77.75 84.62 82.60

Table 6: Official results of our system

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grace, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
Cross-lingual Representation Learning at Scale.
https://arxiv.org/abs/1911.02116.

Jacob Devlin, Ming-Wei Chang Chang, Kenton Lee,
and Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
under-standing. In NAACL, page 4171-4186, Min-
neapolis. Association for Computational Linguis-
tics.

Benoit Favre, Dilek Hakkani-Tiir, Slav Petrov, and
Klein Dan. 2008. Efficient sentence segmentation
using syntactic features. In Spoken Language Tech-
nology Workshop, pages 77-80. IEEE.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach.
https://arxiv.org/abs/1907.11692.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suérez, Yoann Dupont, Laurent Romary, Eric Ville-
monte de la Clergerie, Djamé Seddah, and Benoit
Sagot. 2019. CamemBERT: a Tasty French Lan-
guage Model. https://arxiv.org/abs/1911.03894.

Joakim Nivre and Chiao-Ting Fang. 2017. Univer-
sal Dependency Evaluation. In Proceedings of the
NoDalLiDa 2017 Workshop on Universal Dependen-
cies, pages 86-95, Goteborg.

179

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Yoav Goldberg, Jan Haji¢, Man-
ning Christopher D., Ryan McDonald, Slav Petrov,
Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and
Daniel Zeman. 2016. Universal Dependencies v1:
A Multilingual Treebank Collection. In the tenth in-
ternational conference on Language Resources and
Evaluation, pages 23-38, Portoroz, Slovenia. Euro-
pean Language Resources Association.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing Universal De-
pendency Treebanks: A Case Study. In Proceed-
ings of the Second Workshop on Universal Depen-
dencies (UDW 2018), pages 102—107, Brussels, Bel-
gium. Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kendon Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In NAACL, page 2227-2237, New
Orleans, Louisiana. Association for Computational
Linguistics.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An Im-
proved Representation for Natural Language Under-
standing Tasks. In the tenth international confer-
ence on Language Resources and Evaluation, pages
2371-2378, Portoroz, Slovenia. European Language
Resources Association.

Sebastian Schuster, Joachim Nivre, and Christopher D.
Manning. 2018. Sentences with Gapping: Parsing
and Reconstructing Elided Predicates. In NAACL,
pages 1156-1168, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Milan Straka. 2018. UDPipe 2.0 Prototype at CoNLL
2018 UD Shared Task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197-207,

Brussels. Association for Computational Linguis-
tics.

Milan Straka and Jana Strakova. 2017. Tokenizing,
POS Tagging, Lemmatizing and Parsing UD 2.0
with UDPipe. In ACL 2017, pages 88-99, Vancou-
Ver.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Juhani Lu-
otolahti, Tapio Salakoski, Filip Ginter, and Sampo
Pyysalo. 2019. Multilingual is not enough: BERT
for Finnish. https://arxiv.org/abs/1912.07076.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. BERTje: A Dutch BERT
Model. https://arxiv.org/abs/1912.09582.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, pages 1-21, Brussels. Associ-
ation for Computational Linguistics.

180

Adaptation of Multilingual Transformer Encoder for
Robust Enhanced Universal Dependency Parsing

Han He
Computer Science
Emory University

Atlanta GA 30322, USA

han.he@emory.edu

Abstract

This paper presents our enhanced dependency
parsing approach using transformer encoders,
coupled with a simple yet powerful ensemble
algorithm that takes advantage of both tree and
graph dependency parsing. Two types of trans-
former encoders are compared, a multilingual
encoder and language-specific encoders. Our
dependency tree parsing (DTP) approach gen-
erates only primary dependencies to form trees
whereas our dependency graph parsing (DGP)
approach handles both primary and secondary
dependencies to form graphs. Since DGP does
not guarantee the generated graphs are acyclic,
the ensemble algorithm is designed to add sec-
ondary arcs predicted by DGP to primary arcs
predicted by DTP. Our results show that mod-
els using the multilingual encoder outperform
ones using the language specific encoders for
most languages. Moreover, the ensemble mod-
els generally show higher labeled attachment
score on enhanced dependencies (ELAS) than
the DTP and DGP models. As the result, our
best parsing models rank the third place on the
macro-average ELAS over 17 languages.

1 Introduction

Dependency parsing can generate computational
structures for a wide range of typologically differ-
ent languages, which provides structural relations
that have been found to be useful for various NLP
applications. However, these applications often re-
quire richer dependency relations carrying on deep
semantics, which are missing in traditional depen-
dency trees. Thus, enhanced dependencies emerge
to explicitly capture deep semantic relations over
surface structures (Schuster and Manning, 2016).
Recently, there has been lots of interests in con-
structing and parsing advanced graph structures
beyond tree representations. Choi (2017) introduce
deep dependency graphs that address several limi-
tations in UD tree structures. Schuster et al. (2017)

181

Jinho D. Choi
Computer Science
Emory University

Atlanta GA 30322, USA

jinho.choilemory.edu

analyze gapping constructions in the enhanced UD
representation. Nivre et al. (2018) evaluate both
rule-based and data-driven systems for adding en-
hanced dependencies to existing treebanks. Apart
from syntactic relations, researchers are moving to-
wards semantic dependency parsing (Oepen et al.,
2015) for more direct analysis of entities and events.
The efforts of treebank construction stimulates the
interest of many researchers in improving the per-
formance of semantic parsers (Dozat and Manning,
2018; Du et al., 2015; Almeida and Martins, 2015).

This paper presents our parsing approach to the
Shared Task on Enhanced Universal Dependen-
cies at IWPT 2020 (Nivre et al., 2016; Bouma
etal.).! Our system is a simplified version of the
transformer-based dependency parsers presented
by He and Choi (2020), which employs the deep
biaffine dependency parsing decoder (Dozat and
Manning, 2017) over the transformer encoder,
BERT (Devlin et al., 2019). We simplify their net-
work by removing the LSTM and fine-tuning their
static transformer encoder. In order to effectively
predict the enhanced dependencies, we also ensem-
ble the dependency tree parser with an dependency
graph parser through a greedy searching algorithm.
At last, we perform extensive experiments on the ef-
fects of transformer encoders to perform a detailed
analysis.

Our experiments show that the multilingual en-
coder has a substantial advantage over the language-
specific encoders. Moreover, our analysis shows
that tree parsing model can accurately predict pri-
mary dependencies in long sentences, while graph
parsing model excels at label prediction. By taking
advantages from both sides, our ensemble models
outperform individual models in most languages.”

I'This work purely focuses on parsing not pre-steps such as
sentence split or tokenization, although we recognize that it
is important to address the pre-steps to win this competition.

2All our resources are available at https://github.

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 181-191
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

MLPeH) pppleret ppplekd) ppplored) N plelh) yppplaret) \fpplekd) yypplared) N peth) yrploreh) yppplrebd) ypppled \fLplrelh) pppleret) prple-a) ypplere-d
| Loy J | Ly J | [N J | [N J

(relh)T _ 5000 -@epee)

% O o@lele + (@ @]0[0 0)
rcl rcl OQ’Q’O ﬁ]g 8 8

L{ Z’{m H(rel—d) (H(rel-h) gH(rel
OOH(drCh)T DOOO §
O [9) 000 % |o[o[c]o i
000 ojojoje

(arc H(arc—d)

RO pred] gl e
O

Figure 1: The overview of our transformer-based biaffine dependency parsing model.

2 Approach section proposes an even more simplified approach
that no longer uses embeddings from POS tags, so
it can be easily adapted to languages that may not
The data in the training and development sets are have dedicated POS taggers, and drops the Bidirec-
already sentence segmented and tokenized. For the tional LSTM encoder while integrating the trans-
test set, UDPipe is used to segment raw input into former encoder directly into the biaffine decoder to
sentences, where each sentence gets split into a list ~ minimize the redundancy of multiple encoders for
of tokens (Straka and Strakovd, 2017). A custom the generation of contextualized embeddings.
script written by us is used to remove multiwords
but retain their splits (e.g., remove vdmonos but
retain vdmos nos), as well as to collapse empty
nodes in the CoNLL-U format.

2.1 Preprocessing

Every token w; in the input sentence is split into
one or more sub-tokens by the transformer encoder
(Section 2.2). The contextualized embedding that
corresponds to the first sub-token of wy; is treated as
the embedding of w;, say e;, and fed into four types
of multilayer perceptron (MLP) layers to extract
features for w; being a head (*-h) or a dependent
(*-d) for the arc relations (arc-*) and the labels
(rel-*) (k and [are the dimensions of the arc and
label representations, respectively):

2.2 Transformer Encoder

Our parsing models use contextualized embeddings
generated by transformer encoders such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2020)
or ALBERT (Lan et al., 2020) that are pretrained
on large corpora for language modeling. Each sen-
tence in the preprocessed data by Section 2.1 is fed
into a transformer encoder that further splits every

token into sub-tokens using SentencePiece (Kudo hgarc_h) = MLP(arC'h)(el) e Rkx1
and Richardson, 2018). The sub-token embeddings p@ed) _ v, plarc-d (e;) € R¥X!
from the last layer of the transformer encoder are l(rel_h) (rel-h) Ix1
fed into the biaffine decoder in Section 2.3. h; = MLP (e;) € R
hgrel—d) — MLP(rel—d) (ez) c Rlxl
2.3 Biaffine Decoder
Our dependency parsing approach is based on the
biaffine decoder that has shown state-of-the-art re- All feature vectors, h', ... h’, from each repre-

sults on syntactic tree and semantic graph parsing
in both English and Chinese (He and Choi, 2020).
This model is simplified from the original biaffine
parser introduced by Dozat and Manning (2017)
such that trainable token embeddings are removed
and lemmas are used instead of word forms. This

sentation are stacked into a matrix (n is the number
of tokens in a sentence); these matrices together are
used to predict dependency relations among every
token pairs. Note that bias terms are appended to
the feature vectors hg*'d) that represent dependent
nodes to estimate the likelihood of a certain relation
com/emorynlp/iwpt—-shared-task-2020 given only the head node:

182

H(dIC -h) (h(arc h) h(dIC h)) c]kan
g ared) _ ((drC d)) h%arc—d)) ®le R(kz—i—l)xn
(rel h) _ (h(rel h) h(rel—h)) c Rlxn
Fel-d) (h(rel d) h(rel d)) @a1e R(l—H)

The bilinear and biaffine classifiers are then used
for the arc and label predictions respectively, where
yare) Ui(rel) and V() are trainable parameters,
and m is the number of dependency labels. In par-
ticular, a separate weight matrix U is dedicated
to the prediction of each label:

S(arc) — H(arc-h)T . U(arc) . H(arc—d) e RXn
u(rel) H(rel -h)T U;rel) . H(rel-d) c RX1
1
S (Z Y 7\)
+ (H(rel—h) @ H(rel—d))T . V(rel) e RMxnxn

2.4 Dependency Tree & Graph Parsing

The arc score matrix S@ and the label score ten-
sor STD generated by the bilinear and biaffine clas-
sifiers can be used for both dependency tree parsing
(DTP) and graph parsing (DGP). For DTP, which
takes only the primary dependencies to learn tree
structures during training, the Chu-Liu-Edmond’s
Maximum Spanning Tree (MST) algorithm is ap-
plied to S@© for the arc prediction, then the label
with largest score in ST corresponding to the arc
is taken for the label prediction (Aprp: the list of
predicted arcs, Lptp: the labels predicted for Aptp,
Z: the indices of Aprp in STeD):

_ MST(S(arc))
= argmax (S [Z(Aprp)])

ADTP

Lptp

For DGP, which takes the primary as well as the
secondary dependencies in the enhanced types to
learn graph structures during training, the sigmoid
function is applied to S instead of the softmax
function (Figure 1) so that zero to many heads can
be predicted per node by measuring the pairwise
losses. Then, the same logic can be used to predict
the labels for those arcs as follows:

Apgp = SIGMOID(S®)
Lpcp = argmax(S™V[Z(Apgp)])

It is worth mentioning that the performance of DTP
is generally better than the one achieved by DGP

183

for finding the primary dependencies that form tree
structures; however, DTP completely dismisses the
secondary dependencies so that DGP outperforms
DTP for the overall performance on the enhanced
dependencies. Section 2.5 describes our ensemble
parsing approach that adapts the best of both worlds
by taking the predictions of primary dependencies
from DTP and augmenting them with the predic-
tions of secondary dependencies from DGP.

2.5 Ensemble Parsing

The UD guidelines require a graph formed by only
primary dependencies to be always a spanning tree,
while such a restriction is not applied to graphs with
secondary dependencies. We find that the majority
of dependency graphs in the training set, however,
can be viewed as directed acyclic graphs (DAGS).
In fact, all graphs can be transformed into DAGs
by removing 0.87% of the secondary dependencies.
Therefore, our ensemble parsing method focuses
on building maximum spanning DAGs (MSDAGS)
by combining arcs from both dependency trees and
graphs generated by the DTP and DGP models,
respectively (Section 2.4).3

Unfortunately, finding MSDAGSs from the out-
put of the DGP model is NP-hard (Schluter, 2014).
Thus, we design an ensemble approach that finds
approximate MSDAGS using a greedy algorithm.
Given the score matrices S\ and Sg‘gg from the
DTP and DGP models respectively and the label
score tensor Sg%; from the DGP model, Algo-
rithm 1 is applied to compute the MSDAG:
The algorithm begins by initializing scores related
to the root in Sgg}) (L1-3). The label matrix R is
created by taking the argmax of every dependent
and head pair (d, h) in Sg‘é}, such that each cell con-
tains the most likely label for that pair (1L.4). Given
the arc list Aptp from the DTS model (1.5), the
graph G is generated by taking all arcs in Aptp and
their corresponding labels in R (1L.6-9).* Finally,
given the arc list Apgp from the DGP model sorted
in descending order (1.1 0), arcs in Apgp are greed-
ily added to G, as long as they do not create any

3The motivation behind this DAG approach was to reduce
potential confusion in learning caused by cyclic structures,
which we later realized may have not been necessary, but we
described this approach here for the replicability of our work.
#80eh is used to find the labels of arcs predicted by both the
DTP and DGP models. From our experiments, we find that
the DGP model outperforms the DTP model for the label
predictions of even primary dependencies, which may be due
to the greater number of labels in DGP training data; thus,

Steh, is used for all types of dependencies instead of S{yp.

AR BG CS EN ET FI FR IT LT LV NL PL RU SK SV | TA | UK

TRN | 6,075 | 8,907 | 102,133 | 12,543 | 25,749 | 12,217 | 2,231 | 13,121 | 2,341 | 10,156 | 18,051 | 31,496 | 48,814 | 8,483 | 4,303 | 400 | 5,496

DEV 909 | 1,115 | 11,182 | 2,002 | 3,125 | 1,364 | 412 564 617 | 1,664 | 1,394 | 3960 | 6,584 | 1,060 504 | 80 672

TST 794 | 1,112 | 12,713 | 2,800 | 3,588 | 2,616 | 2,679 482 652 | 1,835 | 1,154 | 4923 | 6,495 | 1,052 | 2,258 | 122 905

> 256 4 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0

(a) Sentence counts.

The > 256 row shows the number of sentences in the test set whose lengths are greater than 256 tokens.

| AR | BG cs EN ET | FI | FR | IT | LT | LV | NL | PL | RU | SK | SV | TA | UK
TRN [[254.3K [1243K | 1783.1K [204.6K [361.8K | 163.0K | 51.9K [2904.4K [47.6K | 167.6K | 261.0K | 388.5K [870.5K | 80.6K | 66.6K | 6.8K | 92.4K
DEV | 342K | 161K | 187.3K | 251K | 446K | 183K | 103K | 127K | 11.6K | 26.0K | 22.9K | 48.0K | 118.5K | 124K | 9.8K | 1.4K | 12.6K
TST || 30.8K | 157K | 220.5K | 463K | 58.7K | 36.9K | 353K | 112K | 10.8K | 264K | 226K | 657K | 117.4K | 13.0K | 393K | 2.IK | 17.1K

(b) Token counts in thousands (K).

Table 1: Statistics of the training (TRN), development (DEV), and test (TST) sets preprocessed by UDPipe. AR:
Arabic, BG: Bulgarian, CS: Czech, EN: English, ET: Estonian, FI: Finnish, FR: French, IT: Italian, LT: Lithuanian,
LV: Latvian, NL: Dutch, PL: Polish, RU: Russian, SK: Slovak, SV: Swedish, TA: Tamil, UK: Ukrainian.

Algorithm 1: Ensemble parsing algorithm
S(arc) S(arc)

Input: Sypp. Spgp. and ngé;
Output: G, that is an approximate MSDAG

1 r < root_index (Aprtp)

(rel)
SDGP

Sl [root, 7, 7] + 400
R+ argmax(ngé)P)) e R™m
ADTP — MST(S](;?;C}Q)
G« 0
foreach arc (d, h) € Aprp do
| G« GU{(d,h,R[d,h]}
end
Apgp sorted,descend(SIGMOID(Sgglg
foreach arc (d, h) € Apgp do

[5]

[root, :, :] < —o0

w

FN

)

2 | GUM — GuU{(d,h,R[d h]}
13 if is_acyclic(G(®")) then

14 | G+ G

15 end

16 end

184

cyclein G (L11-16).

2.6 Postprocessing

As mentioned in Section 2.1, empty nodes in the en-
hanced dependencies are collapsed before training
using the script provided by the UD project.> Once
dependency structures are generated by any parsing
model, empty nodes are restored using our custom
script.® At last, the postprocessing script provided
by the UD project is applied to normalize the Uni-
code encoding and amend the SpaceAfter=No
annotation as recommended by the organizers.’

3 Experiments

3.1 Datasets

Table 1 shows the statistics of data splits used for
our experiments, that are preprocessed by UDPipe
trained on UD v2.5 (Straka and Strakova, 2017).
Training and development sets for treebanks from
the same languages are concatenated together. In
particular, the following treebanks are merged for
Czech, Estonian, and Dutch such that no individual
models are developed for those treebanks:

e Czech: UD_.Czech-CAC/FicTree/PDT
e Estonian: UD_Estonian—-EDT/EWT
e Dutch: UD_Dutch-Alpino/LassySmall

Since transformer encoders usually restrict the in-
put sequence length to be under 512 sub-tokens, our

“https://github.com/
UniversalDependencies/tools/blob/master/
enhanced_collapse_empty_nodes.pl

®https://gist.github.com/hankcs/
776e7d95c19e5££5da8469fe4e9ab050

"https://github.com/
UniversalDependencies/tools/blob/master/
conllu—-quick-fix.pl

AR BG CS EN ET FI FR IT LT LV NL PL RU SK SV TA UK
DTP || 61.28 | 79.58 | 78.37 | 75.70 | 68.08 | 70.37 | 85.29 | 75.21 | 63.91 | 71.68 | 71.08 | 74.33 | 74.62 | 70.12 | 70.92 | 54.26 | 77.04
DGP || 63.56 | 86.66 | 79.38 | 82.31 | 75.94 | 72.03 | 74.35 | 86.46 | 61.59 | 71.58 | 76.94 | 70.39 | 83.19 | 81.37 | 77.39 | 40.10 | 79.56
ENS || 67.26 | 88.19 | 85.51 | 83.24 | 81.36 | 80.54 | 81.97 | 87.83 | 66.12 | 79.19 | 80.72 | 82.39 | 88.60 | 82.72 | 78.19 | 46.67 | 79.69
DTP || 49.38 | 55.76 | 71.73 | 76.99 | 44.61 | 72.40 | 86.23 | 75.50 - - 70.95 | 57.35 | 63.51 | 30.41 - - -
DGP || 43.71 | 45.25 | 68.47 | 83.22 | 43.90 | 79.38 | 78.87 | 86.45 - - 76.46 | 51.90 | 63.44 | 26.03 - - -
ENS || 48.02 | 52.16 | 51.05 | 85.30 | 51.82 | 82.96 | 81.45 | 88.52 - - 80.02 | 59.59 | 71.19 | 30.08 - - -
(a) Labeled attachment score on enhanced dependencies (ELAS) on the test sets.
| AR | BG | CS | EN | ET | FI | FR | IT | LT | LV | NL | PL | RU | SK | SV | TA | UK
DTP || 71.83 | 89.61 | 87.20 | 84.61 | 82.81 | 85.43 | 87.47 | 90.49 | 73.55 | 81.17 | 83.67 | 88.29 | 89.71 | 86.83 | 81.72 | 58.66 | 85.36
DGP || 65.49 | 87.31 | 80.38 | 82.74 | 76.42 | 72.62 | 75.49 | 86.98 | 63.10 | 71.95 | 77.37 | 74.54 | 83.47 | 83.39 | 78.32 | 41.36 | 80.18
ENS || 69.46 | 88.84 | 86.63 | 83.68 | 81.98 | 81.44 | 83.34 | 88.35 | 68.24 | 79.66 | 81.21 | 86.79 | 88.93 | 84.73 | 79.11 | 48.50 | 80.34
DTP || 56.69 | 62.27 | 79.53 | 86.24 | 53.31 | 88.19 | 88.28 | 90.89 - - 83.47 | 67.58 | 76.05 | 34.50 - - -
DGP || 46.75 | 46.84 | 69.79 | 83.67 | 44.62 | 80.10 | 80.12 | 86.92 - - 76.97 | 55.58 | 64.16 | 26.82 - - -
ENS || 51.37 | 54.01 | 53.45 | 85.76 | 52.74 | 83.70 | 82.83 | 89.04 - - 80.59 | 63.82 | 72.13 | 31.19 - - -

(b) Labeled attachment score on enhanced dependencies where labels are restricted to the UD relation (EULAS).

Table 2: Parsing results on the test sets for all languages. For both (a) and (b), the rows 2-4 show the results by the
multilingual encoder and the rows 5-7 show the results by the language-specific encoders if available.

parsing models cannot handle sentences beyond
this length. As the distribution of sentence lengths
in each dataset is measured, we find out that most
sentences consist of fewer than 256 tokens. Thus,
we discard sentences beyond 256 tokens from all
training and development sets. For such sentences
in the test sets, we rely on the parsing outputs from
UDPipe; this choice is made due to the negligible
numbers of those sentences (Table 1a) although it
can be obviously improved.

3.2 Encoder Models

Two types of transformer encoders are used for
the development of our models. One is the mul-
tilingual BERT (mBERT) pretrained on a mix-
ture of large corpora in 100 languages (Devlin
et al., 2019). The mBERT encoder uses one
model to generate token embeddings for all lan-
guages, which encourages transfer learning in mul-
tilingual parsing. The other is language specific
encoders that have been made to public by the com-
munity. Table 3 shows details about 12 language-
specific encoders.® More details about the sources
of these models are described in Section A.2.

3.3 Development Configuration

Following He and Choi (2020), we use the AdamW
optimizer (Loshchilov and Hutter, 2019) with a lin-
ear learning rate warm-up and decay for finetuning
the pretrained encoders. For the decoder weights,
we use the Adam optimizer (Kingma and Ba, 2015)
with a learning rate 20 times smaller than the one
for finetuning. For the contextualized embeddings,
we apply a shared dropout mask for each time step

8We could not find public models for the other 5 languages.

similar to variational dropout often used for recur-
rent neural networks (Gal and Ghahramani, 2016).

The KMeans clustering algorithm is adopted to
bucket sentences into mini-batches according to
their lengths counted by sub-tokens. The NVIDIA
RTX GPUs with 24GB memory are used to develop
these models. Unfortunately, most of our models
cannot be fit into GPUs with smaller memory due
to the extensive memory use of both the encoder
and the decoder. We will explore innovative ways
of reducing our parsing models such as teacher-
student learning (Shin et al., 2019).

3.4 Parsing Results

All models are evaluated with 5 metrics, unlabeled
attachment score (UAS), labeled attachment score
(LAS), content labeled attachment score (CLAS),
LAS on enhanced dependencies where labels are
restricted to the UD relation (EULAS), and LAS on
enhanced dependencies (ELAS). Models with the
highest ELAS on the development sets are used to
generate the final parse outputs on the test sets. Ta-
ble 2 shows the ELAS and EULAS on the test sets
for all languages. Detailed parsing results evalu-
ated with all 5 metrics are described in Section A.3.
For ELAS, our ensemble models (ENS) outperform
the other models on 15 out of 17 languages. The
only 2 exceptions are French and Tamil; these two
languages consist of relatively fewer numbers of
multi-head tokens as illustrated in Figure 2. Out
of 12 languages with language-specific encoders
(Table 3), models using the multilingual encoder
outperform 8 of them, indicating the promise of the
multilingual encoder to build robust parsing mod-
els for low-resource languages. The 4 exceptions

185

Lang. || Encoder | Corpus | Provider
AR BERT 82B Hugging Face
EN ALBERT | 16 GB | Hugging Face
ET BERT N/A TurkuNLP
FR RoBERTa | 138 GB | Hugging Face
FI BERT 24 B Hugging Face
IT BERT 13 GB | Hugging Face
NL BERT N/A Hugging Face
PL BERT 1.8B Hugging Face
NY% BERT 3B Hugging Face
BG BERT N/A Hugging Face
CS BERT N/A Hugging Face
SK BERT N/A Hugging Face

Table 3: Language-specific transformer encoders to de-
velop our models. The corpus column shows the corpus
size used to pretrain each encoder (B: billion tokens,
GB: gigabytes). BERT and RoBERTa adapt the base
models whereas ALBERT adapts the large model. Pub-
lications and resource links are shown in Table 5.

are English, Finnish, French, and Italian, which ei-
ther use more advanced encoding methods or their
language models are trained on larger corpora.
For EULAS, the multilingual encoding approach
still outperforms 8 out of the 12 languages as
for ELAS. However, DTP models completely out-
perform both DGP and ENS models, indicating
that the primary and secondary dependencies are
not distinguishable by our current DGP approach,
which complies with the fact that DGP is trained on
enhanced relations rather than the basic dependen-
cies DTP is trained on. We believe the performance
of DGP could be improved through ad-hoc strate-
gies to handle enhancement of case and lemma.

0.10 1

ooolll““|

et ta bg nl it fr en sk ru sv pl ar Iv fi cs uk It
language

° ° °
o (=] o
B o (s3]

tokens with multiple heads

o
o
N

Figure 2: Percentages of tokens with multiple heads.

4 Analysis

This section analyzes factors that affect our models
the most, common error made across languages
and what possible improvement that can be made.

4.1 Data Size

We use the same hyper-parameters for all datasets,
which may have led to possible overfitting (or un-
derfitting). To verify this, we compute the differ-
ences between the ELAS scores of our models and
that of the highest models from other teams. We
then plot the differences as a function of the log
training data size and fit the differences to a linear
regression model shown in Figure 3.

ELAS difference

-10

-124; T T T T T
2.5 3.0 3.5 4.0 4.5 5.0
dataset size

Figure 3: Difference in ELAS between our parser and
the top team as a function of dataset size.

We also fit the differences with sentence scores as
random effects to another regression model, find-
ing that the p values for sentence scores and dataset
sizes are 0.760 and 0.001. It shows that our sys-
tem performs relatively better on larger datasets
while overfits to smaller datasets, suggesting that
decreasing model capacity may improve ELAS for
languages with less training data.

42 00V

To investigate the performance of each model on
Out-Of-Vocabulary (OOV) tokens, we evaluate
them on the OOV-only subset of English treebank.
As shown in Figure 4, language specific encoder
outperforms multilingual encoder in therse model
settings, which is not surprising.

4.3 Sentence Length

We evaluate the ELAS of English treebank offline
relative to sentence length with gold tokenization
and sentence split. As shown in Figure 5, DTP
models are very stable on long sentences while the
performance of DGP models dramatically drops
with the increase of sentence length. Performance
of multilingual encoder models tends to drop faster
than their language-specific counterparts.

186

s multilingual
B language-specific

ELAS of OOV
o©
W

o©
N

o
A

0.0 -

DTP DGP ENS

Figure 4: ELAS of Out-Of-Vocabulary tokens.

5 Related Work

Our work in utilizing multilingual Transformers
as the encoder for parser model is most closely re-
lated to the UDify system (Kondratyuk and Straka,
2019). UDitfy is a multilingual multi-task model
leveraging a multilingual BERT to accurately pre-
dict universal part-of-speech, morphological fea-
tures, lemmas, and dependency trees simultane-
ously across 75 languages. UDify concatenates
all training sets together to encourage knowledge
transferring across languages, which benefits low-
resource languages the most. In our multilingual
BERT approach, each model is trained separately.

0.900 A

0.875 A

—— multilingual-DTP
\ —— multilingual-DGP
N —— multilingual-ENS
N —-=- language-specific-DTP
AN —-=- language-specific-DGP
—-=- language-specific-ENS

0.8501

ELAS
-

0.825

0.800 A

0.775 A

0.750 1

5 10 15 20 25 30 35 40 45
sentence length

Figure 5: ELAS of the English treebank relative to sen-
tence length.

For the encoder, pre-trained Transformers (Devlin
et al., 2019; Liu et al., 2020; Lan et al., 2020) has
been shown to be effective in tagging and parsing
tasks without heavily engineered decoders(He and
Choi, 2020). The encoder representations embed
entire syntax trees according to the structural probe
(Hewitt and Manning, 2019), encouraging the appli-
cation of Transformers in parsing task. Not only in

the embedding space, syntactic structures are used
in the Tree Transformer (Wang et al., 2019), where
constituent attention is gradually learned bottom-
up layer by layer. Our parser employs pre-trained
transformer models in Section 3.2.

For the decoder, the deep biaffine attention
(Dozat and Manning, 2017) dominates the graph
based approach since its establishment. The
top ranked graph-based dependency parser at the
CoNLL 2017 Shared Task (Dozat et al., 2017)
adopts biaffine attention with rich character level
features. With a parsing algorithm other than MST,
the biaffine parser is successfully extended to se-
mantic dependency parsing (Dozat and Manning,
2018). The current state-of-the-art dependency
parsing records on English Penn Treebank (Mar-
cus et al., 1993) and Chinese Treebank (Xue et al.,
2005) are maintained by the Head-Driven Phrase
Structure parser (Zhou and Zhao, 2019), which
jointly learns constituency parsing and dependency
parsing with layers including biaffine attention.
Apart from parsing, biaffine attention has also been
applied to graph related task including relation ex-
traction (Nguyen and Verspoor, 2019) and corefer-
ence resolution (Zhang et al., 2018).

6 Conclusion

This paper describes our parsing approach to en-
hanced universal dependencies for the IWPT 2020
shared task. We find that the multilingual BERT
encoder is able to parse various languages without
language specific network design. Our proposed
ensemble method is shown to be beneficial for the
secondary dependency prediction.

In the future, we will improve the secondary
dependency prediction in a more systematic way.
We believe our current approach generating de-
pendency graphs satisfying the tree constraint of
primary dependencies can be further improved if
the constraint can be applied to biaffine attention
during training time, and the MSDAGS constraint
can be relaxed for better performance. We leave
these exciting topics for future work.

Acknowledgments

We gratefully acknowledge the support of the AWS
Machine Learning Research Awards (MLRA). Any
contents in this material are those of the authors
and do not necessarily reflect the views of AWS.

187

References

Mariana SC Almeida and André FT Martins. 2015.
Lisbon: Evaluating turbosemanticparser on multiple
languages and out-of-domain data. In Proceedings
of the 9th International Workshop on Semantic Eval-
uation (SemEval 2015), pages 970-973.

Mikhail Arkhipov, Maria Trofimova, Yuri Kuratov, and
Alexey Sorokin. 2019. Tuning multilingual trans-
formers for language-specific named entity recogni-
tion. In Proceedings of the 7th Workshop on Balto-
Slavic Natural Language Processing, pages 89-93,
Florence, Italy. Association for Computational Lin-
guistics.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
Overview of the IWPT 2020 Shared Task on Parsing
into Enhanced Universal Dependencies. In Proceed-
ings of the 16th International Conference on Pars-
ing Technologies and the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
Association for Computational Linguistics.

Jinho D. Choi. 2017. Deep Dependency Graph Con-
version in English. In Proceedings of the 15th In-
ternational Workshop on Treebanks and Linguistic
Theories, TLT 17, pages 35-62, Bloomington, IN.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of the 5th International
Conference on Learning Representations, ICLR’17.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but More Accurate Semantic Dependency
Parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL’18, pages 484-490.

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
20-30.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and
Xiaojun Wan. 2015. Peking: Building Semantic De-
pendency Graphs with a Hybrid Parser. In Proceed-
ings of the 9th International Workshop on Semantic
Evaluation, SemEval’ 15, pages 927-931.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019-1027.

188

Han He and Jinho D. Choi. 2020. Establishing
strong baselines for the new decade: Sequence
tagging, syntactic and semantic parsing with bert.
In Proceedings of the 33rd International Florida
Artificial Intelligence Research Society Conference,
FLAIRS’20.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4129-4138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference for Learn-
ing Representations, ICLR’15.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779-2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a Large Anno-
tated Corpus of English: The Penn Treebank. Com-
putational Linguistics, 19(2):313-330.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suérez, Yoann Dupont, Laurent Romary, Eric Ville-
monte de la Clergerie, Djamé Seddah, and Benofit
Sagot. 2020. Camembert: a tasty french language
model. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics.

Dat Quoc Nguyen and Karin Verspoor. 2019. End-to-
end neural relation extraction using deep biaffine at-
tention. In European Conference on Information Re-
trieval, pages 729-738. Springer.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659-1666.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing universal de-
pendency treebanks: A case study. In Proceedings
of the Second Workshop on Universal Dependencies
(UDW 2018), pages 102-107.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkovd, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
915-926.

Natalie Schluter. 2014. On maximum spanning dag
algorithms for semantic dag parsing. In Proceed-
ings of the ACL 2014 Workshop on Semantic Pars-
ing, pages 61-65.

Sebastian Schuster, Matthew Lamm, and Christo-
pher D Manning. 2017. Gapping constructions in
universal dependencies v2. In Proceedings of the
NoDalLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017), pages 123-132.

Sebastian Schuster and Christopher D Manning. 2016.
Enhanced english universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 2371-2378.

Bonggun Shin, Hao Yang, and Jinho D. Choi. 2019.
The Pupil Has Become the Master: Teacher-Student
Model-Based Word Embedding Distillation with En-
semble Learning. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence,
IJCAT’ 19, pages 3439-3445.

Milan Straka and Jana Strakova. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88-99, Vancouver, Canada.
Association for Computational Linguistics.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
Bert for finnish. arXiv preprint arXiv:1912.07076.

189

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061-1070, Hong Kong, China. As-
sociation for Computational Linguistics.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The Penn Chinese TreeBank: Phrase
Structure Annotation of a Large Corpus. Natural
Language Engineering, 11(2):207-238.

Rui Zhang, Cicero Nogueira dos Santos, Michihiro
Yasunaga, Bing Xiang, and Dragomir Radev. 2018.
Neural coreference resolution with deep biaffine at-
tention by joint mention detection and mention clus-
tering. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 102-107, Melbourne,
Australia. Association for Computational Linguis-
tics.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on Penn treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396-2408, Florence, Italy. Association for Compu-
tational Linguistics.

A Supplemental Materials
A.1 Hyperparameters

Table 4 shows the hyperparameters used to train
models for all languages.

Transformer
Max sequence length 256
Warm up steps 10%
Learning rate le™®
End learning rate 0
Weight decay rate 0
Adam (1 0.9
Adam (32 0.999
Adam € le™S
Parser
MLP® 500
MLPU 100
Clip norm 5
Learning rate le™3
Adam S 0.9
Adam (2 0.9
Adam € le™*?
Anneal factor 0.75
Anneal every 5000
Dropout Rates
Embeddings 33%
MLP 33%
Optimizer
Batch size ~ 150
Train epochs 1000

Table 4: Hyperparameters used for our experiments.

A.2 Language-Specific Encoders

Table 5 shows the authors and the sources of the
language-specific transformer decoders used to de-
velop our parsing models.

Lang. || Source

A.3 Parsing Results

Table 6 shows the parsing results using the 5 evalu-
ation metrics, unlabeled attachment score (UAS),
labeled attachment score (LAS), content labeled
attachment score (CLAS), LAS on enhanced de-
pendencies where labels are restricted to the UD
relation (EULAS), and LAS on enhanced depen-
dencies (ELAS).

Link

AR Unknown
EN Lan et al. (2020)

huggingface.co/asafaya/bert-base-arabic

huggingface.co/albert-xxlarge-v2

ET Unknown

FI Virtanen et al. (2019)

FR Liu et al. (2020); Martin et al. (2020)
IT Unknown

NL Unknown

PL Unknown

SV Unknown

BG Arkhipov et al. (2019)

CS Arkhipov et al. (2019)

SK Arkhipov et al. (2019)

dl.turkunlp.org/estonian-bert/etwiki-bert/pytorch/
huggingface.co/TurkuNLP/bert-base-finnish-cased-vl
huggingface.co/dbmdz/bert-base-italian-cased
huggingface.co/dbmdz/bert-base-italian-cased
huggingface.co/wietsedv/bert-base-dutch-cased
huggingface.co/dkleczek/bert-base-polish-uncased-vl
huggingface.co/KB/bert-base-swedish-cased
huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased
huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased
huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased

Table 5: The authors and sources of the language specific transformer encoders used to develop our models.

190

Multilingual Encoder Language-Specific Encoder

UAS | LAS | CLAS | EULAS | ELAS || UAS | LAS | CLAS | EULAS | ELAS
DTP || 79.05 | 74.75 | 71.76 71.83 61.28 || 67.06 | 58.80 | 51.77 56.69 49.38
AR | DGP || 73.51 | 69.50 | 65.28 65.49 63.56 || 59.84 | 51.99 | 43.88 46.75 43.71 3
ENS || 79.05 | 74.75 | 71.76 69.46 67.26 || 67.06 | 58.80 | 51.77 51.37 48.02
DTP || 9437 | 91.77 | 89.19 89.61 79.58 || 70.99 | 63.54 | 55.96 62.27 55.76
BG | DGP || 92.64 | 90.00 | 86.44 87.31 86.66 || 59.45 | 52.72 | 41.07 46.84 45.25 3
ENS || 9437 | 91.77 | 89.19 88.84 88.19 || 70.99 | 63.54 | 55.96 54.01 52.16
DEP || 93.72 | 91.91 | 90.74 87.20 78.37 || 86.83 | 83.58 | 80.84 79.53 71.73
CS SDP || 8549 | 83.81 | 78.52 80.38 79.38 || 75.95 | 72.96 | 66.06 69.79 68.47 3
ENS || 93.72 | 9191 | 90.74 86.63 85.51 || 86.83 | 83.58 | 80.84 53.45 51.05
DTP || 89.37 | 87.01 | 84.63 84.61 75.70 || 90.94 | 88.70 | 87.01 86.24 76.99
EN | DGP || 87.17 | 84.79 | 81.20 82.74 82.31 87.62 | 85.43 | 81.82 83.67 83.22 3
ENS || 89.37 | 87.01 | 84.63 83.68 83.24 || 90.94 | 88.70 | 87.01 85.76 85.30
DTP || 87.35 | 84.25 | 82.58 82.81 68.08 || 62.39 | 54.23 | 50.25 53.31 44.61
ET | DGP || 80.73 | 78.11 | 73.93 76.42 75.94 || 52.39 | 4598 | 39.66 44.62 43.90 2
ENS || 87.35 | 84.25 | 82.58 81.98 81.36 || 62.39 | 5423 | 50.25 52.74 51.82
DEP || 91.10 | 88.95 | 87.37 85.43 70.37 || 93.32 | 91.84 | 90.90 88.19 72.40
FI SDP || 78.61 | 76.71 | 71.06 72.62 72.03 || 85.89 | 84.29 | 80.89 80.10 79.38 3
ENS || 91.10 | 88.95 | 87.37 81.44 80.54 || 93.32 | 91.84 | 90.90 83.70 82.96
DTP || 92.32 | 88.49 | 84.27 87.47 85.29 || 92.52 | 89.33 | 85.53 88.28 86.23
FR | DGP || 82.39 | 79.07 | 67.42 75.49 74.35 || 87.46 | 84.70 | 77.91 80.12 78.87 1
ENS || 92.32 | 88.49 | 84.27 83.34 81.97 || 92.52 | 89.33 | 85.53 82.83 81.45
DTP || 94.96 | 93.32 | 89.88 90.49 75.21 95.03 | 93.66 | 90.67 90.89 75.50
IT DGP || 92.33 | 90.70 | 85.30 86.98 86.46 || 91.38 | 90.13 | 83.67 86.92 86.45 4
ENS || 94.96 | 93.32 | 89.88 88.35 87.83 || 95.03 | 93.66 | 90.67 89.04 88.52
DTP || 81.97 | 77.63 | 75.27 73.55 63.91 - - - - -

LT | DGP || 72.23 | 68.60 | 63.21 63.10 61.59 - - - - - 4
ENS || 81.97 | 77.63 | 75.27 68.24 66.12 - - - - -
DTP || 89.07 | 85.98 | 83.79 81.17 71.68 - - - - -
LV | DGP || 78.35 | 7592 | 69.89 71.95 71.58 - - - - - 3
ENS || 89.07 | 8598 | 83.79 79.66 79.19 -
DTP || 88.75 | 86.29 | 81.18 83.67 71.08 || 88.46 | 86.02 | 80.87 83.47 70.95
NL | DGP || 83.18 | 80.98 | 72.41 77.37 76.94 || 82.80 | 80.60 | 72.31 76.97 76.46 3
ENS || 88.75 | 86.29 | 81.18 81.21 80.72 || 88.46 | 86.02 | 80.87 80.59 80.02
DTP || 94.27 | 91.88 | 90.35 88.29 74.33 || 76.45 | 70.03 | 64.65 67.58 57.35
PL | DGP || 80.23 | 77.88 | 73.53 74.54 70.39 || 65.67 | 60.41 | 51.18 55.58 51.90 2
ENS || 94.27 | 91.88 | 90.35 86.79 82.39 || 76.45 | 70.03 | 64.65 63.82 59.59
DTP || 94.20 | 92.87 | 91.71 89.71 74.62 || 8231 | 7843 | 74.97 76.05 63.51
RU | DGP || 87.18 | 86.13 | 81.47 83.47 83.19 || 71.19 | 68.04 | 60.93 64.16 63.44 3
ENS || 94.20 | 92.87 | 91.71 88.93 88.60 || 8231 | 7843 | 74.97 72.13 71.19
DTP || 92.64 | 90.61 | 89.29 86.83 70.12 || 46.19 | 35.72 | 27.97 34.50 30.41
SK | DGP || 89.91 | 87.78 | 85.48 83.39 81.37 || 38.37 | 29.66 | 20.49 26.82 26.03 3
ENS || 92.64 | 90.61 | 89.29 84.73 82.72 || 46.19 | 35.72 | 27.97 31.19 30.08
DTP || 88.29 | 85.23 | 83.63 81.72 70.92 - - - - -

SV | DGP || 85.53 | 82.41 | 79.58 78.32 77.39 - - - - - 4
ENS || 88.29 | 85.23 | 83.63 79.11 78.19 - - - - -
DTP || 65.57 | 58.69 | 54.73 58.66 54.26 - - - - -
TA | DGP || 50.95 | 45.54 | 40.35 41.36 40.10 - - - - - 3
ENS || 65.57 | 58.69 | 54.73 48.50 46.67 - - - - -
DTP || 91.01 | 88.91 | 86.45 85.36 77.04 - - - - -
UK | DGP || 88.50 | 86.30 | 82.93 80.18 79.56 - - - - - 3
ENS || 91.01 | 88.91 | 86.45 80.34 79.69 - - - - -

DTP || 88.71 | 85.80 | 83.34 82.85 71.87 56.03 | 52.58 | 49.49 51.00 44.40
AVG | DGP || 81.70 | 79.07 | 74.00 75.36 74.28 || 40.95 | 38.22 | 33.70 36.03 35.25 3
ENS || 88.71 | 85.80 | 83.34 80.07 78.83 || 50.92 | 47.66 | 44.74 43.95 43.01

Rank

Table 6: Parsing results on the test sets evaluated by the 5 metrics, UAS, LAS, CLAS, EULAS, and ELAS. The
Rank column indicates the ranking of our best model for the corresponding language. AR: Arabic, BG: Bulgarian,
CS: Czech, EN: English, ET: Estonian, FI: Finnish, FR: French, IT: Italian, NL: Dutch, LT: Lithuanian, LV: Latvian,
PL: Polish, RU: Russian, SK: Slovak, SV: Swedish, TA: Tamil, UK: Ukrainian.

191

Efficient EUD Parsing

Mathieu Dehouck

Mark Anderson

Carlos Gomez-Rodriguez

Universidade da Coruna, CITIC
FASTPARSE Lab, LyS Research Group,
Departamento de Ciencias de la Computacién y Tecnologias de la Informacion
Campus Elvifia, s/n, 15071 A Coruiia, Spain
{mathieu.dehouck,m.anderson,carlos.gomez } @udc.es

Abstract

We present the system submission from the
FASTPARSE team for the EUD Shared Task
at IWPT 2020. We engaged with the task by
focusing on efficiency. For this we considered
training costs and inference efficiency. Our
models are a combination of distilled neural
dependency parsers and a rule-based system
that projects UD trees into EUD graphs. We
obtained an average ELAS of 74.04 for our of-
ficial submission, ranking 4th overall.

1 Introduction

Latterly, the environmental impact of Al and
NLP’s dependency on deep neural networks has
come under scrutiny (Schwartz et al., 2019;
Strubell et al., 2019). This has coincided with
a renewed push for efficiency in NLP so as to
make systems more easily used in different con-
texts, be it in hardware impaired conditions, large
web-scale applications, or a host of other consid-
erations (Strzyz et al., 2019; Clark et al., 2019; Vi-
lares et al., 2019; Junczys-Dowmunt et al., 2018).

Here we describe our contribution to the En-
hanced Universal Dependencies (EUD) Shared
Task at IWPT 2020 (Bouma et al., 2020), where
we have considered efficiency as well as bare ac-
curacy performance. We combine linguistics and
machine learning to develop efficient parsers, both
with respect to training and inference. First we
curtail the amount of training data we use, second
we try distillation to create smaller networks for
dependency parsers while maintaining accuracy,
and third we develop a rule-based system to cast
universal dependency (UD) trees as EUD graphs.

1.1 An aside on enhanced graphs

Certain syntactic phenomena, such as the prop-
agation of conjuncts or coreferences in relative
clauses, can only be handled implicitly by Uni-
versal Dependency (UD) trees resulting in opaque

192

relations or long paths between related content
words. EUD graphs is an enhanced representa-
tion which can handle these phenomena explicitly.
As nodes are not restricted to a single head, these
more complex relations can be more readily rep-
resented. While this results in a potentially much
more useful and informative representation, it also
makes for a more challenging task than vanilla UD
parsing.

2 Forest felling

Distillation introduces extra training overheads.
To mitigate this and to balance our pursuit of in-
ference efficiency with some semblance of train-
ing efficiency and considering recent results using
distillation suggest larger treebanks suffer greater
(Anderson and Gémez-Rodriguez, 2020), we de-
cided to set a limit to the size of training treebanks.

In order to minimise introducing compounding
variables that could affect training efficacy, we
renormalise the sampled treebanks to follow the
same tree length distribution of the original tree-
bank. Where more than one treebank exists for a
given language, we took a sample from each tree-
bank renormalised with respect to that treebank
and took a sample size so that the contribution
from each treebank would follow the same ratio
as the full data for that language.

We evaluated what limit to set by testing on 4
languages spanning 3 language families (Uralic,
Afro-Asiatic, and Indo-European). The only fam-
ily to appear in the shared task training data not
covered was Dravidian as the only example from
this language, Tamil, has too small a treebank
to have been useful for this analysis. We also
cover two branches of the Indo-European family.
Balto-Slavic is covered by Russian as the tree-
bank is rather large and uses the Cyrillic script.
Germanic is covered by Dutch, which we chose

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 192-205
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

=4 100 70-d #i= 50-d

Arabic Dutch

90

80
70
60

50

Finnish Russian

5

80

70

60

50

3K 6K 9K 12K 15K 18K 3K 6K 9K 12K 15K 18K

Number of Trees

Figure 1: LAS for different models for Arabic, Dutch,
Finnish, and Russian development treebanks.

as there are two treebanks which combine to a
sizeable number of trees and so would cover the
case of combining different treebanks. Finnish
was used to cover the Uralic family as we car-
ried this experiment out before the larger Estonian
treebank was made available and Arabic was used
for Afro-Asiatic. We used sample treebank sizes
of 1,000, 3,000, 6,075 (the number of trees in the
Arabic treebank), 12,217 (the number of trees in
the Finnish treebank), and 18,051 (the combined
number of trees in both Dutch treebanks). We cre-
ated 2 splits where possible (i.e. at 6,075 trees
Arabic isn’t a sample treebank) as a limited at-
tempt at experimental robustness.

We train a Biaffine parser using the hyperpa-
rameters of the original paper, shown in Table 6
in the Appendix (Dozat and Manning, 2017). We
then distill (as described in Section 3 and in Ap-
pendix A.1) these models to two different network
sizes, one which has 70% of the number of nodes
in both the BILSTM and MLP layers and one that
has 50%. Otherwise the structure of the network
is the same as the base model. The LAS aver-
aged over the splits for each sample and model are
shown in Figure 1 (similarly for UAS in Figure 8
in Appendix A.1). We are limited by what we can
extrapolate from the results for Arabic and Finnish
other than they appear to follow a similar trend to
Dutch and Russian. For the latter languages we
observe the performance levelling at larger tree-
bank sizes, which is neither remarkable nor unex-
pected, but also a widening between the perfor-
mance of the full and the distilled models.

As we are concerned with training efficiency,
we present the energy consumption for each model
type averaged over language and split in Figure 2.

193

Energy (kJ)

3000

6075
Number of Trees

12217 18051

Figure 2: Training energy consumption for different

models for different treebank sizes averaged over Ara-
bic, Dutch, Finnish, and Russian.

Arabic

mm 100 = 70-d 50-d

Dutch Finnish Russian

25K

Speed (tokens/s)
S
~

-
v
~

Figure 3: GPU inference speed for different models for
treebank 12k (except Arabic which uses its full tree-
bank of 6075 trees) averaged over 5 runs on the devel-
opment treebanks with batch size 256.

The amount of energy required to distill our mod-
els increases significantly with respect to treebank
size. However, distilling to a smaller model re-
quires less energy and, as can be seen in Figure 1,
the accuracy difference between the two distilled
models is nominal.

Figure 3 shows the inference speed (averaged
over splits and 5 runs) on GPU using a single CPU
core for each language using the models trained
with the 12,217 treebanks (for Arabic we use its
full treebank). We observe a sizeable increase in
speed over the baseline model for both distilled
models, but only a small difference between the
two distilled models.

From this, we decided to set an upper limit on
the treebank size for the main task to 13,121 (the
size of the Italian treebank) as this would require
the least amount of tampering and was close to
the second largest treebank size used here which
performed close to the largest. This meant tak-
ing a sample of the Czech, Dutch, Estonian, and
Polish treebanks and combining them as described
above. A sample was taken for the Russian tree-
bank. Some syntactic metrics are given in Table 7
in the Appendix which shows the different break-
down of the training data used for each of these
languages and how they are very similar to the full
data. Also, we opted to distill to 50% of the orig-
inal model size. For this analysis, and all subse-
quent analyses, the CPU used was an Intel Core i7-

7700 and the GPU an Nvidia GeForce GTX 1080.!

3 Boiling neural networks in the pot still

Neural network compression is not a new phe-
nomenon. For example, pruning has long been
shown to be an effective way to reduce parame-
ters with minimal impact on accuracy and also to
help generalisation (LeCun et al., 1990; Hagiwara,
1994; Wan et al., 2009; Han et al., 2015; See et al.,
2016). However, pruning isn’t overly useful for
creating efficient models as they leave networks
in irregularly sparse states. Other techniques ex-
ist that can recast networks into smaller more effi-
cient ones, but we focus on distillation. For a de-
tailed survey of current neural network compres-
sion techniques see Cheng et al. (2018).

Anderson and Gémez-Rodriguez (2020) used
teacher-student distillation to increase the infer-
ence efficiency while only losing marginal ac-
curacy for Universal Dependency (UD) parsing,
showing that distilled models outperform models
of the same structure and size trained normally.
Here we extend that work and use feacher-student
distillation to obtain efficient dependency parsers
as the basis of our enhanched-dependency parser
systems. A full description of our implementation
can be found in Anderson and Gémez-Rodriguez
(2020) but we also offer a condensed version in
Appendix A.1.

While we curtailed our training data, we se-
lected our models based on the performance on
the full development data for a given language
with gold sentence segmentation and tokenisation.
We used characters and words as input to our net-
work. The embeddings for both were randomly
initialised. The hyperparameters are the same
as used above. We also used early stopping to
limit unnecessary training time, stopping after 10
epochs without performance improvement.

At inference time we used UDPipe v2.5 mod-
els to predict everything except the parse (Straka
and Strakova, 2019). When a combination of tree-
banks were being predicted, we used the model
which corresponded to the largest of the treebanks.

Table 1 shows the total time to train the full-
sized models and the distillation models for all
languages. Also, shown is the GPU energy con-
sumption. The costs for distillation include those
of the base models.

'Using Python 3.7.0, PyTorch 1.0.0, and CUDA 8.0.

194

Training costs

Total time GPU Energy (kJ)

Base 08h:42m:52.1s 3570.7
Distill 30h:07m:49.6s 9981.8
Rule-based 00h:00m:41.1s n/a

Table 1: Total training time and GPU energy consump-
tion for all treebanks.

Training costs for distillation are more than
three times that of the baseline which is hardly sur-
prising. The inference energy cost for all develop-
ment treebanks (37K trees) for the full model is
2.10 (0.09)kJ (average value over 5 runs for each
treebank) whereas the cost for distillation is 1.49
(0.03)kJ. Based on these measurements, we would
need to parse 390M sentences to offset the extra
cost of distilling models when running on GPU.

UAS LAS ELAS UAS LAS ELAS

Arabic Bulgarian
full 77.0 72.8 68.4 full 91.5 87.6 85.3
dist 76.5 72.3 679 dist 91.6 87.6 85.2
udpipe 72.8 68.1 63.0 udpipe 88.7 84.3 81.9
Czech Dutch
full 90.0 87.0 82.4 full 87.5 84.0 82.2
dist 89.0 85.3 80.7 dist 86.7 82.9 81.0
udpipe 87.6 84.0 78.4 udpipe 79.3 75.0 73.2
English Estonian
full 85.6 82.6 81.2 full 85.5 81.5 80.3
dist 84.4 81.2 79.8 dist 84.7 80.2 79.0
udpipe 81.0 77.6 76.3 udpipe 81.5 77.6 76.7
Finnish French
full 86.2 83.1 79.9 full 88.1 85.5 82.3
dist 85.1 81.3 78.0 dist 88.5 85.8 82.6
udpipe 80.4 76.8 73.7 udpipe 85.2 82.6 79.4
Italian Latvian
full 91.6 89.3 87.8 full 86.7 83.2 79.3
dist 90.3 87.8 85.9 dist 86.0 81.9 78.2
udpipe 88.5 85.9 84.1 udpipe 79.8 75.4 70.5
Lithuanian Polish
full 77.6 72.7 68.6 full 90.9 87.2 78.6
dist 78.0 73.0 68.9 dist 90.2 86.0 77.2
udpipe 72.3 64.6 60.9 udpipe 87.1 82.6 74.7
Russian Slovak
full 90.2 87.3 84.4 full 85.4 81.6 77.0
dist 88.9 85.5 82.5 dist 84.7 80.7 76.1
udpipe 87.4 84.4 81.5 udpipe 81.2 75.9 70.5
Swedish Tamil
full 85.2 81.4 78.9 full 59.8 52.6 51.2
dist 85.3 81.6 79.0 dist 64.0 56.9 55.5
udpipe 79.5 75.4 73.2 udpipe 60.7 54.1 53.0
Ukrainian Average
full 87.1 83.2 78.3 full 85.0 81.3 78.0
dist 86.6 82.5 77.5 dist 84.7 80.7 77.3
udpipe 81.6 76.9 72.5 udpipe 80.9 76.5 73.1

Table 2: Attachment scores for both UD trees and EUD
graphs for the development treebanks using different
dependency parsers: full baseline models (Full), dis-
tilled models (dist), and UDPipe v2.5 models (udpipe).

Late in the day we decided to validate the re-
sults of Anderson and Gémez-Rodriguez (2020),
namely that distilled models outperform models
trained normally of equivalent sizes. This high-
lighted that our distilled models used for our of-
ficial score had not converged. We trained new
distilled models and the results given here are for
these new models. Our official results using the
partially-trained models are in table 9 in the Ap-
pendix. All results, including training costs, in this
section are for the full-trained distilled models and
unless otherwise stated are using the combined de-
velopment treebanks for each language.

Table 8 in the Appendix shows the performance
for the equivalent-sized models trained normally
(small) and the distilled models (dist) with respect
to UAS and LAS. For the most part the normal
models outperform the distilled models. The main
differences between our work and that of Ander-
son and Gémez-Rodriguez (2020) is we do not use
pre-trained word embeddings nor POS tags as fea-
tures. So perhaps without this extra information
distillation is less effective. Also, dropout wasn’t
used during distillation in the original paper but
is here, so perhaps the values used here were too
punitive a regularisation. Although we use the
same hyperparameters as the original paper, the
average LAS for the small normally trained mod-
els is 0.4 points less than the large model.

We also evaluated the distilled models against
the full baseline model and UDPipe v2.5. These
results are shown in Table 2. The distilled mod-
els outperform the UDPipe models and are within
a point of both UAS and LAS to the full model.
The ELAS results for the rule-based system using
the predicted dependency trees from each of the-
ses systems are also shown. The performance on
ELAS generally follows the dependency scores.

mm dist-cpu full-gpu

3K

2K+

o EREFLEFLEFRFERELREERET LE
D 20K =
8 20k I'- _ _ - _ I
416K _ - - N- B- = - N=
1) -
12K
8K
4K

ar bg cs en et fi fr it 1t v nl pl ru sk sv ta uk avg

full-cpu mm dist-gpu

d (tokens/s)

Figure 4: Inference speed for distilled (dist) and full
baseline models on CPU (-cpu) and GPU (-gpu) for
each development treebank averaged over 5 runs using
one CPU core with batch size 256.

Inference speed (token/s)

CPU UD parser Full pipeline
Base 1194.1(207.1) 879.0(123.4)
Distill 2912.9(535.1) 1569.9(238.8)
UDPipe 3629.4(584.0) 2220.2(698.0)

GPU pase 17427.0(1890.3) 2993.3(680.2)
Distill 20321.6(2348.9) 3073.7(714.9)

Table 3: Inference speeds for dependency parsers and
the full EUD pipeline for different systems run on de-
velopment treebanks and averaged over 5 runs.

Figure 4 shows the inference speed using GPU
and CPU of the full baseline model and the dis-
tilled models for each language. These are ob-
tained by running the parser 5 times for each lan-
guage on the full development data and only using
one CPU core. The average speed (token/second)
increase was 2.44x (1.17x) on CPU (GPU).

Table 3 shows the inference speeds for the full
pipeline and the dependency parser. We also com-
pare UDPipe inference performance as it is a vi-
able candidate for an efficient parser. It is the
fastest of the systems compared here, but the full
pipeline which used it obtained an average ELAS
4.9 points less than full baseline model whereas
the distilled models are only 0.7 points less.

4 Unravelling trees with shrewd rules

Rule-based systems are intrinsically efficient with
respect to training time (barely a flash in the pan)
and inference time (there is practically none). So
we developed a simple rule-based system to en-
hance the existing dependency tree and reveal hid-
den dependencies in a cross-lingual setting using
as few language specific rules as possible. Beyond
the basic enhancement of the original dependen-
cies, there are four main phenomena that create
new dependencies: relative clauses, control, con-
junction and ellipsis. Since our pipeline does not
predict empty nodes, we decided to ignore ellipsis
in this system. To deal with each of these phe-
nomena, our algorithm needs to make a number of
passes over each sentence.

Pass one - relative clauses and controls: The
first pass of the algorithm iterates through each
word in the sentence and creates enhanced rela-
tions according to the type of the original depen-
dency. When necessary, it adds lemma and case
information. If the current word is a relative pro-
noun/adverb, its antecedent is found by following

195

its path to the root until an acl:relcl relation
is met. Then a ref edge is created between the
word and its antecedent and an edge between the
antecedent and the governor of the relativiser with
the same relation type as the original relation (if
the relative pronoun is the object of a verb then
the antecedent becomes the object of that verb).
If the word is the dependent of an xcomp rela-
tion, the algorithm looks for a subject amongst its
controlling predicate’s arguments. If a subject is
found, it creates an edge between the subject and
the current word of type nsubj (:xsubj) (or
csubj in the case of a clausal argument). If no
subject is available, the current word is stored in
a separate list for later processing. If the word is
the dependent of a con 7 relation, it too is stored
in a separate list along with all other conjuncts.
Whenever we encounter an argument of the type
subject, object or oblique, this information is kept
for resolving subjects of controlled predicates.

ACL:RELCL

jesters who have ruined eveything
REF

Figure 5: Relative clause example. Pre-existing edges
in graph are in magenta and blue. The algorithm ob-
serves an acl:relcl relation (highlighted in blue)
which causes it to generate two new relations (high-
lighted in green). A ref relation is created between
who and its antecedent, jesters. Then a nsub j is prop-
agated from the head of who, ruined, to jesters.

Pass two - resolving conjunctions: We have
two general functions, one for dependent level
conjunctions and one for governor level conjunc-
tions, and a few special cases. The dependent level
function propagates the conjunction head’s origi-
nal relation to its conjuncts adapting it if neces-
sary, for example in coordinated nmod with dif-
ferent adposition or case. The governor level func-
tion propagates the conjunction head’s dependents
to its conjuncts in the absence of similar depen-
dents and according to morphological agreement.
We have a special function that handles subjects
of conjuncts because subjects are more diverse
than other syntactic functions. In UD at least
three relations can mark subjects, namely nsubj
for nominal subjects, csubj for clausal subjects

and expl used amongst other for syntactic sub-
jects in non prodrop languages (e.g. it rains”).
Subject edges also embed information about their
governor, notably information about the voice as
:pass when relevant. And, subjects can be ab-
sent altogether in prodrop languages, so we rely
on morphological information to decide to propa-
gate a given subject in these languages.

NSUBJ DE

they angered the dwarves and the elves

Figure 6: Conjunction example. Magenta and blue
edges are those existing in the graph after one pass.
During the first pass elves is stored as it is the de-
pendent of a conj relation (highlighted in blue). On
the second pass the ob j relation of dwarves, the head
of this con j relation, propagates to elves generating a
new ob j relation (highlighted in green) from angered.

Pass three and onwards - sweeping up controls:
Once conjunctions have been resolved and more
predicates have their arguments stored, the algo-
rithm iterates over controlled predicates that do
not have a subject after the first sentence traversal.
Several such iterations may be necessary since the
number of times a predicate may be coordinated
with a controlled verb itself already coordinated
to another controlled verb is not bounded. Like in
the sentence “Sam stood up and wanted to scream
and start running.” But in practice one iteration
solves the vast majority of missing subjects.

o)
=N
gnomes quailed and wanted to weep
NSUBJ /

Figure 7: Control example. The edges of the graph
after two passes are in magenta and blue. During the
first pass weep is stored as it is a dependent of a xcomp
relation (highlighted in blue) but it cannot be resolved
until wanted is. wanted is resolved in the second pass
and an nsubj relation (shown in blue) is propagated
from the head, gnomes, of its conjunct, quailed. In the
third pass this is further propagated to weep generating
ansubj:xsubj relation (highlighted in green).

196

4.1 Tuning the rules

A number of enhancements are relation and lan-
guage specific and some even lexically condi-
tioned such as control, and not all languages in-
clude every enhancement type. So the training
data is used to tune rules to a given language while
keeping the rule definitions as generic as possible.

The first type of information needed regards ad-
ditional lemmas and cases appearing in edges. For
each relation type, the frequency at which case is
being added to the relation is obtained. Similarly
for lemma, the algorithm counts the frequency of
relation types between a word and its dependent
used for lexicalisation since different relations are
augmented with different dependents (obl usu-
ally uses case where acl prefers mark). Fur-
thermore, for lemmas, when several dependents
have the same relation, it checks which is used for
lexicalisation. For conj though, it only checks if
there is anything at all since con j is tightly linked
to cc.

Each language is tested to see if it is prodrop by
comparing the number of root verbs with an overt
subject to the number of root verbs without an
overt subject. Whether : xsubj and : relsubj
should be added to subjects of controlled predi-
cates and relative clauses is also checked.

The algorithm then checks whether each rela-
tion propagates to its governor’s conjuncts and un-
der which conditions (the conditions are detailed
in Appendix A.2.1) and also if it propagates to
its own conjuncts. This is mostly relevant since
root usually does not propagate to conjuncts of
the main predicate, but in some treebanks it does.

Morphological features are used for detecting
relativisers. For each morphological feature, the
number of times it co-occurs with a ref en-
hanced relation is compared to the number of
times it co-occurs with another relation. While
not an arbitrary choice, it is one of the few cases
where an enhanced relation does not depend di-
rectly on information in the original tree but on
information external to the tree, so in theory we
could have chosen other clues such as the lemma
of the word instead. These pronouns and ad-
verbs are usually marked with PronType=Rel
or PronType=Int, Rel.

Finally, the controlling profile of controlling
predicates is learnt. The system discerns which
of the arguments is used as subject of controlled
verbs and in which conditions, meaning that we

197

do not count subjects in the absence of other argu-
ments since they become default.

4.2 Problems

While our rule-based system performs remarkably
well, as can be seen in Table 4, with the lowest
ELAS being 94.9 on the gold development data,
it is challenging to improve across languages si-
multaneously. Besides the expected ambiguity of
language, there are several issues which limit us,
some easy to fix, some more complicated, some
language specific, and some more general.

ELAS
Gold Full Dist UDPipe
Arabic 98.8 684 679 63.0
Bulgarian 98.6 853 852 819
Czech 979 824 80.7 784
Dutch 98.9 822 810 732
English 99.5 812 79.8 763
Estonian 99.2 803 79.0 76.7
Finnish 973 799 780 737
French 989 823 826 794
Italian 99.5 87.8 859 84.1
Latvian 95.7 793 782 705
Lithuanian 98.8 68.6 689 60.9
Polish 949 786 772 747
Russian 98.6 844 825 815
Slovak 98.8 77.0 76.1 705
Swedish 98.8 789 79.0 732
Tamil 99.3 512 555 530
Ukrainian 958 783 775 725
Average 982 780 773 731

Table 4: Enhanced labelled attachment score for EUD
graphs when using gold labelled dependency develop-
ment treebanks (gold), predicted treebanks with full
baseline models (Full), distilled models (Dist), and us-
ing UDPipe v2.5 models (UDPipe).

On the monolingual front, incomplete, erro-
neous and inconsistent annotations are the biggest
problems. Incomplete annotation can occur both
at the enhanced dependency and the lower level
of annotation. For example in Dutch Alpino,
we miss 515 ref relations and thus at least as
many enhanced relations from their antecedents,
representing two thirds of the missing dependen-
cies. The bulk of these missed references are rel-
ative/interrogative pronouns/adverbs that are not
annotated with an empty feature column. We
wanted to avoid too many language specific rules
and ignored them, leading to more than a thou-
sand missing edges. Likewise, in some languages
not all relativisers (typically interrogative adverbs)
are marked as references when they should be ac-
cording to UD guidelines.

Tokens Words Sentences UPOS XPOS UFeats AllTags Lemmas UAS LAS CLAS MLAS BLEX EULAS ELAS

Arabic 100.0 94.6 82.1 88.5 840 842 820 88.5 765 72.0 68.0 570 63.0 702 678
Bulgarian 99.9 99.9 942 97.6 943 954 938 946 92.1 885 845 780 775 873 864
Czech 99.9 99.9 932 97.8 909 90.8 89.7 974 88.0 84.1 809 704 786 82.0 79.6
Dutch 99.7 99.7 69.3 92.6 899 92.0 89.0 944 845 80.8 737 635 680 793 787
English 99.2 99.2 838 93.6 928 941 90.7 954 848 81.7 777 69.0 738 80.8 80.1
Estonian 99.7 99.7 900 950 962 928 91.0 904 827 782 755 673 662 717 768
Finnish 99.7 99.7 887 948 545 93.0 518 87.1 86.1 82.6 80.0 721 670 80.8 794
French 99.7 99.2 943 935 992 888 873 949 878 822 748 605 691 81.6 795
Italian 99.9 99.8 9838 972 970 971 962 974 914 89.1 838 792 803 87.6 869
Latvian 99.3 99.3 987 935 843 895 839 92.7 86.0 81.8 787 659 724 793 718
Lithuanian 99.9 999 879 90.3 80.7 812 793 88.8 752 69.4 660 484 56.8 666 645
Polish 99.4 99.8 975 964 849 83.6 803 95.6 90.1 859 824 622 778 84.0 775
Russian 99.6 99.6 98.8 97.8 99.6 853 850 96.5 893 862 834 655 800 845 833
Slovak 100.0 100.0 85.3 929 77.1 803 76.7 86.6 856815 780 568 648 79.8 76.7
Swedish 99.2 99.2 935 933 91.0 849 832 90.0 83.4 793 76.0 586 670 779 770
Tamil 99.2 945 975 81.3 763 805 75.6 84.1 625 53.0 488 399 437 530 517
Ukrainian 99.8 99.8 96.6 949 840 843 833 93.6 85.0 81.0 764 59.6 700 784 764
Average 99.7 99.1 912 93.6 869 881 835 922 842798 758 632 692 783 765

Table 5: Test results evaluated through the official submission site and using our updated distilled model. Our
official submission results can be seen in Table 9 in the Appendix.

Erroneous annotations can be at lower levels of
annotation of the dependency tree, thus when ap-
plying rules according to these annotations, erro-
neous edges are created. For example in English
(EWT), there is the sentence “Let me know if this
is the appropriate steps that you would like to see,”
in which that which references steps is analysed as
the object of like (“you would like the steps to see”
vs. “you would like to see the steps”) thus the con-
trolling rule for /ike makes steps the subject of see
in place of you. Annotation errors can also happen
in the enhanced structure. In Russian, for exam-
ple, a number of nominal modifiers have diverg-
ing case information in the feature column and in
the enhanced relation one, often Case=Gen with
nmod:acc, so the predicted enhanced relation
nmod : gen conflicts with the actual annotation.

Latvian offers an example of inconsistent anno-
tation, nmod 1is extended with either the adposi-
tion’s lemma or the word’s case but never both and
the selection of lemma or case for any given word
is seemingly arbitrary. So it is impossible to devise
a rule to address this issue.

However, most of these problems are easily rec-
tified with a system such as ours by checking the
agreement of case and lemma information in en-
hanced relations assuming valid annotation of the
underlying data.

On the cross-lingual front, the biggest problem
is lack of consistency in annotation conventions.
Leaving incomplete annotation aside, there are a
number of clear divergences. The most striking
example is the way subjects of passive verbs and

more generally enhanced relations are handled in
French Sequoia. These relations receive an extra
(:) enh to differentiate them from canonical re-
lations directly taken from the tree, the presence
of the column depends mostly on the number of
columns in the relation type, if it is a simple rela-
tion then a column is used but when it is already a
sub-type with a column between the main type and
extra information then no column is added. Not
only is this unique to this treebank, but it is also
redundant since this information can be directly
retrieved by looking at the original tree. There
are also a number of more subtle inconsistencies.
For example, in languages that add lemma infor-
mation to conj relations, when the coordinating
conjunction is a symbol (& or /), most languages
just ignore them and keep the bare con j relation.
However, Swedish uses the special con 7 : symre-
lation.

Beyond these issues, there remain genuine lin-
guistic difficulties. A difficulty common to all lan-
guages is the scope of conjunctions and whether
to propagate dependents amongst conjuncts or
not. This is particularly clear with adverbials and
obliques that modify verbs. Due to their broad se-
mantic range, adverbials can propagate from con-
junction heads to dependent conjuncts even if they
already have other adverbials, as long as they do
not conflict semantically. Currently in UD, there
is no hierarchy amongst dependents of a word, but
there could be a form of scope indexing to distin-
guish a word’s direct dependents from dependents
of the whole conjunction attached to its head.

198

Another difficulty is subject selection in pro-
drop languages. Fortunately, the prodrop lan-
guages in this shared task have personal and num-
ber agreement at least on finite verbs which helps
testing the compatibility of the overt subject of a
verb with its coordinated verbs or verbs in rela-
tive clauses that lack an overt subject. However,
there are prodrop languages that do not mark per-
sonal agreement on verbs and do not use relativis-
ers either (e.g. Japanese). In this case, finding the
semantic subject of verbs may be much more chal-
lenging.

5 Results and Discussion

Despite focusing on efficiency, our official sub-
mission obtained an average ELAS of 74.04 which
was the fourth best system (out of 9 full sub-
missions). Our improved score after training dis-
tilled models to convergence (or closer to conver-
gence) obtained an average score of 76.14. The
full breakdown of these results are shown in Table
5 and Table 9 in the Appendix.

Our system is competitive mainly by the grace
of our rule-based system which obtains an aver-
age 98.20 ELAS when used on the gold develop-
ment treebanks. And for the most part its per-
formance echoes the quality of the predicted de-
pendencies and tags used by the system as is seen
in Table 2. Having a rule-based system that can
perform so well on gold data means that improv-
ing the dependency predictions it is based on for
a full pipeline will almost always increase ELAS
scores. It also means it could be used to gener-
ate new data. Although this would be restricted
to generating data for pre-existing UD treebanks.
Furthermore, it could be used to highlight anno-
tation inconsistencies in a given treebank and be-
tween different treebanks for the same language.

We also demonstrated that smaller networks can
be competitive, even if in this context distillation
does not perform as well as previously observed
for UD parsing. And beyond that, we show that
it is possible to train competitive models with less
data and by doing so lowering the energy cost of
training parsers. One potentially interesting re-
sult is that Tamil performs noticeably better with
distillation than either the full baseline model or
the small model of the same size trained nor-
mally. It has the smallest training treebank out
of all the treebanks used in the shared task. The
other smaller treebanks also perform better with

199

distillation, e.g the next three smallest treebanks
French, Lithuanian, and Swedish all follow this
trend but the increase in performance is less pro-
nounced. Perhaps smaller treebanks benefit from
what is essentially ensemble training as it tempers
a network’s penchant for over-fitting.

Acknowledgments

This work has received funding from the Eu-
ropean Research Council (ERC), under the Eu-
ropean Union’s Horizon 2020 research and in-
novation programme (FASTPARSE, grant agree-
ment No 714150), from the ANSWER-ASAP
project (TIN2017-85160-C2-1-R) from MINECO,
and from Xunta de Galicia (ED431B 2017/01,
ED431G 2019/01).

References

Mark Anderson and Carlos Gémez-Rodriguez. 2020.
Distilling neural networks for greener and faster
dependency parsing. In Proceedings of the 16th
International Conference on Parsing Technologies
(IWPT 2020) (In press).

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in Neural Information
Processing Systems, pages 2654-2662.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Cristian Bucila, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In
Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining, pages 535-541. ACM.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2018.
Model compression and acceleration for deep neural
networks: The principles, progress, and challenges.
IEEE Signal Processing Magazine, 35(1):126—-136.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D Manning, and Quoc Le. 2019.
BAM! Born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5931-5937.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. Proceedings of the 5th International Confer-
ence on Learning Representations.

Masafumi Hagiwara. 1994. A simple and effective
method for removal of hidden units and weights.
Neurocomputing, 6(2):207-218.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, pages 1135-1143.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, et al. 2018.
Marian: Fast neural machine translation in C++. In
Proceedings of ACL 2018, System Demonstrations,
pages 116-121.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of
EMNLP, pages 1317-1327.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an ensemble of greedy dependency parsers
into one MST parser. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1744—1753, Austin, Texas.
Association for Computational Linguistics.

Yann LeCun, John S Denker, and Sara A Solla. 1990.
Optimal brain damage. In Advances in neural infor-
mation processing systems, pages 598—605.

Yijia Liu, Wanxiang Che, Huaipeng Zhao, Bing Qin,
and Ting Liu. 2018. Distilling knowledge for
search-based structured prediction. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 1393-1402, Melbourne, Australia. As-
sociation for Computational Linguistics.

Liang Lu, Michelle Guo, and Steve Renals. 2017.
Knowledge distillation for small-footprint highway
networks. In 2017 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 4820-4824. IEEE.

Roy Schwartz, Jesse Dodge, Noah A Smith, and
Oren Etzioni. 2019. Green Al. arXiv preprint
arXiv:1907.10597.

Abigail See, Minh-Thang Luong, and Christopher D
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 291-301.

Milan Straka and Jana Strakovd. 2019. Universal de-
pendencies 2.5 models for UDPipe (2019-12-06).
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (UFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity.

200

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gomez-
Rodriguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of NAACL-HLT,
pages 717-723.

David Vilares, Mostafa Abdou, and Anders Sggaard.
2019. Better, faster, stronger sequence tagging con-
stituent parsers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3372-3383.

Weishui Wan, Shingo Mabu, Kaoru Shimada, Kotaro
Hirasawa, and Jinglu Hu. 2009. Enhancing the gen-
eralization ability of neural networks through con-
trolling the hidden layers. Applied Soft Computing,
9(1):404-414.

Seunghak Yu, Nilesh Kulkarni, Haejun Lee, and Jihie
Kim. 2018. On-device neural language model based
word prediction. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 128—131.

A Appendix
A.1 Teacher-student distillation

Model distillation is the act of taking one or more
models and guiding the training of a single net-
work with these models. It was originally intro-
duced not as a means of creating more efficient
models, but as a way of ensemble training with
networks (Bucila et al., 2006; Ba and Caruana,
2014; Hinton et al., 2015; Kuncoro et al., 2016).

Teacher-student distillation, the method used in
this work, has been successfully utilised in a num-
ber of NLP tasks ranging from machine transla-
tion, language modelling, exploring structured lin-
guistic space, and speech recognition (Kim and
Rush, 2016; Lu et al., 2017; Liu et al., 2018; Yu
etal., 2018).

In teacher-student distillation, the teacher
guides the training of another model, the student,
which in our experiments is smaller. The stu-
dent explicitly uses the information of the larger
model by comparing the probability distribution
of the respective model’s output layer. We use the
Kullback-Leibler divergence to obtain the loss be-
tween these two distributions:

P(x;)
Lk =— P(x;)lo
KL ;Zz: g Q(x;)

(1

where P is the probability distribution from the
teacher’s softmax layer, () is the probability distri-
bution from the student’s, and x; is input vector to
the softmax corresponding to token w; of a given
tree ¢ for all trees in batch b.

For our implementation there are two probabil-
ity distributions as we are using a Biaffine parser,
one for head predictions and one for label predic-
tions.?

The student is also trained directly on the gold
heads and labels using a categorical cross entropy
loss, e.g. for the loss on head predictions:

Log=—Y Y logp(hilx;)

teb 1

2)

where h; is the true head position for token wy,
corresponding to the softmax layer input vector Xx;,
of tree ¢ in batch b.

The total loss is therefore the combination of the
Kullback-Leibler loss between the probability dis-
tributions of the feacher and the student for both
head and label predictions with the cross entropy
loss between the student predictions and the gold
data:

L= Lxr(Th,Sh) + Lxr(Tiab, Stab)

+ Lcog(h) + Log(lab) 3)
where Lcp(h) is the loss for the student’s pre-
dicted head positions, Lcg(lab) is the loss for
the student’s predicted arc label, Lg 1 (Th, Sp) is
the loss between the teacher’s probability distribu-
tion for arc predictions and that of the student, and
L 1,(Tiap, Siap) is the loss between label distribu-
tions.

A.2 Details of dependency enhancements

In this section we give more details about the en-
hancement of dependency relations and about the
processing subtleties of relative clauses, controlled
predicates, and conjunctions.

Most of the original dependencies are kept in
the enhanced structure, but they can undergo a
number of cosmetic changes. In the simplest case,
the relation type ¢ is just appended to the index A
of the word’s governor to give the relation A : t.
Sometimes, during the process the relation type is
slightly modified. In Estonian (EDT and EWT)
some complex relations such as compound:prt

The PyTorch implementation used can be found at:
www.github.com/zysite/biaffine-parser

201

90] Arabic

80
70

60

Finnish Russian

....... ="
A
70
60

50

3K 6K 9K 12K 15K 18K 3K

Number of Trees

6K 9K 12K 15K 18K

Figure 8: UAS for different models for Arabic, Dutch,
Finnish, and Russian development treebanks.

hyperparameter value
word embedding dimensions 100
char embedding dimensions 32
char BiLSTM dimensions 100
embedding dropout 0.33
BiLSTM dimensions 400 (200)
BiLSTM layers 3
arc MLP dimensions 500 (250)
label MLP dimensions 100 (50)
MLP layers 1
learning rate 0.2
dropout 0.33
momentum 0.9
L2 norm A 0.9
annealing 0.75" (*/5000)
€ 1x107'2
optimiser Adam
loss function Cross entropy
epochs 100
min vocab freq. 2

Table 6: Hyperparameters for baseline models. The
values in parentheses show the values for the distilled
and small models used in the main analysis of the
shared task.

or csubj:cop are truncated and only the first
part is kept. Conversely, in French (Sequoia)
some relations receive extra information, such as
subjects of passives nsubj:pass that are aug-
mented with xoxob j stating they are the seman-
tic object of their head.

Some relations receive extra lexical and mor-
phological information. Conjuncts marked with
conj usually receive the lemma of the coordi-
nating conjunction (cc). Likewise, adverbial and
adjectival clauses (advcl and acl) receive the
lemma of the word (mark) that introduces them.
Nominal modifiers and obliques (nmod and ob1)
can receive the lemma of the adposition that in-
troduces them (often marked with the case re-

original sample
trees mL mDD NP% trees mL mDD NP% 2s-KSp
Czech
-CAC 23478 20.1 3.7 25 3016 199 37 25 0.014
-FicTree 10160 132 3.6 3.8 1305 13.1 36 3.8 0.016
-PDT 68495 17.1 3.7 2.7 8800 17.1 3.7 2.6 0.007
-combined 102133 174 3.7 2.7 13121 174 37 2.7 0.007
Dutch
-Alpino 12264 152 4.0 45 8915 152 40 44 0.004
-LassySmall 5787 13.0 3.7 2.0 4206 13.0 3.7 19 0.007
-combined 18051 145 39 3.8 13121 145 39 3.7 0.004
Estonian
-EDT 24633 140 3.6 0.8 12552 141 3.6 0.8 0.010
-EWT 1116 154 38 1.5 569 154 38 1.6 0.027
-combined 25749 14.1 3.6 09 13121 141 3.6 0.8 0.009
Polish
-LFG 13774 7.6 28 03 5738 76 28 03 0.006
-PDB 17722 159 34 14 7383 159 34 1.5 0.008
-combined 31496 123 33 1.1 13121 123 33 1.2 0.003
Russian
-SynTagRus 48814 178 3.6 1.6 13121 17.8 3.6 1.6 0.004

Table 7: Analysis of renormalised treebank samples: 2s-KS is the two-sample Kolmogorov-Smirnov test com-
paring the sentence-length distributions of the original and the sample treebanks (where values close to 0 suggest
samples are not from different distributions, and values approaching 1 suggest otherwise); trees is the number
of trees; mL is the mean sentence length; mDD the mean dependency distance; and NP% is the percentage of
non-projective arcs. Where we use the combined sample (or just the sample for Russian-SynTagRus) for training.

UAS LAS UAS LAS
Arabic Bulgarian
small 76.9 72.5 small 91.6 87.6
dist 76.5 72.3 dist 91.6 87.6
Czech Dutch
small 89.5 86.0 small 87.2 83.3
dist 89.0 85.3 dist 86.7 82.9
English Estonian
small 85.0 81.9 small 85.2 80.9
dist 84.4 81.2 dist 84.7 80.2
Finnish French
small 85.8 82.2 small 88.1 85.5
dist 85.1 81.3 dist 88.5 85.8
Italian Latvian
small 91.3 89.0 small 86.3 82.4
dist 90.3 87.8 dist 86.0 81.9
Lithuanian Polish
small 76.7 71.5 small 90.5 86.4
dist 78.0 73.0 dist 90.2 86.0
Russian Slovak
small 89.5 86.3 small 85.6 81.7
dist 88.9 85.5 dist 84.7 80.7
Swedish Tamil
small 84.5 80.8 small 63.7 55.7
dist 85.3 81.6 dist 64.0 56.9
Ukrainian Average
small 86.8 82.6 small 85.0 80.9
dist 86.6 82.5 dist 84.7 80.7

Table 8: Comparison of attachment scores for the de-
velopment treebanks for distilled (dist) models and
models with the same parameters (small) trained nor-
mally.

202

lation). Furthermore nmod and obl can also
receive case information about the word itself.
When the introducing marker is not a word but a
fixed expression such as “as well as” then the long
lemma composed of the lemmas of each word in
the expression (marked by the £ixed relation) is
used, for example conj:as well _as.

Relative clauses The only relations from the
original tree that are not kept in the en-
hanced structure are those whose dependent is an
anaphoric pronoun or adverb used to introduce a
relative clause. Instead, the dependent (pronoun or
adverb) is linked to its antecedent by an edge la-
belled ref. A new edge is then added between the
original head of the reference and its antecedent of
the same type as the original relation in order to
show the argument structure of the clause. Thus,
relative clauses are the first phenomenon that cre-
ates edges that are not present in the original tree.
Their structure is however relatively simple since
they can at most create one extra edge and replace
one.

There are nonetheless two subtleties with rel-
ative clauses. First, in some languages, such as
English, relative pronouns are not necessary. In
these cases, while there are restrictions on the role
the antecedent can fill, we need to infer its actual
role from the sentence. Second, there may be sev-

Tokens Words Sentences UPOS XPOS UFeats AllTags Lemmas UAS LAS CLAS MLAS BLEX EULAS ELAS

Arabic 100.0 94.6 82.1 88.5 84.0 842
Bulgarian 99.9 999 942 976 943 954
Czech 99.9 99.9 932 97.8 909 90.8
Dutch 99.7 99.7 693 926 899 920
English 99.2 99.2 838 93.6 92.8 94.1
Estonian 99.7 99.7 900 950 962 9238
Finnish 99.7 99.7 887 948 545 93.0
French 99.7 99.2 943 935 992 8838
Italian 99.9 99.8 988 972 97.0 97.1
Latvian 99.3 99.3 987 935 843 895
Lithuanian 99.9 99.9 879 903 80.7 81.2
Polish 99.4 998 975 964 849 836
Russian 99.6 99.6 98.8 97.8 99.6 853
Slovak 100.0 100.0 853 929 77.1 803
Swedish 99.2 99.2 935 933 91.0 849
Tamil 99.2 945 975 813 763 805
Ukrainian 99.8 99.8 96.6 949 840 843
Average 99.7 99.1 912 936 869 88.1

82.0 88.5 758 712 66.8 56.1 620 692 669
93.8 946 91.1 87.0 823 758 755 858 84.9
89.7 974 86.2 81.8 78.1 679 758 79.6 772
89.0 944 834794 719 619 664 780 774
90.7 954 83.7 80.1 758 672 721 792 785
91.0 904 80.7 755 7277 64.6 63.8 750 74.1
51.8 87.1 84.1 79.7 765 69.0 643 778 757
87.3 949 872 80.6 72.1 583 66.7 80.1 77.8
96.2 974 90.2 874 814 768 779 859 848
83.9 92.7 844 79.7 76.1 63.6 700 772 756
79.3 88.8 729 663 626 459 543 637 614
80.3 95.6 884 834 794 60.1 750 814 745
85.0 96.5 86.8 83.2 80.0 628 76.7 81.7 803
76.7 86.6 832 783 739 538 616 765 735
83.2 90.0 82.277.6 73.7 568 649 762 752
75.6 84.1 59.6 48.8 43.6 355 396 48.1 470
83.3 93.6 834 78.7 73.6 578 674 762 740
83.5 922 825776 73.0 60.8 667 760 740

Table 9: Full test results for our official submission using the shared task’s submission site for evaluation.

eral words that look like relativisers in a relative
clause even outside conjunction. Often, only one
of them is a leaf node, the others introducing fur-
ther embedded clauses. Only in Finnish (TDT) did
we find instances of multiple relative pronouns at-
taching to the same verb and each being marked as
the reference of another word in the sentence.

Control A second phenomenon that creates new
dependencies is control, where the subject of an
embedded clause is not overt and is provided by
one of its governor’s arguments. For example in
the English sentence “I want you to go,” the se-
mantic subject of the verb go is the object of the
main verb, namely you. In such a case, an addi-
tional relation is added to the structure to repre-
sent the dependency of the word you to the embed-
ded predicate go. These structures are marked by a
xcomp relation between the embedded predicate
and its governor in the original tree. The identity
of the new subject depends usually on the govern-
ing predicate and its argument structure. So it is
mostly a matter of knowing the governing profile
of each lexical item given their argument structure.
For example, the subject of a predicate embedded
in a want to clause is the object of the want fo
clause if present, its subject otherwise. Control is
also quite simple since it has a limited span.

Conjunction The vast majority of new edges are
created by conjunctions and is much harder to han-
dle than the two previous phenomena. Contrary
to relative clauses and control, conjunction has
no direction in the sense that it can occur both

203

at the governor level and at the dependent level.
In “Mary and Sam bought strawberries,” the con-
junction “Mary and Sam” occurs at the dependent
level and both Mary and Sam are subject of the
verb bought. In “Mary bought strawberries and
ate them,” the conjunction is now at the governor
level and Mary is the subject of both bought and
ate. So unlike relative clauses where one merely
needs to find the relativiser’s antecedent higher up
in the tree, or control where one needs to look for
the controlled subject amongst the arguments of
the controlling predicate, conjunctions can have
repercussions both higher up and lower down in
the structure at the same time.

The easiest case for conjunction is when it oc-
curs at the dependent level. One just needs to
propagate the relation existing between the head
of the conjunction and its governor to the other
conjuncts. In the case of conjunction at the gov-
ernor level, things are more complicated. While
dependents don’t tend to propagate up a conjunc-
tion chain but only down, they can be blocked
by a number of reasons. For example in “Mary
bought and ate strawberries,” the object strawber-
ries should attach to bought in the tree and only
propagate down to ate. But in “Mary spoke and
ate strawberries,” strawberries should attach to
ate and not propagate up to spoke, even though
speak can also have direct objects. And in “Mary
bought strawberries and ate,” strawberries does
not propagate down to ate since it appears before
it in the sentence. However, the conditions under
which certain dependents do or do not propagate

to their governor’s conjuncts are both language
and relation specific. In a given language, objects
need not behave like subjects nor like determin-
ers or adverbials. Often if a relation slot (object,
subject, determiner) is already filled for a given
word, it will block the propagation of the same re-
lation from higher up in the conjunction chain, but
it need not always be the case, especially with ad-
verbials. But even an empty slot does not always
guarantee propagation, especially in case marking
and prodrop languages where morphological con-
sideration play a major role as well. So we need to
learn the propagation conditions for each relation
type on a per language basis.

In our system, we keep track of dependents of
conj relations during the first traversal of a sen-
tence and handle them in the second pass. The
main reason for not processing conjuncts as soon
as they arrive in the sentence is that some of their
dependents (objects, adjectives or adverbials) can
appear later and thus would require extra process-
ing. For example, in “Mary bought and ate straw-
berries,” the object of both verbs only appears
after the conjunct ate, so upon first seeing ate,
bought does not have any object to be propagated.

A.2.1 Conjunction propagating conditions

We use two sets of conditions in order to guide
the propagation of dependents to their governor’s
conjuncts. The first is about relation types already
attached to these conjuncts. Usually an object or
a subject does not attach to a verb that already has
these slots filled. So for each relation, we mea-
sure three frequencies. The frequency at which
it co-occurs with other types under its main gov-
ernor (in the tree), the frequency at which it co-
occurs with other types under its conjunct gover-
nors (in the enhanced structure) and the frequency
at which it does not co-occur with other types be-
cause it does not propagate to its governor’s con-
junct. Any relation with which it co-occurs under
its main governor cannot be blocking propagation.
Then if a relation is more often than not associated
with conjunct governors to which the current rela-
tion did not propagate, it is considered a blocking
relation. In practice this means that a subj does
not propagate to a conjunct of its governor that al-
ready has an exp1l, for example.

The second condition is based on matching
morphological information. For every relation and
morphological category (tense, case, aspect, and
so on), we measure how often the value of a cate-

204

gory agrees or disagrees between the governor and
its conjunct (of the same UPOS tag) when the rela-
tion propagates and when it does not. If a category
disagrees more often than not between conjuncts
which the relation did not propagate, then we as-
sume that the category needs to agree for that re-
lation.

A.3 Curious quibbles and questionable
jiggery-pokery

While being above 94.9 ELAS for all languages,
our rule-based system could still be improved to
better capture enhanced structures. There are three
main points for further improvement.

Upon reviewing the code for the rule-based sys-
tem, we realised that we catch arguments of rela-
tive clauses only in presence of a relativiser that
receives the ref relation. This means that we
miss a number of relations involved in relative
clauses. It remained unnoticed because of all the
languages in the shared task, most use relative pro-
nouns/adverbs to introduce relative clauses. In
fact the only language that does not have relative
pronouns, Tamil, is not yet annotated with rel-
ative clauses and it might not even be relevant.
Our methodology here is to look for an antecedent
when we have a relative pronoun, but we could
do the opposite and look for potential relative pro-
nouns when we have a relative clause. The lat-
ter should indeed be more language agnostic and
work even when there are no relativisers involved.

A second point of improvement has to do with
subject finding in controlled predicates. In our
current system, the controlling behaviour of each
controlling construction is gathered from the train-
ing data, and if we encounter an out of vocabulary
construction at prediction time the subject is used
by default. But further consideration showed that
the object might be a more sensible default option
when available. It would, however, be more in-
teresting to learn the default behaviour on a per
language basis.

Thirdly, due to the march of time, we hard-
coded a number of heuristic thresholds used to
fine-tune the system. For example, to see if a lan-
guage is prodrop, we compare the number of root
verbs with overt subjects with the number of root
verbs without a subject. If at least a third of root
verbs do not have an overt subject then that lan-
guage was considered prodrop. This is clearly not
satisfying since this ratio can greatly vary from

language to language and from genre to genre.
Furthermore, some languages may not be gener-
ally prodrop, but ommit syntactic subjects in im-
personal constructions, such as Hebrew, or be pro-
drop only for certain tenses.

205

Linear Neural Parsing and Hybrid Enhancement for Enhanced Universal
Dependencies

Giuseppe Attardi, Daniele Sartiano, Maria Simi
Department of Computer Science,
University of Pisa
{attardi, sartiano, simi}@di.unipi.it

Abstract

To accomplish the shared task on depen-
dency parsing we explore the use of a lin-
ear transition-based neural dependency parser
as well as a combination of three of them
by means of a linear tree combination algo-
rithm. We train separate models for each lan-
guage on the shared task data. We compare
our base parser with two biaffine parsers and
also present an ensemble combination of all
five parsers, which achieves an average UAS
1.88 point lower than the top official submis-
sion. For producing the enhanced dependen-
cies, we exploit a hybrid approach, coupling
an algorithmic graph transformation of the de-
pendency tree with predictions made by a mul-
titask machine learning model.

1 System Overview

The shared task is aimed at performing all the levels
of linguistic analysis according to the UD guide-
lines, starting from raw text all the way to enhanced
dependency graphs. All this in a multi-language set-
ting for seventeen languages (Bouma et al., 2020).

In this endeavor, we concentrate on the syntac-
tic parsing and enhancement stages, by exploiting
existing tools for tokenization, sentence splitting,
POS tagging and morphological analysis.

For syntactic parsing we make experiments ex-
ploring different ideas, in an attempt to improve
state-of-the-art parsers with linear complexity. A
parser combination is then used for our official
submission, exploiting the linear tree combination
algorithm by Attardi and Dell’Orletta (2009), re-
sulting in an overall linear algorithm.

For the enhancement step, we build on previ-
ous work in writing an enhancer for UD, based on
algorithmic graph transformation, that was used
to produce the Italian version of the enhanced de-
pendencies (Simi and Montemagni, 2018). The
script used language specific heuristics and lexical

information, achieving a good degree of accuracy
for Italian and English. In this multi-language chal-
lenge, we have to deal with partial implementations
of the expected enhancement types as well as with
varying degree of compliance with the guidelines
in the different languages. In order to address this
additional complexity, we implement a new version
of the script for making it modular, parametric, and
language independent. For specific enhancement
tasks, we integrate the output of machine learning
classifiers, in an attempt to learn from the train-
ing data and make the heuristics more robust and
general.

2 Syntactic parsing

State of the art dependency parsers currently of-
ten adopt the graph-based model, based on neural
networks for the choice of arcs and labels.

We consider as current SOTA on the English PTB
the graph dependency parsers listed in Table 1.

In particular the Bi-LSTM-based deep biaffine
neural dependency parser by Dozat and Manning
(2017) has been quite popular and used in three out
of five of the top submissions to the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies (Zeman et al., 2018),
in particular in the top non-ensemble submission
(Kanerva et al., 2018).

The preference for such models leads to systems
with high accuracy but possibly slower due to their
O(n?) complexity. For example, the original im-
plementation of the Dozat parser is rated at about
400 sents/sec on GPUs, while for example the neu-
ral transition-based parser by Chen and Manning
(2014) is rated at 640 sents/sec just on CPUs. Our
experiments attempt to find a parser with linear
complexity and hence good speed performance. In-
deed the linear transition parser that we choose for
our experiments (UUParser) is twice as fast as the

206

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 206-214
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

Parser UAS LAS
HPSG (Zhou and Zhao, 2019) 96.09 94.68
BIST-Graph (Kiperwasser and Goldberg, 2016) 93.10 91.00
Biaffine (Dozat and Manning, 2017) 95.74 94.08
Pointer-TD (Ma et al., 2018) 95.87 94.19
Pointer-LR (Fernandez-Gonzalez and Gomez-Rodriguez, 2019) 96.04 94.43
UUParser (de Lhoneux et al., 2017) 94.63 92.77
BIST-Transition (Kiperwasser and Goldberg, 2016) 939 91.9
CM (Chen and Manning, 2014) 91.80 89.60

Table 1: SoTA dependency parsers, grouped into graph-based (top) and transition-based (bottom).

latest version of the biaffine parser from Stanford
(Stanza). However, after submission, we discov-
ered a new implementation of the biaffine parser in
PyTorch (Zhang, 2019), which is 5 times faster by
better exploiting GPU acceleration.

We trained our own models for each language
on the shared task treebanks for UUParser, UDPipe
and Zysite, while we used a pretrained multilan-
guage model for UDify and pretrained individual
language models for Stanza.

2.1 UUParser

We choose UUParser as our base parser. UU-
Parser (de Lhoneux et al., 2017) is a transition-
based parser model, derived from the parser by
(Kiperwasser and Goldberg, 2016): the (bidirec-
tional) LSTM’s recurrent output vector for each
word is concatenated with each possible head’s re-
current vector, and the result is used as input to a
MLP that scores each resulting arc. The predicted
tree structure at training time is the one where each
word depends on its highest-scoring head. Labels
are generated analogously, with each word’s recur-
rent output vector and its gold or predicted head
word’s recurrent vector being used in a multi-class
MLP. We ported the Kiperwasser parser to Python
3. UUParser was further extended to deal with
non-projectivity by means of a swap transition and
to support ELMo embeddings as an input to the
LSTM.

We further extended UUParser in order to ex-
ploit BERT and AIBERT embeddings. Words are
first tokenized with their specific tokenizer and then
the embeddings for words split into wordpieces ob-
tained as the average of the wordpiece embeddings.

The code for the extended version is available
on GitHub'.

On development experiments, using the English

"https://github.com/attardi/uuparser

207

Treebank Embeddings UAS LAS
en-ewt BERT 91.24 89.33
en-ewt AIBERT 91.36 89.39
fr-sequoia BERT 91.44 89.55
cs-pdt BERT 93.87 91.94
it-isdt BERT 94.67 93.11

Table 2: Parser accuracy on the development set.

and Italian train and development sets provided for
the task, we obtained the results in Table 2.

For BERT we use the base-uncased model and
for AIBERT the large-v2 model, which we keep
frozen during training. Given the minor difference
between using BERT and AIBERT, in our experi-
ments we choose to use the BERT model.

We explored the idea to provide hints to the
parser, obtained from structural syntax probes (He-
witt and Mannings, 2019). We use a syntax probe
to estimate the parse tree path distance between
two tokens. The transition-based parser needs to
decide at each step which transition to apply to the
pair of words on the top of the stack (s0) and on the
input buffer (b0). The parser computes a distance
matrix for each pair of tokens in a sentence. The
parser is provided as additional features the esti-
mated distances between b0 and the top k (default
3) tokens on the stack. These distances should help
the parser in deciding whether to perform a Shift
transition rather than a premature Reduce.

The results we obtained with such an extension
on the English development corpus where 92.21
UAS and 90.31 LAS, using ELMo embeddings for
word representations and BERT for syntax probes,
a small improvement with respect to 91.32 UAS
and 89.33 LAS without using these features.

We also tested two biaffine parsers: the im-
plementation by Zysite (Zhang, 2019) and
Stanza (Qi et al., 2020) which augments the bi-

Parser GPU CPU UAS
sents/s sents/s
UUParser 16.62 0.81 83.93
Stanza 7.77 0.43 84.51
Zysite 84.82 2.11 86.67

Table 3: Speed performance of parsers: average user
time on all test set.

affine parser with features to predict the lineariza-
tion order of two words in a given language, and to
predict the typical distance in linear order between
them.

We report in table 3 the average speed perfor-
mance on all the 17 test sets of the challenge ob-
tained by the linear parser and the two quadratic
biaffine graph parsers.

The Zysite biaffine parser turns out to be both
the most accurate and the fastest. It is also worth
mentioning the significant training time, as for ex-
ample Zysite takes more than 39 hours to train it
on the Czech treebank, with 68,495 sentences. The
experiments were performed on a Dell server using
a single NVIDIA Tesla T4 GPU.

2.2 Tokenization, Tagging

UUParser does not provide tokenization nor tag-
ging capabilities, so we have to rely on another set
of tools to accomplish these tasks. We choose to
use UDPipe (Straka and Strakova, 2017) to per-
form sentence splitting, tokenization and tagging.
This gives us a common tagged representation to
use also with alternative parsers.

Some of the parsers tested provide the ability
to perform end-to-end parsing from raw text, in
particular UDify (Kondratyuk and Straka, 2019)
and Stanza. However, they turn out not to be very
effective: the pretrained model of UDify does not
support all the task languages and Stanza has a
weird behavior: for example, it would split a word
like “GoogleOS” not just into two tokens, “Google”
and “OS”, but into two separate sentences.

So eventually we decided to use the same to-
kenization provided by UDPipe as input to all
parsers. This enables us also to produce an ensem-
ble version combining the outputs of three parsers.

2.3 Ensemble of Parsers

In the official submission, we exploit the linear tree
combination algorithm by Attardi and Dell’Orletta
(2009) to combine the outputs of an ensemble of
dependency parsers. The algorithm is greedy and

works by combining the trees top down. It has been
shown to outperform more complex algorithms
based on computing the Maximum Spanning Tree.

The parsers used are UDify, UUParser and UD-
Pipe.

In a later unofficial submission labeled comb5,
we included also Zysite and Stanza in the en-
semble. Table 7 presents the results of this sub-
mission compared to the best performing official
submission in the challenge.

These scores are within 1% UAS to the results
of the top submission by Jenna Kanerva of the Uni-
versity of Turku, except on the Baltic languages
(-3.37% Latvian, -4.91% Lithuanian, -4.98% Eston-
aian), Finnish (-4.42% UAS) and Arabic (-8.22%)
and better on Tamil (+3.63%).

3 Enhanced Dependencies

For producing the enhanced dependencies we fol-
low a “hybrid” approach, using a combination of an
algorithmic graph transformation of the syntactic
dependency tree coupled with predictions made by
three machine learning classifiers. The basic en-
hancing script is an evolution of the work presented
in (Simi and Montemagni, 2018) to bootstrap en-
hanced dependencies for the Italian treebank, also
used for experiments in (Nivre et al. 2018).

One classifier is used to recognize the external
subjects in xcomp constructions. The second clas-
sifier detects when a head should be propagated in
conjunctions. The third classifier detects the case
of propagation of dependents in conjunctions. The
classifiers are trained jointly on the three tasks and
produce three binary predictions.

The script that adds the enhanced dependencies
is modular, so that it can be adapted to perform
just the required analysis depending on the kind of
enhanced dependencies present in each language
and to bypass those that were not implemented. In
addition, the script is parametric with respect to
predictions coming from machine learning classi-
fiers, which can be taken into account or ignored.
We describe below how the different kinds of en-
hancements are addressed.

3.1 Controlled/Raised Subjects

This type of enhancement applies to subordinate
infinitive clauses introduced by the xcomp relation
and consists in adding an extra nsub j dependency
to the embedded or controlled verb. The difficult
aspect of this enhancement is to predict the correct

208

subject for the dependent clause among the differ-
ent dependents of the main verb. In fact, this extra
subject can be the subject, object or an oblique
complement, as the following examples testify:

1. Mary wants to buy a book. Mary is the subject
of buy.

2. Mary asked John to buy a book. John, the
object, is the subject of buy.

3. Maria ha chiesto a Giovanni di comprare un
libro. [Mary asked John to buy a book]. In Ital-
ian, the buyer, Giovanni, is an indirect com-
plement (ob1) of the main verb chiesto.

We train a neural binary classifier to predict which
of the dependents of the main verb should be cho-
sen to play the role of the extra subject for the
dependent verb, if any. If more than one token is
predicted as an external subject of the subordinate
clause, currently all of them are added.

The classifier is applied to tokens that have a
sibling in a xcomp relation, which are either a
noun or a pronoun and whose deprel is one of
the following: nsubj, csubj, obj, iobj, obl,
nsubj:pass, csubj:pass.

Such tokens are represented by the following
features: the form, the upos and the deprel of
the token, the form, the upos and the deprel of
the token’s head, the form of the xcomp sibling,
the form of the case or mark which introduces
the subordinate phrase. A training example for the
first classifier has the features for a token as input
and a binary value as output depending on whether
the sibling is indeed a nsub j for the subordinate
clause.

3.2 Propagation over Conjuncts

The classifiers for propagation over conjuncts act in
a similar way. We train two distinct classifiers for
recognizing candidates for head propagation and
for dependents propagation over conjuncts. Candi-
dates for head propagation are conjoined subjects
and objects, that should each be attached to their
head as in “Paul and Mary are running” or “Paul
bought apples and oranges”.

Candidates for dependent propagation are sub-
jects, objects and other complements of conjoined
verbs, as it is the case of she in “She was reading
and watching a movie”.

The model is trained to predict whether a candi-
date for propagation should be safely propagated,
by making the implicit relations explicit.

3.3 Model Architecture

The three classifiers share the same neural network
architecture. The first layer collects the embed-
dings for each form, upos or deprel in the input
vector. The embeddings for the forms are obtained
from FastText (Bojanowski et al. 2017). The em-
beddings for upos and deprel are learned as
vectors of size 20 each.

The second layer of the classifier concatenates
the embeddings from the first layer. The third layer
is a flatten layer, which is followed by a fully con-
nected layer with a hidden dimension of 100. This
is followed by a dropout with a probability of 50%
(chosen by tuning experiments) and finally there is
a fully connected layer with a sigmoid activation.

The classifiers are trained jointly with a binary
cross entropy loss function and an Adam optimizer
(Kingma and Ba, 2015) on the training set of each
language. The training is run for up to four epochs,
even though in most cases the loss stops decreas-
ing after the second epoch. Validation accuracies
during training range around 97-98%. The code is
written in Keras on a Tensorflow backend.

3.4 Relative Clauses

The treatment of enhancements for relative clauses
is quite straightforward. It consists in attaching the
relative pronoun to its antecedent with the special
ref relation and attaching the referred antecedent
as an argument to the main predicate of the relative
clause. This enhancement may create circularities
in the enhanced graph.

3.5 Label Augmentation with Case/Mark
Information

The most difficult sub-task turned out to be guess-
ing the right case/mark information for augmenting
the relation name of non-core dependents, due to
the different interpretations and varying degree of
compliance with the guidelines in the various tree-
banks. Given the high frequency of occurrence of
this type of enhancements, doing this task right has
high impact on the overall performance.

As it turned out, the differences concern all the
following aspects, and their combinations:

1. the type of deprels considered for the augmen-
tation (e.g. con7j is not specialized in Arabic,
Bulgarian, Estonian, Finnish, French, Latvian,
Lithuanian, Polish etc.)

2. the case/mark information used (either the
lemma or form of the case/mark dependent)

209

3. the strategy adopted in presence of multiple
marks/cases dependents (whether their con-
catenation or the last one as in English)

4. the strategy adopted when cases/marks are
fixed multi-word expressions (whether forms
or lemmas are combined)

5. the use or not of morphological case informa-
tion and to what extent

6. the presence of non canonical key-
words in some languages (for example
agentxoxnsubj and enh introduced in
the French treebank to encode diathesis
normalization as described by Candito et al.
(2017)).

In this sense, the inclusion/exclusion of type spe-
cialization depending on the language is a too
coarse strategy, since it does not account of all these
variations; moreover the differences are treebank-
wise (as opposed to language-wise) in the sense
that different subparts of the test set for a specific
language may be coming from different treebanks
following different approaches.

In order to address these issues, we adopted a
very simplistic data driven approach to adjust the
result of a rule-based algorithm, which implements
the guidelines. We computed a mapping from the
label predicted from our enhancer to the gold la-
bel found in the training data set and filtered out
correspondences whose frequency was less than a
fixed threshold, in order to be tolerant to sporadic
errors. As a final “patch”, we applied the result-
ing transformation to produce the final augmented
label.

This strategy is far from perfect and clean, but
it does take care of systematic differences among
languages, such as the use of case features (gen,
tt nom, dat, tt ins etc.) in some of the languages
with morphological cases. However, it provides
no solution to issues related to non-conventional
label completions, nor solves the problem of se-
lecting the correct mark or case when multiple
ones are present (e.g. about whether, along with
in English), or to address the non-canonical use,
with respect to the guidelines, of lemma vs form in

augmentations?.

2For case information the guidelines suggest the use of
forms in multi-word expressions and lemmas for single words.
English apparently adopts the inverse convention

210

Language Parameters
Arabic -e=4; ml; patch
Bulgarian ml; patch
Czech patch

Dutch ml

English

Estonian ml; patch
Finnish ml; patch
French -e=156; ml
Italian

Latvian patch
Lithuanian ml

Polish ml

Russian -e=3; patch
Slovak patch

Swedish

Tamil -e=145; ml; patch
Ukrainian patch

Table 4: Parameters resulting form tuning: see the text
for their meaning.

3.6 Tuning Parameters

The machine learning modules and the “patch”
strategy were not equally effective for all languages.
On the basis of the performance on the develop-
ment set, we selected for each language the best
choice of parameters for the enhancement script.
These were consistently applied in producing the
enhanced version of the parser results in all submis-
sions.

Table 4 summarizes the choice of parameters
for the different languages, where the values for
the parameters “-e” represent the types of enhance-
ment to be excluded, since not implemented for
the language (consistently with the parameters of
the evaluation script), m1 means that we used the
predictions from the machine learning classifiers,
patch means that we used the mappings strat-
egy for fixing label augmentation. The lack of
parameters means that only the basic enhancement
script was used, and all enhancement types were
performed.

4 Results

The official results are those labeled UNIPI-003 in
our submission, obtained through the combination
of the parsers UDify, UUParser and UDPipe.
Table 5 shows the official results obtained in to-
kenization and tagging on the test sets. Table 6
shows our team official results on parsing and en-

hancement.

After the submission deadline, we experimented
with the biaffibe parsers Stanza and Zysite.

Stanza improves over UUParser by an average
of 0.58 UAS, 0.64 LAS, 1.05 CLAS, 4.26 MLAS,
4.26 BLEX, 0.60 EULAS, 0.42 ELAS, with notable
improvements of +16.82 LAS on Estonian, while a
decrease of -28.52 LAS on Lithuanian, and -9.95
LAS on Polish is observed.

Zysite improves over UUParser by an average of
1.77 UAS, 1.84 LAS, 1.97 CLAS, 0.27 MLAS, 1.28
BLEX, 1.83 EULAS and 1.63 ELAS, with notable
improvements of +17.49 LAS on Estonian, +5.02
on Dutch, +3.23 on Svedish, but with a significant
drop of -14.48 LAS on Arabic.

These are encouraging results that show that
a transition-based parser can be competitive with
graph-based ones.

We then produced a new run comb5 (UNIPI-
comb)), as an ensemble of five parsers: UUParser,
UDify, UDPipe, Stanza and Zysite. We report these
unofficial results in Table 7.

The improvements on parsing by the ensemble
of five parsers with respect to the single parser
UUParser are summarized in Table 8.

The most significant improvements from the en-
semble combinations are +13.07 UAS on Estonian,
+5.31 on Tamil, +5.11 on Dutch, +3.59 on Lithua-
nian, +4.37 on Finnish.

Estonian, Finnish, Latvian, Lithuanian turned
out as the most difficult for our dependency parsers,
with a difference between 4.2 and 6.5 points of
UAS with respect to the submission by Kanerva
and even 10.7 point lower on Arabic.

If we consider the average UAS excluding the
Baltic languages, the average UAS of the ensemble
parsers is 89.82.

As for the enhancement task, its difficulty, be-
sides what we discussed in section 3.5, seems to
be confirmed by a significant drop from our EU-
LAS score (restricted to UD relations) to the ELAS
score, which also takes into account label enhance-
ments. The average drop is 6.26 points and for
some languages more than 10 points. The effec-
tiveness of our "patch’ strategy had been carefully
assessed with the development data, but did not
provide analogous results on the test set. Our al-
gorithm was poor in predicting the label extended
with case information. Perhaps a machine learning
approach would have provided better results in this
case.

211

5 Conclusions

We experimented with both linear transition-based
parsers and two implementations of graph-based
biaffine parsers. All parsers have difficulties with
Baltic languages, Finnish and Arabic which some-
how we were able to mitigate by combining them
into an ensemble, except for Arabic, which remains
8.2 points UAS lower than the top submission. Our
enhanced version of UUParser, using BERT em-
beddings, performs competitively well with respect
to the biaffine Zysite parser, except on Estonian,
Tamil and Dutch, while it outperforms it by +14
LAS on Arabic. Since all the parsers use the same
base model, multilingual uncased of BERT, it might
be worthwhile to investigate how such models af-
fect the performance on Baltic languages.

The implementation of the biaffine parser by
Zysite was a surprising discovery, since it is capa-
ble to outperform in speed all other parsers, possi-
bly due to its use of a more efficient biaffine opera-
tion via torch.einsum().

For adding the enhanced relations to the out-
put of the parser we opted for a hybrid approach,
where for some languages, which appear to be more
conforming to the guidelines, we applied an algo-
rithmic solution, while for the rest we exploited
machine learning classifiers.

In principle the algorithmic approach should be
sufficient as soon as languages adhere more strictly
to the guidelines. In the meanwhile, we wonder
whether it is worthwhile to develop techniques
which are language specific in order to obtain better
results, unless there are ways to devise a language
agnostic solution.

Acknowledgments

Simonetta Montemagni contributed to the design
of a preliminary version of the enhancement script.

The experiments were run on a Dell server with
four NVIDIA Tesla P100 GPUs partly funded
through the grant “Grandi Attrezzature 2016 by
the University of Pisa.

References

Giuseppe Attardi and Felice Dell’Orletta. 2009. Re-
verse revision and linear tree combination for depen-
dency parsing. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Companion Volume: Short

Language Tokens Words Sentences UPOS XPOS UFeats AllTags Lemmas

Arabic 99.98 94.58 82.09 88.53 84.00 84.16 81.97 88.46
Bulgarian 9991 99091 9417 97.62 9434 9539 9378 94.60
Czech 99.88 99.88 93.18 97.83 90.88 90.77 89.71 97.42
Dutch 99.74 99.74 70.64 9258 89.86 92.02 88.97 9443
English 99.22 99.22 83.82 93.63 9277 94.09 90.70 9541
Estonian 9937 99.37 76.33 8296 85.77 78.78 7543 76.11
Finnish 99.70 99.68 88.65 94.83 5452 9302 51.82 87.09
French 99.78 9936 9546 9394 9936 76.02 7329 96.07
Italian 99.93 9984 9876 97.18 97.04 97.10 96.17 97.38
Latvian 99.33 99.33 98.74 9348 84.29 89.55 8393 9273
Lithuanian 99.91 9991 87.87 9033 80.69 81.20 79.33 88.75
Polish 99.40 99.83 9752 9643 84.87 83.62 80.35 95.60
Russian 99.60 99.60 98.80 97.78 99.60 8534 8497 96.55
Slovak 100.00 100.00 85.28 9293 77.06 80.34 76.71 86.56
Swedish 98.95 98.95 94.07 9092 0.00 76.18 0.00 88.16
Tamil 99.16 94.51 9752 8131 7635 8045 7559 @ 84.14
Ukrainian 99.85 99.81 96.61 9491 84.03 84.28 83.32 93.56
Average 99.63 99.03 90.56 92.78 8091 86.02 7683 91.35

Table 5: Official results on tagging the test set, produced by UDPipe.

Papers, pages 261-264, Boulder, Colorado. Associ-
ation for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135—-146.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Marie Candito, Bruno Guillaume, Guy Perrie, and
Djamé Seddah. 2017. Enhanced UD dependencies
with neutralized diathesis alternation. In Proceed-
ings of the Fourth International Conference on De-
pendency Linguistics (Depling 2017), pages 42-53.

Dangi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740-750, Doha, Qatar. Association
for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

212

Daniel Ferndndez-Gonzdlez and Carlos Goémez-
Rodriguez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 710-716, Minneapolis, Minnesota.
Association for Computational Linguistics.

Jenna Kanerva, Filip Ginter, Niko Miekka, Akseli
Leino, and Tapio Salakoski. 2018. Turku neu-
ral parser pipeline: An end-to-end system for the
CoNLL 2018 shared task. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
133-142, Brussels, Belgium. Association for Com-
putational Linguistics.

Adam:
CoRR,

Diederik P. Kingma and Jimmy Ba. 2015.
A method for stochastic optimization.
abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions

of the Association for Computational Linguistics,
4:313-327.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779-2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Language UAS LAS CLAS MLA BLEX EULAS ELAS

Arabic 76.46 71.48 67.41 57.26 62770 68.66 57.79
Bulgarian 91.66 88.26 84.82 79.11 77.98 86.77 84.93
Czech 91.95 89.64 87.99 76.21 8525 86.19 7599
Dutch 84.43 80.53 7342 65.08 67.75 7895 71.62
English 88.22 85.10 8221 73.74 77779 84.54 83.95
Estonian 70.57 63.18 60.04 46.69 42.79 6245 57.24
Finnish 85.17 81.25 78.79 7253 6633 79.04 72.13
French 88.09 82.58 7537 41.81 7193 81.84 78.85
Italian 93.04 90.69 86.57 82.55 83.04 89.77 89.14
Latvian 85.47 81.25 78.25 6647 72.02 78.44 68.23
Lithuanian 76.99 70.76 67.48 51.75 58.40 67.16 61.06
Polish 90.97 87.53 8524 6492 80.26 84.83 70.61
Russian ~ 92.44 90.52 89.20 69.95 85.45 8834 76.90
Slovak 91.24 88.95 87.02 6299 7195 8593 8140
Swedish 84.80 80.92 78.63 49.09 66.77 79.90 78.73
Tamil 62.79 54.69 51.62 42.50 4529 5459 48.50
Ukrainian 88.96 85.23 82.16 63.78 74.89 82.51 73.90

Average 84.90 80.74 77.42 62.73 70.03 78.82 72.76

Table 6: UNIPI Official results on parsing the test set: ensemble of UUParser, UDify and UDPipe.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017. Arc-hybrid non-projective dependency pars-
ing with a static-dynamic oracle. In Proceedings of
the 15th International Conference on Parsing Tech-
nologies, pages 99-104, Pisa, Italy. Association for
Computational Linguistics.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403-1414, Melbourne, Australia.
Association for Computational Linguistics.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing universal de-
pendency treebanks: A case study. In Proceedings
of the Second Workshop on Universal Dependencies,
UDW@EMNLP 2018, Brussels, Belgium, November
1, 2018, pages 102-107. Association for Computa-
tional Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. ArXiv, abs/2003.07082.

Maria Simi and Simonetta Montemagni. 2018. Boot-
strapping Enhanced Universal Dependencies for Ital-
ian. In Proceedings of the Fifth Italian Conference
on Computational Linguistics CLiC-it 2018, 10-12
December 2018, Torino, pages 348-353. Torino: Ac-
cademia University Press.

Milan Straka and Jana Strakova. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with

213

UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88-99, Vancouver, Canada.
Association for Computational Linguistics.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-

thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1-21, Brussels, Belgium.
Association for Computational Linguistics.

Y. Zhang. 2019. A pytorch implementation of “deep

biaffine attention for neural dependency parsing”.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase

structure grammar parsing on Penn treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396-2408, Florence, Italy. Association for Compu-
tational Linguistics.

UniPI run comb5 University of Turku
Language UAS LAS CLAS MLA BLEX| UAS LAS CLAS MLA BLEX
Arabic 77.14 7297 69.41 58.22 64.31 ||85.36 81.17 78.81 72.15 75.60
Bulgarian 93.72 90.73 87.72 81.10 80.36 ||95.07 92.48 89.94 85.96 87.85
Czech 92.89 90.79 89.35 77.26 86.53 |/92.94 90.83 89.39 81.25 87.53
Dutch 89.54 86.71 81.57 70.29 74.92 |/90.02 87.20 82.33 7595 78.84
English 89.09 86.70 84.14 7493 79.56 ||91.13 88.97 87.15 81.45 84.71
Estonian 83.64 80.18 78.88 53.55 53.20 || 88.62 85.86 84.61 79.01 81.40
Finnish 89.54 86.99 85.20 76.87 70.86 /93.96 92.50 91.65 87.11 87.60
French 91.54 87.40 83.09 45.72 78.86 ||91.26 87.85 82.94 70.36 80.07
Italian 94.47 92.66 89.04 84.09 85.08 ||94.71 93.31 90.34 86.91 88.45
Latvian 88.01 84.54 82.10 68.75 75.16 ||91.38 88.53 86.64 77.43 82.86
Lithuanian 80.58 74.88 72.03 53.17 61.65 ||85.49 81.85 79.88 66.23 74.04
Polish 93.42 90.66 88.79 66.76 83.48 ||94.38 91.82 90.36 77.36 88.11
Russian ~ 93.86 92.45 91.23 71.35 87.30 ||94.06 92.74 91.84 88.10 89.97
Slovak 92.65 90.43 88.85 63.80 72.74 ||93.40 91.57 90.60 77.76 86.76
Swedish 88.16 85.18 83.45 51.43 70.60 [|90.81 88.31 87.29 71.65 80.37
Tamil 68.10 61.32 58.46 51.39 53.86 ||64.47 59.66 57.72 47.18 53.84
Ukrainian 90.38 87.71 85.23 65.59 77.67 ||91.65 89.68 87.41 76.92 84.81
Average 88.04 84.84 82.27 65.55 73.89 (|89.92 87.31 85.23 76.63 81.93

Table 7: Unofficial results on parsing: on the left our submission, on the right the best submission.

Language UAS LAS CLAS MLAS BLEX EULAS ELAS
Arabic 0.68 149 200 096 1.61 149 095
Bulgarian 2.06 247 290 199 2.38 244 241
Czech 094 1.15 136 1.05 1.28 1.10 093
Dutch 5.11 6.18 8.15 521 7.17 6.08 592
English 0.87 160 193 1.19 1.77 1.61 1.72
Estonian 13.07 17.00 18.84 6.86 1041 16.72 14.50
Finnish 437 574 641 434 453 5.60 497
French 345 482 17.72 391 6.93 489 4.8
Italian 143 197 247 154 204 204 209
Latvian 254 329 385 228 3.14 322 253
Lithuanian 3.59 4.12 4.55 142 3.25 4.03 3.83
Polish 245 3,13 355 1.84 322 3.14 248
Russian 142 193 203 140 1.85 1.90 1.52
Slovak 141 148 1.83 081 0.79 146 097
Swedish 336 426 4.82 234 3.83 420 442
Tamil 531 6.63 6.84 889 857 6.53 553
Ukrainian 142 248 3.07 181 2.78 2.31 2.37
Average 3.14 4.10 485 282 386 404 3.63

Table 8: Improvements by parser combination on unofficial run.

214

Enhanced Universal Dependency Parsing with Second-Order Inference
and Mixture of Training Data

Xinyu Wang®, Yong Jiang', Kewei Tu®
°School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging
TDAMO Academy, Alibaba Group
{wangxyl, tukw}@shanghaitech.edu.cn
yongjiang. jy@alibaba-inc.com

Abstract

This paper presents the system used in our sub-
mission to the IWPT 2020 Shared Task. Our
system is a graph-based parser with second-
order inference. For the low-resource Tamil
corpus, we specially mixed the training data of
Tamil with other languages and significantly
improved the performance of Tamil. Due to
our misunderstanding of the submission re-
quirements, we submitted graphs that are not
connected, which makes our system only rank
6th over 10 teams. However, after we fixed
this problem, our system is 0.6 ELAS higher
than the team that ranked 1st in the official re-
sults.

1 Introduction

Based on the Universal Dependencies (UD) (Nivre
etal., 2016), the Enhanced Universal Dependencies
(EUD) (Bouma et al., 2020)! are non-tree graphs
with reentrancies, cycles, and empty nodes to deal
with the problem that purely rooted trees cannot
adequately represent grammatical relations. We
found that we can reduce parsing such a graph to
parsing bi-lexical structures like semantic depen-
dency parsing (SDP) (Oepen et al., 2015) by reduc-
ing reentrancies and empty nodes into new labels.
(Wang et al., 2019) is a state-of-the-art approach
for the semantic dependency parsing tasks that use
second-order inference methods with Mean-Field
Variational Inference. We adopt their approach for
decoding and encode the sentences with strong pre-
trained token representations: XLMR (Conneau
et al., 2019), Flair (Akbik et al., 2018) and Fast-
Text (Bojanowski et al., 2017). Among the datasets,
the Tamil language only contains 400 labeled sen-
tences for training, which makes the performance
of the model for Tamil low. To further improve

'https://universaldependencies.org/u/
overview/enhanced-syntax.html

215

the performance for the low resource language, we
propose a new approach that we train the Tamil
model with a mixture of datasets with Tamil and
a rich resource language. Empirical results show
that such an approach can improve 2.44 ELAS on
the test set of Tamil. Due to our misconceptions
on the submission format, we submitted invalid un-
connected graphs to the submission site. Thanks to
the help of the organizers, they fixed these graphs
with simple scripts, and our system is ranked 6th
over 10 teams in the official results. However, the
submitted graphs can be easily connected if we
apply tree algorithms in the decoding. In the post-
evaluation, we submitted our system outputs again
and found that our system is 0.56 ELAS higher
than the team ranked 1st in the official results.

2 System Description

2.1 Data Pre-processing

There are two features in the EUD graphs that do
not appear in SDP graphs. One is the reentrancies
of the same head and dependent on different labels.
We combined these arcs into one and concatenate
the labels of these arcs with a symbol ‘+° repre-
senting the combination of two arcs. In the post-
processing, we split arcs with the ‘+* symbol in the
corresponding labels into multiple arcs. Another
one is the empty nodes that are introduced in the
shared task (for example, nodes with id 1.1). We
used the official script to collapse graphs through
reducing such empty nodes into non-empty nodes
and introducing new dependency labels?. In the
post-process, we add empty nodes according to the
dependency labels. As the official evaluation only
score the collapsed graphs, such a process does not
impact the system performance.

’For more details, please refer to https:
//universaldependencies.org/iwpt20/task_
and_evaluation.html.

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 215-220
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

2.2 Approach

We follow the approach of Wang et al. (2019)° to
build our system which uses the second-order in-
ference algorithm for the arc predictions. Given a
sentence with n words w = [w1, wa, ..., wy,], we
feed a three-layer BiLSTM with their correspond-
ing token representations.

R = BiLSTM(E)

where E = [eq,...,e,] is the concatenation of
various embeddings of token (We use different
combination of XILLMR, Flair and FastText for
each language as the token representation.) and
R = [ry,...,r,] represents the output from the
BiLSTM. For the arc predictions, we use the feed-
forward network, Biaffine and Trilinear functions
to encode unary potentials ¢/, and binary potentials

Vp:
Yu(wi, wy) = FNN_Biaffine®® (r;, rj)
Yp(wi, wj, wy) = FNN_Trilinear(r;, r;, rg)

where FNN_Biaffine and FNN_Trilinear repre-
sent a combination of FNN and Biaffine/Trilinear
functions. Then we feed these potentials into a
Mean-Field Variational Inference network for the
second-order inference.

P(Y|w) = MEVI(t)y, ¢p)

where P(Y|w) is a probability matrix representing
the probabilities of all potential arcs. We first use
tree algorithms like the Eisner’s (Eisner, 2000) or
MST (McDonald et al., 2005) algorithms to ensure
the connectivity of the graph. Then we additionally
add arcs for the positions that P(Y|w) > 0.5. For
the label predictions, we use the FNN_Biaffine to
score the labels for each potential arc.

s!*) — FNN_Biaffine(#>*) (r;, 1)

ij
PUbeD (5[w) = softmax(s(y)

We select the label with the highest score of each
potential arc.

To train the system, we follow the approach of
Wang et al. (2019) with the cross entropy loss:

LE(9) = > log(P(y; " w))
1,J

0D) = =37 1™ log(Po(uiy ™ [w))
1,]

*https://github.com/wangxinyu0922/
Second_Order_SDP

where 6 is the parameters of our system,]l(y:j(arc))

denotes the indicator function and equals 1 when
edge (i, j) exists in the gold parse and 0 otherwise,
and ¢, j ranges over all the tokens w in the sen-
tence. The two losses are combined by a weighted
average.

L=)\ﬁ(label) + (1 o)\)ﬁ(arc)
2.3

Mixture of Datasets for Tamil Parser
Training

Tamil dataset has the fewest training and develop-
ment sentences over all languages, which contains
400 sentences for training and 80 sentences for de-
velopment. Therefore we believe that Tamil parser
can be easily improved if we use more training data.
With the emergence of multilingual contextual em-
beddings like multilingual BERT (Devlin et al.,
2019) and XLMR, training a unified multilingual
model with high performances over all languages
becomes possible through mixing the training data
of multiple languages. However, it does not apply
to the shared task as the label set of EUD is dis-
tinct in different languages. The arc annotations in
the dataset are still helpful for training the Tamil
parser. Thus we removed the label annotations in
the dataset of other languages so that the label loss
of these data cannot be back-propagated. Then we
mixed one of the languages with the fully anno-
tated Tamil dataset. To solve the problem of data
imbalance in the mixture of the dataset in training,
we upsampled the Tamil training set to keep the
same data size as that of the other language.

3 Settings and Results

3.1 Experimental Settings

In training, we split the official development set
into halves as the development set and test set. We
used the development set to select the model based
on labeled F1 score which is the metric used in
the SDP task and it evaluates the accuracy of pre-
dicted labeled arcs. We used the test set to choose
the best model architecture. We use a batch size
of 2000 tokens with the Adam (Kingma and Ba,
2015) optimizer. The hyper-parameters of our sys-
tem are shown in Table 1, which are mostly adopted
from previous work on dependency parsing. We
only use the tokenized words as the model input.
For the Tamil Parser, we tried English or Czech
datasets to mix with the Tamil dataset. For most
of languages, we used freezed XLMR embedding

216

Hidden Layer Hidden Sizes
BiLSTM LSTM 3#400
Unary Arc/Label 500
Binary Arc 150
Embedding/LLSTM Dropouts 33%
Loss Interpolation () 0.10
Adam [0.9
Adam (5 0.9
Learning rate 2e3
LR decay 0.5

Table 1: Hyper-parameters for our system.

only as we found that the Flair embeddings and
FastText embeddings were not helpful for the task
except Tamil. We used a concatenate of XLMR,
Flair and FastText embeddings for Tamil parser
training. For the sentence and word segmentation,
we used Stanza (Qi et al., 2020) models that were
trained on treebank with the largest training set for
all languages except Lithuanian, because the model
trained on the Lithuanian-HSE treebank has an ex-
tremely low segmentation performance compared
with the model trained on Lithuanian-ALKSNIS.

3.2 Main Results

Table 2 shows the results of official evaluations of
all teams, as well as the post-evaluations of our
system. In the Official submission, we trained
the Tamil Parser with a mixture of English and
Tamil datasets (‘Ours+en+MST* in the table), and
in the post-evaluation, we also tried a mixture
of Czech and Tamil datasets (‘Ours+cs+MST* in
the table) because the Czech dataset contains the
largest training data over all languages. In the offi-
cial results, our system was fixed by the organizers
through their simple scripts for the connectivity
of graphs, which significantly reduced our system
performance. In the post-evaluation, we fixed this
issue with MST or Eisner’s algorithm and showed
that our system performs 0.6 ELAS higher than
the best team. For the Tamil parser, mixing the
Tamil dataset with the Czech dataset performs 1.7
ELAS better than mixing with the English dataset,
which shows that a larger dataset gives better re-
sults than the smaller one. Our system with the
MST algorithm is 0.2 ELAS stronger than the sys-
tem with Eisner’s algorithm, which shows that the
non-projective tree algorithm (MST) is better than
the projective tree algorithm (Eisner’s) for the EUD
task. We built our codes based on PyTorch (Paszke

217

et al., 2019), and ran our experiments on a single
Tesla V100 GPU.

3.3 Comparison of First-Order and
Second-Order Inference

Table 3 shows a performance comparison
between two kinds of embedding choices,
XLMR+Flair+FastText and XLMR, and first-order
and second-order inference. The results show that
second-order inference is stronger than first-order
inference in all languages, and embeddings with
XLMR embedding only usually perform better
than XLMR+Flair+FastText embeddings. How-
ever, the Flair+FastText embedding is helpful for
Tamil. Therefore we use XLMR+Flair+FastText
embeddings for training the Tamil parser while we
use XLMR embedding only for other languages.

3.4 Performance Comparison between
Connected Graphs and Non-Connected
Graphs

Before the deadline of the shared task, the sub-
mission site showed the scores of each treebank
separately even the submission graphs were not
connected, which unfortunately made us believe
that the non-connected graphs are also acceptable
for the task. In fact, these graphs are not accept-
able and the organizers fixed the issue with some
simple scripts, and this results in a significant re-
duction in the final scores. In section 3.2, we show
that appending a tree-parsing algorithm to our sys-
tem produces connected graphs with high scores.
Here we also evaluate the non-connected graphs
produced by our original system. We think evalu-
ating non-connected graphs is informative for two
reasons. The first is that these results help to un-
derstand how different the connected graphs and
non-connected graphs performs. The second is
that in practice, non-connected graphs can be pre-
dicted with a relatively faster speed as the MST
and Eisner’s algorithms are slow while we can get
the non-connected graphs through argmax opera-
tions. We compare the performance of connected
and non-connected graphs for each treebank and
each language in Table 4 and 5. The results show
that the non-connected graphs perform slightly bet-
ter than graphs with the tree algorithms. Therefore
generating non-connected trees are more practical
in practice if there are no such constraints.

Team Name ar [bg[cs [nl [en[et [fi [fr [it [Iv] It][pl[rau sl][sv]ta]uk] Avg.

Official
RobertNLP 0.0/ 00[00[00(89[00]00[00]00[|00]00|00[00]00]00]00]007]52
Koebsala 60.868.9|61.1[62.9|65.4(59.1[67.5|/67.9[69.1|64.8(56.3|61.3|64.2|64.1|64.5|47.4|64.2|62.9
ADAPT 57.2177.3166.4|67.7[70.4|61.1|72.4|74.7|72.0|72.4|58.4|65.9|75.3|68.4(68.4(48.5(66.4|67.2
clasp 51.3(84.9|67.1|78.9|82.9|60.4|66.0|72.8|87.1|66.0(52.6|71.2|70.4|65.2|71.4]42.2|63.2|67.9
Ours 63.4|78.7|75.4|70.9[72.374.9|76.0|77.0|73.1|77.8|66.9|71.0|78.3|73.1(69.6(48.2(73.0|71.7
Unipi 57.8(184.9|76.0|77.6|84.0(57.2|72.1|78.9|89.1|68.2|61.1|70.6|76.9|81.4|78.7[48.5|73.9|72.8

FASTPARSE |/ 66.9[84.9[77.277.4|78.5|74.1|75.7|77.8|84.8|75.6|61.4[74.5[80.4(73.5|75.2|47.0|74.0|74.0
EmoryNLP 67.3188.2|85.5(80.7|85.3|81.4|83.0(86.2|88.5|79.2|66.1|82.4|88.6|82.7|78.2(54.3|79.7|79.8
OrangeDeskin || 71.0 (89.4|87.0|85.1|85.2[81.0|86.2|83.6(90.8|82.1|75.9(80.4|89.8|84.4|83.3|64.2|84.6|82.6
TurkuNLP 77.8190.7|87.5|84.7|87.284.5/89.5(85.9(91.5|/84.9|77.6|84.690.7|88.6 |85.6|57.8|87.2|84.5
Post-Evaluation
Ours+en+MST || 77.7 | 91.5]90.1 | 86.2 [87.1 [86.0[89.0{85.3{91.5({87.6(78.9|84.0/92.3|87.6(84.7(56.7[88.0(85.0
Ours+cs+Eis 77.8191.1]|89.5(86.3|87.2|85.7(88.5(85.3(91.5|87.3|78.6|83.7(92.3|87.1|84.8|58.4|88.0|84.9
Ours+cs+MST || 77.7 191.5|90.1 | 86.2 | 87.1 | 86.0 | 89.0|85.3|91.5|87.6|78.9|84.0|92.3|87.6|84.7|58.4|88.0| 85.1

Table 2: Official evaluations of all systems and post-evaluations of our team in ELAS. We use the ISO 639-1
language code to represent each language. MST and Eis means the MST and Eisner’s algorithm that we used for
decoding. ‘en‘ and ‘cs‘ represents which dataset we mixed with the Tamil dataset for training the Tamil parser.
Note that ‘Ours+en+MST* represent the parsed results of parsers that we used in the Official submission.

Approach [ar [bg [e [ol [en [e [i [£ [it
XLMR+Flair+FastText+1st-Order 81.66 | 8§89.29 | 91.04 | 92.55 | 89.74 | 88.33 | 89.40 | 90.64 | 91.94
XLMR+Flair+FastText+2nd-Order || 81.98 | 89.43 | 91.39 | 92.68 | 89.58 | 88.69 | 89.54 | 91.08 | 91.98

XLMR+1st-Order 82.02 | 90.15 | 90.80 | 92.43 | 90.05 | 88.13 | 89.51 | 91.14 | 91.96
XLMR+2nd-Order 82.42 | 90.37 | 91.21 | 92.66 | 90.26 | 88.60 | 90.35 | 91.69 | 91.98
Iv It pl ru sk sV ta uk Avg.

XLMR+Flair+FastText+1st-Order 88.21 | 80.21 | 86.91 | 92.88 | 87.28 | 85.52 | 66.17 | 88.26 | 89.40
XLMR+Flair+FastText+2nd-Order || 88.59 | 81.25 | 86.46 | 93.28 | 87.18 | 85.63 | 68.76 | 88.04 | 89.59
XLMR+1st-Order 89.62 | 81.92 | 85.73 | 92.86 | 88.48 | 86.36 | 63.28 | 88.96 | 89.57
XLMR+2nd-Order 89.97 | 83.24 | 87.49 | 93.21 | 89.07 | 86.85 | 64.84 | 89.99 | 89.95

Table 3: A comparison of different word embedding concatenation and first-order and second-order inference
approaches on the development set split by ourselves. We report Labeled F1 score (LF1) here.

Graph ar-PADT bg-BTB cs-FicTree c¢s-CAC c¢s-PDT c¢s-PUD nl-Alpino nl-LassySmall
Non-Connected 77.74 91.50 90.60 90.55 90.65 84.26 90.11 82.55
MST 77.73 91.48 90.51 90.59 90.63 84.25 90.09 82.51
CRF 71.75 91.07 89.85 90.02 90.05 83.70 89.69 83.10
Graph en-EWT en-PUD et-EDT et-EWT fi-TDT fi-PUD fr-Sequoia fr-FQB
Non-Connected 86.33 88.05 87.36 79.62 90.00 87.52 89.67 84.11
MST 86.30 88.05 87.34 79.61 89.97 87.52 89.66 84.09
CRF 86.40 88.04 87.07 79.42 89.44 86.97 89.73 84.12
Graph it-ISDT Iv-LVTB It-ALKSNIS pl-LFG pl-PDB pl-PUD ru-SynTagRus sI-SNK
Non-Connected 91.50 87.69 78.97 87.65 83.23 82.96 92.62 87.56
MST 91.49 87.64 78.94 87.65 83.21 82.95 92.31 87.55
CRF 91.52 87.29 78.63 87.59 8290 82.57 92.31 87.14
Graph sv-Talbanken sv-PUD ta-TTB uk-IU Average

Non-Connective 88.35 80.88 56.51 88.00 85.59

MST 88.33 80.87 56.56 88.02 85.57

CRF 88.37 80.87 56.71 88.02 85.37

Table 4: A performance comparison in ELAS between non-connected graphs and connected graphs over each
treebank on the official test sets.

3.5 Analysis of Mixture of Training Data mance of the parser. We leave for future work other
language combinations as well as similar studies

For a more in-depth comparison of how the com- ©f other parsers.

bination of different language datasets affects the
performance of the Tamil Parser, Table 6 shows that
more training data significantly improve the perfor-

218

Team Name ar bg cs en et fi fr it

TurkuNLP 77.82 | 90.73 | 87.51 | 84.73 | 87.15 | 84.54 | 89.49 | 85.90 | 91.54
Ours+en+MST || 77.74 | 91.48 | 90.09 | 86.19 | 87.10 | 85.97 | 88.99 | 85.28 | 91.49
Ours+en 77.75 | 91.50 | 90.11 | 86.22 | 87.12 | 85.99 | 89.01 | 85.29 | 91.50
Team Name lv It pl ru sl sv ta uk Avg.
TurkuNLP 84.94 | 77.64 | 84.64 | 90.69 | 88.56 | 85.64 | 57.83 | 87.22 | 84.50
Ours+en+MST || 87.64 | 78.94 | 84.00 | 92.31 | 87.55 | 84.74 | 56.71 | 88.02 | 84.96
Ours+en 87.69 | 78.97 | 84.01 | 92.62 | 87.56 | 84.75 | 56.52 | 88.00 | 84.98

Table 5: A performance comparison in ELAS between non-connected graphs, connected graphs with the MST
algorithm and the best system in the official results over each language. Ours+en represents our official submission

and evaluated with official evaluation script.

Combination | # Training Sentences ELAS
Tamil 400 55.39
English+Tamil 12543412400 56.56
Czech+Tamil 102131+102000 58.44

Table 6: A comparison between different dataset com-
binations for the Tamil parser training. The 12000 and
102000 in the # Training Sentences column represents
the upsampled value of 400 labeled sentences in Tamil
dataset.

4 Conclusion

Our system is a parser with strong contextual em-
beddings and second-order inference. For the low-
resource language, we propose to train the model
with a mixture of datasets. Empirical results show
that the second-order inference is stronger than
the first-order one, and mixing data improves the
performance of parser significantly for the low-
resource language. After we fix the graph con-
nectivity issue, our system outperforms the system
ranked 1st by 0.56 ELAS in the official results. We
also show that the non-connected graphs are practi-
cally useful for its higher performance and faster

speed. Our code is available at https://github.

com/Alibaba-NLP/MultilangStructureKD.

References

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638-1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with

219

subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmén, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jason Eisner. 2000. Bilexical grammars and their
cubic-time parsing algorithms. In Advances in prob-
abilistic and other parsing technologies, pages 29—
61. Springer.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91-98.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Haji¢, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.

2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 1659-1666, Por-
toroZ, Slovenia. European Language Resources As-
sociation (ELRA).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
915-926.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024-8035.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza:
A python natural language processing toolkit
for many human languages. arXiv preprint
arXiv:2003.07082.

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019.
Second-order semantic dependency parsing with
end-to-end neural networks. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4609-4618, Florence,
Italy. Association for Computational Linguistics.

220

How much of enhanced UD is contained in UD?

Adam Ek

Jean Philippe Bernardy

Centre for Linguistic Theory and Studies in Probability
Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg

{adam. ek,

Abstract

In this paper, we present the submission of
team CLASP to the IWPT 2020 Shared Task
on parsing enhanced universal dependencies
(Bouma et al., 2020). We develop a tree-to-
graph transformation algorithm based on de-
pendency patterns. This algorithm can trans-
form gold UD trees to EUD graphs with an
ELAS score of 81.55 and a EULAS score
of 96.70. These results show that much
of the information needed to construct EUD
graphs from UD trees are present in the UD
trees. Coupled with a standard UD parser,
the method applies to the official test data and
yields and ELAS score of 67.85 and a EULAS
score is 80.18.

1 Introduction

Universal Dependencies (UD) is a syntactic an-
notation schema focusing on representing shallow
syntactic dependencies between words. One of the
goals of UD has been to use it in semantic down-
stream tasks, such as event extraction (Fares et al.,
2018; McClosky et al., 2011) or negation resolu-
tion (Fares et al., 2018) among others. In general,
UD can be used as a shallow representation of ar-
gument structures, which are useful in a wide array
of semantic tasks.

However, the UD format restricts the shape of
dependencies to a tree structure. This can be lim-
iting because semantics dependencies can in prin-
ciple exhibit any graph structure. To remedy this
situation, the Enhanced Universal Dependencies
(EUD) schema was proposed (Schuster and Man-
ning, 2016). The goal of the schema is to make
certain implicit dependencies explicit, such as con-
joined subjects and objects. The enhanced depen-
dencies include additional edges between words, as
well as augmented labels. For example in enhanced
dependencies, the conjunction relation also include

jean-philippe.bernardy}@gu.se

what type of conjunction is used, e.g. and, or, but
and so on.

In this paper, we present our submission for the
IWPT 2020 Shared Task on parsing enhanced uni-
versal dependencies from annotated UD treebanks.
The task target treebanks from 17 different lan-
guages where the majority of the languages are
Indo-European with five notable exceptions, Tamil
(Dravidian), Arabic (Semitic), Finnish and Esto-
nian (Uralic). The goal of the task to produce valid
EUD graphs, given raw text as input.

In this context, this paper proposes to test the
following hypothesis:

(H1) Most of the information provided by the EUD
schema is contained in the basic UD schema.

That is, if (H1) holds, then it is possible to map,
algorithmically, UD trees to EUD graphs.

Thus, we set out to implement such an algorithm.
Concretely, we construct a tree-to-graph transfor-
mation, which recognizes patterns in the (basic)
universal dependencies to derive enhanced depen-
dencies.

This experiment provides a lower bound on the
amount of EUD information which can be extracted
from raw UD information, for representative inputs.
In other words, we measure how much of EUD
is contained in UD. This becomes a lower bound,
because a better algorithm can always be conceived,
and do better.

Conversely, additionally, by running our algo-
rithm after a state-of-the-art basic UD parser, we
will provide a baseline for the EUD reconstruction
task.

The enhanced dependency parsing is evaluated
using two metrics, ELAS and EULAS. ELAS cal-
culate the F}-score over both enhanced arcs and
labels (for example: “and” in the label “conj:and”).
EULAS on the other hand disregard label enhance-
ments and calculate the F-score over the enhanced

221

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 221-226
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

edges. To illustrate, given the gold label “conj:and”
and a system prediction of “conj:or” (or “conj”,
i.e. if nothing is appended to the label), ELAS will
count this as an error while EULAS won’t.

Our results show that (H1) is vindicated: we
achieve an ELAS score of 81.55 and EULAS of
96.70 on human-annotated dependency trees. As
a baseline for the shared task, our method is also
effective, achieving an ELAS score of 67.85 and
a EULAS score of 80.18. (Thus losing about 15
percentage points when going through a machine-
generation phase to obtain UD trees.)

2 Method

In essence, our method is to apply, as far as possi-
ble, the tree-to-graph recipes provided by Schuster
and Manning (2016) to transform basic UD trees
into EUD graphs.

2.1 Procedure

To obtain basic UD trees for our system we use the
universal dependency treebanks provided by the
shared task organizers. From these we apply our
method on basic UD trees from two sources:

e for each language in the test data we use the
Stanford Biaffine Dependency Parser (Dozat
and Manning, 2016) provided in Stanza (Qi
etal., 2020). We used the stanza model trained
on the largest treebank of the language.

e the development and gold trees in the tree-
banks, from which we have removed the en-
hanced dependencies. Indeed, the gold data
comes with plain UD trees as well.

Thus when using the basic UD trees from the
Stanford parser we obtain a baseline for the task,
and when using the development/gold trees the
lower bound on EUD information contained in UD.

Then, we apply a tree-matching procedure
against the non-enhanced UD trees. The procedure
locally inserts enhanced edges or deletes unwanted
edges. Additionally (as a special case) the patterns
also re-label some edges.

Our system contains several patterns, which are
described in the next subsection. We first apply
the patterns that modify the edge labels with case
information. Then we apply all the other patterns,
which add (and sometimes remove) edges from the
basic tree. Here, we only apply the patterns on the
(relabeled) input trees and not on the graph of EUD

222

made by any other pattern. In this sense, one can
say that patterns are applied in parallel. Once this is
done, we convert the result back to the (enhanced)
CONLLU format.

2.2 Patterns

Perhaps surprisingly, the patterns that we need to
recognize are simple, involving only three nodes.
The two patterns to recognize are shown in Fig. 5.
Essentially, we need to match on three connected
nodes. We need to identify two types of patterns.
First, two arcs forming a two-step path (Figs. 5Sa,
5d and 5e). We refer to this style pattern as “Type
1”. Second, with two arcs pointing away from a
central node (Figs. 5b and 5c¢), referred to as “Type
2”. In both cases, we have additional constraints
on the (edge) labels. Together, the constraints on
graph topology and labels form patterns that we
can recognize and transform. The exhaustive list
of patterns and transformations follows.

1. Type 1 pattern, with a relation label, which
can be any of “nsubj”,“obj”, “amod”, “ad-
vel”,“obl”, “mark”™, “nmod”, followed by a
“conj” label. (Fig. 5a.) In this case we add
an edge with the relation label to the other
conjunct. A full dependency tree containing

this pattern can be found in Fig. 1.

2. Type 2 pattern with a a relation label being
either “nsubj” or “aux”, and a “conj” label
(Fig. 5b). We add a relation label to the other
conjunct, but only if the conjunct is not itself
“nsubj”. Indeed, if it were, then we are con-
joining two full sentences and then there is
no need for an enhanced dependency. A full
dependency tree containing this pattern can
be found in Fig. 2.

3. Type 2 pattern with “xcomp” and “nsubj”.
Here we add an “nsubj:xsubj” edge (Fig. 5¢).

4, Type 1 pattern, with “acl:relcl” followed
by a relation label which can be either
“nsubj”,“obj”,“obl”, “advmod” (Fig. 5¢). The
target node should also be a relative pronoun,
ie. it POS is “PRON” and its XPOS either
“WP” (who, whom) or “WDT” (that, which).
Indeed, this pattern is also found with other
type of pronouns, but then it does not corre-
spond to a relative clause. In this case we add
a “ref” edge to the pronoun and a (reverse) re-
lation edge between the first and second node.

The original relation edge is deleted. A full
dependency tree containing this pattern can
be seen in Fig. 4.

5. Type 1 pattern, with a conjunction followed
by a case marking (Fig. 5d). Exhaustively,
the type of labels are “case” followed by “obl”
or “nmod”; “cc” followed by “conj”, “mark”
followed by “advcl” or “acl”. In this case we
enhance the label with the lemma of the target

node. This pattern can be seen in Fig. 7.

\

nsubj

Paul and Mary eat
Figure 1: Example sentence for pattern shown in

Fig. 5a

She was reading or watching a movie

nsubj

Figure 2: Example sentence for pattern shown in
Fig. 5b

John

came from Paris

Figure 3: Example sentence for pattern shown in
Fig. 5d

2.2.1 Other patterns

For patterns Items 1 and 2, the direction of conjunc-
tion dependency could conceptually be inverted,
yielding two other patterns (shown in Figs. 6a
and 6b). However, we have not implemented these
patterns in our system. For the first pattern, the
reason is simple: it is not representable as a UD

223

d

Great Service and hairstyles that last

Figure 4: Example sentence for pattern shown in
Fig. Se

nsubj conj
Eat Paul

Mary

nsubj

(a) Relation pointing to the conjuncts

conj

aux
read

was

watch

aux

(b) Relation pointing away from the conjuncts.

nsubj xcomp
house «—— look —— new

xsubj:nsubj

(c) Xcomp special case

Paris come

case obl
obl:from

from

(d) Label taken from other word (lemma)
nsubj

VAR

. nsubj
boy acl:recl live]

who

ref

(e) Relative clause

Figure 5: Implemented transformation patterns. Added
elements are shown in bold.

tree (a node cannot have two heads). For the sec-
ond pattern, applying it results in a small loss in
performance across the board, and thus it is best
left inactive. Aditionally, we have not implemented
any pattern for dealing with ellipsis in the current
approach. We plan on addressing ellipsis in future
work.

3 Results

We present our official results for the shared task in
Table 1. The scores are obtained by applying our
tree-to-graph transformation to basic dependency
trees generated by the Stanford Dependency Parser.

The scoring for unlabeled edges is typically

nsubj

conj
Eat Paul

Mary

nsubj

(a) Source pattern not representable in UD format

aux conj

was read

watch

aux

(b) Transformation pattern leading to a loss in performance

Figure 6: Transformation patterns not implemented.

LANG | ELAS EULAS
ar 5126 75.62
bg 8490 87.72
cs 67.13 83.44
en 8287 83.86
et 6044 79.43
fi 6596 8330
fir 7276 84.39
it 87.14 88.74
Iv 66.01 80.60
nl 7893 8020
It 5256 6737
pl 7122 8671
ru 7037 88.02
sk 6516 8331
sv 7135 73.84
ta 42.15 5532
uk 6324 81.24
Avg. | 67.85 80.18
Std. | 11.69 8.19

Table 1: Coarse ELAS and EULAS on the languages
in the shared task test data.

around 80%. The biggest outlier being Tamil, at
55.32%. The scoring for labeled edges is around
12 points lower, with more variation in scores.

As explained in the introduction, to isolate the ac-
curacy of the tree-to-graph transformation from the
performance of the underlying UD parser, we also
apply it to the human-annotated dependency trees.
We test our approach on both the development and
test data. The results from this experiment are
shown in Table 2.

The scoring for enhanced edges and unenhanced
labels (EULAS) is typically above 95%, with little
variation. Tamil is no longer an outlier. The scoring
for enhanced edges and labels can be classified into
two categories depending on the language. In one

224

DEvV TEST
LANG | ELAS EULAS ELAS EULAS
ar 66.44 96.38 64.14 96.55
bg 94.32 96.95 94.55 97.01
cs 75.65 94.63 76.52 95.12
en 97.57 98.53 97.64 98.65
et 73.35 9396 72.30 95.53
fi 74.22 95.29 74.40 95.12
fr 83.59 97.93 88.15 99.05
it 96.29 97.61 96.15 91.71
It 77.50 93.98 72.17 95.49
Iv 69.21 96.10 77.47 93.91
nl 96.71 97.55 96.27 97.57
pl 87.03 97.33 80.95 96.49
ru 77.22 96.31 76.72 96.59
sk 72.24 95.82 75.37 96.42
Y 93.85 96.66 94.19 96.67
ta 72.49 99.58 75.04 99.48
uk 75.95 96.04 7442 96.49
Avg. 82.97 96.53 81.55 96.70
Std. 10.42 1.52 10.24 1.43

Table 2: Coarse ELAS and EULAS on the gold trees in
the development and test data.

category the ELAS is nearly as good as the EULAS
case (bg, en, it, nl, sv). Another category scores
about 15 points lower (ar, cs, et, fi, It, v, ru, sk,
ta, uk). French and Polish scores are somewhere
in-between.

Comparing Table 1 and Table 2 suggests that the
performance of the full pipeline is highly depen-
dent on the underlying parser. In addition to the
ELAS and EULAS score being higher, the stan-
dard deviation is also much higher for EULAS,
8.19 points in the test versus 1.43 points on the
gold data.

To get a further sense on how much our algo-
rithm is sensitive to the quality of the input raw
UD trees, we can compare the score that it obtains
when fed the gold (raw) UD trees and the trees
provided by Stanza for the same text. The results
are shown in Table 3.

Official submission Stanza trees Gold trees

ELAS EULAS | ELAS EULAS | ELAS EULAS
Avg. | 6785 80.18 | 6654 7991 | 8155 96.70

Table 3: Coarse ELAS and EULAS on the test data us-
ing our tree-to-graph algorithm on Stanza trees, Stanza
trees only and with gold trees.

We find that using our algorithm with stanza
trees only marginally increase the performance.
Given that we know that our trees are effective
for gold trees, this corroborates the suspicion that
while having a state-of-the-art performance in de-
pendency parsing, Stanza produces trees that have
a significant number of errors for the paths rele-

One answer is that the Pentagon prevented the State Department from running the CPA

Figure 7: Example sentence for pattern shown in Fig. 5d

vant to EUD. If the UD trees were of good quality
for the parts that are relevant for EUD, we would
see a larger increase in performance based on the
potential of our algorithm. To some extent, this
indicates that when developing a EUD parser, the
best approach may be to parse UD and EUD in
parallel, and not sequentially. This modus operandi
may help the parser to produce fewer UD errors for
the parts relevant to EUD.

4 Discussion/Analysis

We can draw the following conclusions from our
experiments:

e Our pattern recognizer fails to annotate many
enhanced labels for languages where case is
expressed by morphological features.

This is not surprising: we simply did not im-
plement any label rewriting based on such
features. (Indeed, the pattern Fig. 5d recog-
nizes case based on a preposition rather than a
morphological feature.) This is a shortcoming
which we plan to eliminate in future work.

This shortcoming explains much of the dis-
crepancy between the EULAS and the ELAS
scores.

e The performance of the system is heavily de-
pendent on the quality of the UD parser which
is used. In other words, our experiments show
that, even when using good UD parser, much
of the errors are imputable to the UD parser
rather than to the algorithmic rewriting step.

e QOur tree-to-graph transformation works well
on the gold trees, missing less than 4% of
the edges, when given gold UD trees as input.
Therefore, Broadly speaking, (H1) is vindi-
cated: UD contains most of the information
which is necessary to reconstruct EUD graphs.

225

‘We note however that (not enhanced) UD is in-
capable of expressing the difference between
the structure of the following two sentences:

(1) She was reading or watching a movie.
(Fig. 2)

(2) She was cleaning and eating fruits.
(Fig. 8)

In (1) “amovie” is an object of a verb (“watch-
ing”) which is conjoined with another verb
(“reading”), but it applies only to a single
verb. In (2), we also have a conjunction be-
tween verbs, but “fruits” is the object of both
verbs. Yet, the UD structure is the same for
both sentences. And thus, our algorithm can-
not recognize the difference between the two
trees. One solution is to use EUD, but another
solution would be to use parse trees, which
can make the grouping explicit.

Figuring out which case applies depends on
the semantics and pragmatics.

Figure 8: “She was cleaning and eating fruit”

Even though we have shown that UD contains
most information to recover EUD, EUD annota-
tions do have some additional value in certain cases.
However, because they have a more rich structure
(graph vs. tree), it may be that EUD is more suited
as inputs to machine-learning systems. Our sys-
tems can help to test this hypothesis by inserting

it (or not) in the training pipeline of a state-of-the-
art EUD parser. If the EUD parser performs just
as well with reconstructed EUD data compared to
human-constructed EUD data, then we would know
that manual EUD annotations are not necessary. It
is likely that we would observe a middle ground
situation, where reconstructed EUD data helps, but
does not supplant human-constructed EUD. In such
a situation, our system can be useful as a bootstrap-
ping tool. (We note however that excellent EUD
parsers are not available just yet; in fact they are
the purpose of the IWPT task which our system is
entering.)

In addition to bootstrapping, a run of our system
can provide a baseline for such systems. Indeed,
while performing well on gold data, our approach
is transparent (only 5 patterns are applied) and effi-
cient, requiring a few seconds to generate enhanced
graphs from a treebank.

Future work In addition to the shortcoming
about case labeling mentioned above, our system
struggles with labels that include multi-word to-
kens. For example, a valid adverbial clause mod-
ifier is so_that. Currently our system is not able
to identify these. To incorporate this our model
would either need to utilize statistical or deep learn-
ing methods, or look for children with the “fixed”
relation.

Another case that our system is not capable of
handling is ellipsis. The problem of ellipsis is dif-
ficult, especially in a tree-rewriting approach. We
decided not to tackle this problem and instead plan
on using a deep learning parser for this task in
future work.

Yet our main venue for future work is combining
our simple, yet effective method, with deep learn-
ing for the problematic cases that are out of reach.
These cases include ellipsis, multi-word tokens,
objects of conjoined verbs.

Acknowledgments

We would like to thank the reviewers for their help-
ful comments.The research reported in this paper
was supportedby a grant from the Swedish Re-
search Council (VR project 2014-39) for the estab-
lishment of the Centre for Linguistic Theory and
Studies in Probability (CLASP) at the University
of Gothenburg.

226

References

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734.

Murhaf Fares, Stephan Oepen, Lilja @vrelid, Jari
Bjorne, and Richard Johansson. 2018. The 2018
shared task on extrinsic parser evaluation: on the
downstream utility of english universal dependency
parsers. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 22-33.

David McClosky, Mihai Surdeanu, and Christopher D
Manning. 2011. Event extraction as dependency
parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages
1626-1635. Association for Computational Linguis-
tics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza:
A python natural language processing toolkit
for many human languages. arXiv preprint
arXiv:2003.07082.

Sebastian Schuster and Christopher D Manning. 2016.
Enhanced english universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 2371-2378.

The ADAPT Enhanced Dependency Parser at the IWPT 2020 Shared Task

James Barry and Joachim Wagner and Jennifer Foster
ADAPT Centre
School of Computing, Dublin City University, Ireland
firstname.lastname@adaptcentre.ie

Abstract

We describe the ADAPT system for the 2020
IWPT Shared Task on parsing enhanced Uni-
versal Dependencies in 17 languages. We im-
plement a pipeline approach using UDPipe
and UDPipe-future to provide initial levels of
annotation. The enhanced dependency graph
is either produced by a graph-based semantic
dependency parser or is built from the basic
tree using a small set of heuristics. Our results
show that, for the majority of languages, a se-
mantic dependency parser can be successfully
applied to the task of parsing enhanced depen-
dencies.

Unfortunately, we did not ensure a connected
graph as part of our pipeline approach and our
competition submission relied on a last-minute
fix to pass the validation script which harmed
our official evaluation scores significantly. Our
submission ranked eighth in the official evalu-
ation with a macro-averaged coarse ELAS F1
of 67.23 and a treebank average of 67.49. We
later implemented our own graph-connecting
fix which resulted in a score of 79.53 (lan-
guage average) or 79.76 (treebank average),
which would have placed fourth in the compe-
tition evaluation.

1 Introduction

The 2020 IWPT Shared Task on enhanced depen-
dency parsing (Bouma et al., 2020) requires partici-
pants to predict the enhanced dependencies (DEPS
column in the CoNLL-U format) in addition to sen-
tence boundaries, tokenisation, lemmata, POS tags,
morphological features and the basic dependency
tree. We take a pipeline approach using

1. UDPipe for sentence splitting and tokenisa-
tion,

2. ensembles of UDPipe-future basic parsers,
that also predict lemmata, POS tags and mor-
phological features, with added support for

multi-treebank models (Stymne et al., 2018),
and

3. two types of enhancers: (a) copying the ba-
sic tree and applying a small set of heuristics
(baseline system), and (b) a graph-based se-
mantic dependency parser (Dozat and Man-
ning, 2018).

To enable reproduction of our results, we make
available our helper scripts and modifications of
the semantic parser.!

Our approach to the task does not guarantee a
connected graph — something that we did not ac-
count for. Thus, on submission day, we did not
have an appropriate solution ready to fix our out-
puts but were able to provide a valid submission
due to some functionality that was added to the
quick-fix tool provided by the organisers? to al-
ter the enhanced graph. The solution was designed
primarily to make the files pass validation but in
doing so, harms F1-score. In a post-competition
run, we addressed the connected graph issue with
an alternative solution which increased our macro-
averaged ELAS F1-score from 67.23 to 79.53 and
the treebank average from 67.49 to 79.76.

2 System Components

2.1 Segmentation

We use UDPipe® (Straka and Strakovd, 2017)
with off-the-shelf UD v2.5 models* (Straka and
Strakovd, 2019) for the languages of the shared
task to split the raw input text into sentences and to-
kens. In cases where more than one UDPipe model

"https://github.com/jbrry/
Enhanced-UD-Parsing
https://github.com/
UniversalDependencies/tools
*http://ufal.mff.cuni.cz/udpipe
*nttp://hdl.handle.net/11234/1-3131

227

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 227-235
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

is available for a language, we try all models dur-
ing development > and select for each test language
the best overall pipeline according to ELAS on the
treebank with the biggest development set for the
language.

2.2 Basic Parsing

We choose UDPipe-future (Straka, 2018) for basic
parsing and joint prediction of lemmata, POS tags
and morphological features so as to not require a
separate tagger. We extend UDPipe-future to train
multi-treebank models as introduced by (Stymne
et al., 2018) with UUParser.”>®

Inspired by Straka et al. (2019), we use two types
of external word embeddings with UDPipe-future:
ELMo contextualised word embeddings (Peters
et al., 2018) and FastText character-n-gram-based
word embeddings (Bojanowski et al., 2017).° For
15 of the 17 test languages, ElmoForManyLangs'®
(Che et al., 2018) provides ELMo models. We train
FastText on the raw text provided by the CoONLL’17
shared task for the same 15 languages after shuf-
fling sentences. For the Russian FastText model,
we kept getting vectors with large component val-
ues even after trying a different machine and a
different permutation of sentences, prohibiting ef-
fective training of the parser. We then used a model
trained on % of the Russian data for which compo-
nent values and parser LAS were in the expected
range. Furthermore, we train UDPipe-future mod-
els using FastText and internal embeddings only.

Due to a configuration error, we did not try segmenta-
tion with UDPipe models trained on fi_ftb, 1t_hse and
sv_lines in the official submission.

For Czech, we based our decision on results for cs_cac
instead of cs_pdt as we did not have full results available for
cs_pdt.

"Multi-treebank models supply each token with the source
treebank ID as additional input with a separate embedding
table. Like Stymne et al. (2018), we use a vector size of 12.
At test time, a proxy treebank must be chosen when the input
sentence does not come from one of the training treebanks or
the source is unknown.

$https://github.com/jowagner/
UDPipe-Future/tree/multitreebank

°The FastText word embedding is restricted to a fixed
vocabulary of one million tokens, not taking advantage of
FastText’s ability to produce new vectors for OOVs. UDPipe-
future does not fine-tune these word embeddings. Instead, the
parser trains an additional embedding exclusively for training
words and a character-based representation. The latter two are
added and the result is concatenated with the two externally
provided representations. As far as we understand the code, an
all-zero vector is used for OOVs, i. e. words not in the selected
one-million-word FastText vocabulary.

Ohttps://github.com/HIT-SCIR/
ELMoForManyLangs

228

For Lithuanian and Tamil, we train UDPipe-
future without external word embeddings. The
parser still uses an internal word embedding cover-
ing all words of the training treebank(s) and a word
representation obtained with a bidirectional GRU
layer over the input characters.

For each target language, we train (a) mono-
treebank models for each training treebank avail-
able with surface strings in UD v2.5, preferring the
shared-task version when available, and (o) a multi-
treebank model for each language using all tree-
banks for that language for which we also trained
mono-treebank models. We train up to seven mod-
els with different initialisation for each setting to
combine them in ensembles.'!"!> We consider en-
sembles not just of a single type of model with dif-
ferent initialisation but also combinations of mod-
els trained on different treebanks (mono-treebank
models) or treebank combinations (multi-treebank
models) and in the plain, FastText and ELMo vari-
ants.!> As the number of possible combinations
increases exponentially with the number of models,
we prune the candidates giving preference to mod-
els using all or only one treebank and to models
using ELMo. We then test each ensemble on the
development data (raw input segmented with UD-
Pipe) and pick the best ensembles based on ELAS
after applying our heuristic enhancer (Section 2.3)
to the basic trees.

To pick the proxy treebank (see description in
Footnote 7) for multi-treebank parsing, we use
the treebank name in the filename of the raw text
during development. However, for final testing,
the treebank identifier is unavailable (and if it had
been available there would have been cases where

""'We trained 68 types of models. We trained seven seeds
for 34 of these, five seeds for 30 and three seeds for four.
Ensembles sizes three, five and seven are considered, including
a combination of (n+ 1)/2 models of one type and (n—1)/2
models of another type with n € {3,5,7}.

12We use our implementation https://github.com/
jowagner/ud-combination of the linear combiner of
Attardi and Dell’ Orletta (2009).

BWhile predicting on development data to facilitate model
selection, we temporarily introduced a bug in our system
causing it to use the first initialisation seed for all ensemble
members only, effectively falling back to a single model when
only one model type is used. We fixed this bug before we
switched to making test set predictions and tried to account for
it in the model selection but, under time pressure, made some
hard to explain ad hoc choices, e. g. we used an ensemble of
three models for Czech, two mono-treebank models trained
on cs_cac and one multi-treebank model, even though we
also had test set predictions with an ensemble of seven models
with the same mixture of model types available. For details,
see the reproducibility notes in our code repository.

this treebank is not one of the training treebanks).
Given time limits, we decided to simply assign
each test set, i.e. each test language, the training
treebank with the largest amount of training data
as the proxy treebank.'*

2.3 Heuristic Enhancement

We build a baseline system which concentrates on
the two enhanced UD phenomena which are very
straightforward to implement using simple heuris-
tic rules, namely, co-reference in relative clauses
and modifier relations containing case markers.
These rules are applied to the output of the ba-
sic parser. We have two versions of the modifier
relation rule - one in which the value of the case
morphological feature is included in the relation
label and one without. We also have a rule which
adds the lemma of a conjunction to the enhanced
label of its head. For each development set, we find
the optimal subset of the set of heuristic rules in
terms of ELAS among all possible subsets except
those combining the two case rules.

This baseline system is clearly suboptimal since
it makes no attempt at all to handle those more in-
teresting enhanced UD phenomena which involve
the addition or deletion of arcs, i.e. conjunct prop-
agation, ellipsis and control/raising constructions.
Nonetheless it is useful as a baseline to check that
the main system is performing reasonably and is
available as a fall back.

2.4 Semantic Parsing

2.4.1 Modelling Enhanced Dependencies

As our main system to predict the enhanced graph,
we follow (Dozat and Manning, 2018) and treat
enhanced dependency parsing as a task similar to
semantic dependency parsing. In semantic depen-
dency parsing, words may have multiple heads.
Thus, Dozat and Manning (2018) apply their deep
biaffine graph-based dependency parser (Dozat and
Manning, 2017) to the task of semantic dependency
parsing but replace the softmax cross-entropy loss
with sigmoid cross-entropy loss for edge prediction.
The above modification changes the modelling ob-
jective such that words are no longer competing
with one another to be classified as the appropriate
head; rather, the parser chooses whether an edge

"“For Estonian, French, Dutch and Polish (a subset of the
languages with PUD treebanks announced in the development
pack), we randomised on the sentence level which proxy tree-
bank is used during multi-treebank parsing.

229

exists between each possible pair of words indepen-
dently. Whether an edge exists between two words
is based on a predefined threshold, where a score
above this threshold results in an edge being pre-
dicted and, subsequently, the edge’s label. In our
experiments we use an edge prediction threshold
of 0.5. If the parser did not predict an edge for a
word, we take the edge with the highest probabil-
ity. As we want to select the label with the highest
probability for each chosen edge, standard softmax
cross-entropy loss is used for label prediction as in
Dozat and Manning (2018).

In order for the semantic dependency parser to
be able to model relationships where a word may
have multiple heads, we create an adjacency matrix
where the ij" entry in the matrix indicates whether
an edge exists between tokens ¢ and j with label
type k. We also append the dummy root token
to the adjacency matrix so that an edge can be
predicted from the main predicate of the sentence
to the dummy root token.

Figure 1a shows the enhanced UD graph for the
phrase, Tale of joy and sorrow. In the enhanced
representation, each conjunct in the conjoined noun
phrase is attached to the governor of the modifier
phrase, e.g. there is an additional nmod relation
marked in blue between the noun 7ale and the
second conjunct sorrow. Note that the lemma of
the case and cc dependents are appended to the
enhanced dependency labels of their heads. The
corresponding edge-existence probabilities of the
semantic parser trained on en_ewt are shown in
Figure 1b where the parser correctly predicts an
edge from sorrow to the first conjunct joy as well
as the head of the modifier phrase Tale.

2.4.2 Feature Representations

In our experiments, each word w; in a sentence
S = (wg, w1, ..., wy) is converted to its vector
representation x;. We trained different variants of
our semantic parser where X; is the concatenation
of different combinations of the below features:

* BERT embedding: The first word-piece
embedding of the wordpiece-tokenised in-

put word from BERT (Devlin et al., 2019)
e BERT) ~ 768

(2

* character embedding: A character em-
bedding obtained by passing the k charac-
ters chy, ..., chy of w; through a BILSTM:
BiLSTM(chy.), e/") € R64

)

conj:and
nmod:of J
root cc

ROOT Tale of joy and SOITOW

nmod:of

(a) Enhanced UD graph.

Figure 1
the phrase Tale of joy and sorrow.

* lemma embedding: The embedding of the

{1

¢ €) ¢ R3O

¢ UPOS embedding: The embedding of the
word’s universal POS tag egu) € R%

word’s lemma e

* XPOS embedding: The embedding of the
word’s language-specific POS tag el(x) € R

* morphological feature embedding: The em-
bedding of the word’s morphological features
elf) ¢ R3O

7

¢ head-information embedding: An embed-
ding representing the word’s head information
from the basic tree e\ € R50

* dependency label embedding: The embed-

ding of the word’s dependency label from the
(label) c [R50

basic tree e;

All model variants use the lexical information
of the first BERT word-piece embedding and the
character embedding, where ; represents vector con-
catenation:

[1Y

ez(;) _ [e{PERD), (b)) 0

The subsequent variation comes from the other
types of features used where we experimented with
the below feature settings:

x; = [e]; e;")] @
x; = [eV; e e[el 3)
x; = [efief e se(Psel] @)

Dependents

ROOT Tale [joy and sorrow

ROOT 0.00 EuEoly 0.00 0.00 0.00 0.00
Tale 0.00 0.00 0.00 pEmWeA 0.00 NN

of 0.00 0.00 0.00 0.00 0.00 0.00 0.6

Heads

joy 0.00 000 WENIOM 000 0.00 [N 0.4

and 0.00 0.00 0.00 000 0.00 0.00
0.2

sorrow 0.00 0.00 0.00 0.00 e 0.00
0.0

(b) Edge-existence probabilities.

The enhanced UD graph and edge-existence probabilities of the semantic parser trained on en_ewt for

o (19, 60, 6N, B (5

Xi:[l’z’z i

66019, 6, 6@; oD)] (g

Xi:[z’l’z’l’z

For the morphological features, there may be
multiple morphological tags my, . .., m; for a par-
ticular word w;. Thus, we split the full label into
separate features (Hall et al., 2007) and embed each
morphological property separately. We then sum
the individual embedded representations together
and divide by the number of active properties:

egf) — mean(e(™1:1)) 7

We follow the same process for the head-
information embedding egh). Rather than encoding
the head as an integer value, we obtain a direc-
tion value and a distance value: for each head-
dependent pair (i, j), we subtract the indices of , j
giving the distance value. If the value is negative
it means the head is to the left or if it is positive,
to the right. We then take the absolute distance
value and define ranges: short (1-4), medium (5-9),
far (10-14) and long-range (>15). The qualitative
direction (left or right) and distance labels are em-
bedded in the same way as morphological features,
e.g. embedded as separate components, summed
together and then divided by the number of features
(which in this case is always two):

egh) = mean(e(")) (8)
To encode the basic tree, we then concatenate the
head representation and the dependency label em-
bedding:
e(b) _ [e(h)_ e(label)]

7 A}

(©))

230

It is worth mentioning that more sophisticated ap-
proaches for modelling head distance and direction
exist for basic dependency parsing (Qi et al., 2018)
but we leave using this approach for enhanced de-
pendency parsing as future work.

2.4.3 Training Details

Our semantic parser predicts edges in a greedy
fashion based on local decisions, i.e. we did not
make use of any maximum spanning tree algorithm
or enforce any global constraints. One property
of enhanced dependency graphs is that the graph
may contain cycles, therefore, we did not remove
any cycles from the graph but observed that this
sometimes causes fragments in the graph which
are not reachable from the notional ROOT. For
graphs with unreachable nodes, we applied our
post-processor to attach these (Section 2.5).

We found that this architecture can be easily ap-
plied to enhanced dependency parsing given its sim-
ilar nature to semantic dependency parsing. One
caveat is that in enhanced dependency parsing, the
label set can be quite large as modifier lemma and
case information can be appended to the depen-
dency label which results in very high memory
requirements for certain languages such as Ara-
bic. Additionally, modelling all enhanced labels
in this fashion means that the parser is limited in
its ability to predict labels for rare modifiers. An
examination of the semantic parser output on the
en_ewt development set shows that, although the
parser often predicts the correct label, it can some-
times predict the wrong label containing a frequent
modifier which is not in the sentence, e.g. advcl:if
instead of advcl:as.

Our semantic parser is built upon the implemen-
tation in AllenNLP (Gardner et al., 2018). Due to
time constraints, we trained our semantic parsing
models on the gold training data released by the
organisers as opposed to creating jack-knifed sil-
ver data. Hyperparameters are similar to those in
Dozat and Manning (2017) as we found the larger
network size of Dozat and Manning (2018) to be
too restrictive for certain languages with high mem-
ory demands. Full hyperparameters of the seman-
tic parser are given in Table 1. We trained for
75 epochs with early-stopping if the development
score did not improve after 10 epochs.

Memory Considerations We trained our seman-
tic parsing models on two GPUs: the first was
an NVIDIA RTX 2080 Ti with 12GB of VRAM

231

Semantic Parser Details

Parameter Value
Char-BiLSTM layers 2
BiLSTM layers 3
BiLSTM size 400
Char-BiLSTM size 64
Arc MLP size 500
Label MLP size 100
Dropout LSTMs 0.33
Dropout MLP 0.33
Dropout embeddings 0.33
Nonlinear act. (MLP) ELU

Edge prediction threshold 0.5

BERT word-piece embedding 768
Char embedding 64
Tag embedding (all tags) 50
Optimizer Adam
Learning rate 0.001
betal 0.9
beta2 0.9
Num. epochs 75
Patience 10
Batch size 16
Table 1 Chosen hyperparameters for our semantic

parser. For the tag embedding, we use the same size
embedding for all features (lemma, POS, morpholog-
ical features, head-information and label embeddings)
and concatenate them.

where we had to remove very long sentences
(< .03% of sentences overall) from the treebanks:
cs_cac, cs_pdt, it_isdt, ru_syntagrus
and sv_talbanken in order to fit a batch into
memory. We were also given access to an NVIDIA
V100 GPU with 32GB of VRAM which enabled
us to process all treebanks except for ar_padt
without removing long sentences. For ar_padt,
after removing the longest 75 sentences, the model
still required 29GB of VRAM.

2.4.4 BERT Models

For the BERT models, in early development runs
we compared multilingual BERT (mBERT) with a
language-specific BERT model if there was one
available in HuggingFace’s (Wolf et al., 2019)
models repository.'> We used a language-specific
BERT model for ar (Safaya et al., 2020), bg+cs
(Arkhipov et al., 2019), en (Devlin et al., 2019),

Bhttps://huggingface.co/models

£1i (Virtanen etal., 2019), 1t'°, n1 (de Vries et al.,
2019), p1!7, ru (Kuratov and Arkhipov, 2019)
and sv'® and for the rest of the languages we used
mBERT (Devlin et al., 2019). We found that the
language-specific variant was always better than
mBERT except for pl_1fg. For fr_sequoia,
we tried using the CamemBERT model (Martin
et al., 2020). As this model uses ROBERTA (Liu
et al., 2019) as opposed to BERT, we installed
AllenNLP from the master repository which uses
HuggingFace’s AutoTokenizer module which
supports many BERT-like models. We noticed a
trend of lower results when using the master branch
for some languages but training was also more sta-
ble for certain treebanks where we had previously
encountered a nan in the loss."” Consequently,
we include models from the stable release and the
bleeding-edge master branch in our development
pipeline.

2.5 Connecting the Graph

We had no solution ready to connect fragmented
graphs produced by our semantic parser’’ on the
system submission day and resorted to using the
“connect-to-root” option of the quick—-fix tool
provided by the shared task organisers, who warned
that it had not been thoroughly tested.

After the system submission deadline, we inves-
tigated the fragmentation issue. The task is to make
all nodes reachable from the notional ROOT?!,
where reachability is directional. Adding more
edges than necessary harms precision and thus F1-
score. We found that the quick—-fix tool with
the “connect-to-root” option adds edges to every
unreachable node. We also noticed a bug in the im-
plementation where certain reachable nodes were
being reported as unreachable.

We then implemented an improved tool to con-
nect fragmented graphs trying to minimise the num-
ber of edges added to the graph. We repeatedly

Yhttps://github.com/dbmdz/berts

"https://github.com/kldarek/polbert

Bhttps://github.com/Kungbib/
swedish-bert-models

We incurred a nan loss for cs_cac, cs_pdt, it_isdt
and ru_syntagrus using the AllenNLP stable branch 0.9.0
and used the best model from the available epochs.

2Between 90.18% (Lithuanian) and 99.51% (Russian) of
test sentences in our official submission are not affected, i. e.
all nodes are reachable from a root node. This observation
excludes Estonian, for which we submitted predictions using
our heuristic system.

2'up distinguished between the notional ROOT (ID 0) and
root nodes. The latter are any nodes that have ‘0’ as a head.

ELAS F1
Treebank sem-frag heuristic
ar_padt 70.99 59.74
bg_btb 88.09 86.19
cs_cac 86.51 74.41
cs_fictree 83.23 77.37
cs_pdt 79.58 71.19
en_ewt 84.71 82.86
et_edt 62.74 69.35
fi_tdt 83.64 71.84
fr_sequoia 88.65 87.53
it_isdt 90.13 88.28
It_alksnis 73.63 57.84
Iv_lvtb 81.82 71.29
nl_alpino 89.93 89.00
nl_lassysmall 79.00 81.24
plifg 94.12 93.84
pl_pdb 82.25 78.27
ru_syntagrus 88.48 80.03
sk_snk 81.30 75.98
sv_talbanken 84.54 81.32
ta_ttb 55.68 43.94
uk_iu 82.41 76.88

Table 2 Development set ELAS F1 score for the
best semantic parser evaluated without connecting frag-
mented graphs (sem-frag) and for the best combination
of heuristic rules (heuristic)

check for each unreachable node how many un-
reachable nodes can be reached from it. Among
the nodes that maximise this number we pick the
first node in surface order and make it a child of
the notional ROQOT, i. e. it becomes an additional
root node. This is a rather naive approach which
does not try to connect fragments in a sensible
manner but, rather, mimics the behaviour of the
“connect-to-root” option. Future work could try to
show whether our above algorithm adds the min-
imal number of edges necessary to connect the
graph or if a lower optimum exists.

3 Results

Table 2 compares the semantic parser against the
heuristic approach on the ELAS F1 metric. The
evaluation script was run without connecting frag-
mented graphs and format validation. For all but
two treebanks, the semantic parser performs better
than the best heuristic approach. For some lan-

232

ELASF1
Treebank subm frag fix re-run
Arabic-PADT 57.19 70.08 70.40
Bulgarian-BTB | 77.29 89.58 89.60
Czech-FicTree | 70.04 80.77 81.63
Czech-CAC 71.72 86.00 86.38
Czech-PDT 65.94 79.03 79.84
Czech-PUD 64.34 77.37 78.08
Dutch-Alpino 71.44 87.61 87.77
Dutch-L.Small | 64.03 7739 77.24
English-EWT 70.61 83.56 83.56
English-PUD 70.25 86.88 87.03
Estonian-EDT | 62.29 68.20 68.37
Estonian-EWT | 55.70 61.19 60.67
Finnish-TDT 73.02 84.36 84.33
Finnish-PUD 71.58 84.62 84.62
French-Sequoia | 77.44 87.58 88.60
French-FQB 74.30 82.68 83.26
Italian-ISDT 71.98 90.24 90.23
Latvian-LVTB | 72.41 81.81 82.40
Lithuanian-AL. | 58.36 68.76 68.84
Polish-LFG 61.23 70.89 70.71
Polish-PDB 67.68 80.93 82.43
Polish-PUD 65.64 79.77 80.79
Russian-SynT. | 75.27 89.21 89.47
Slovak-SNK 68.43 81.63 81.97
Swedish-Talb. 71.86 86.78 86.72
Swedish-PUD 64.70 79.35 79.37
Tamil-TTB 48.47 57.28 57.10
Ukrainian-IU 66.43 79.81 82.92
Average 67.49 79.76 80.15

Table 3 Test set results: subm = submitted, frag fix
= using our own fragment connector and quick-fix.pl
without connect-to-root, re-run = a re-run with bug
fixes, no new models but new model selection

guages, the difference in performance is large. For
et _ewt, which does not have a development set,
we suspect that we overfitted our semantic parser
on the et _ewt training data by allowing it to train
for 75 epochs.

Table 3 shows test set ELAS obtained on the
shared task submission site for (a) our submission
fully relying on the organiser’s quick—fix tool
to fix issues in the output of our system, (b) the
same predictions post-processed by our own frag-
ment connector that aims to minimise the num-
ber of root edges added, and (¢) a re-run of our
pipeline using the same models for system com-
ponents as before but with all bugs fixed during

development applied to all predictions and new
decisions which models to apply to the test sets.
While the quick—-fix tool enabled us to make a
valid submission in time, its approach of adding
edges from the root node to all unreachable to-
kens has a strong negative impact on precision, €. g.
62.26 ELAS precision on the Czech CAC develop-
ment set vs. 87.37 without post-processing. Our
own post-competition fix avoids this and would
have brought us to the top half of the competition.

4 Conclusion

In this system submission, we use a graph-based se-
mantic parser to parse enhanced dependencies and
compare to a baseline in which we create enhanced
graphs from the basic tree using a very limited set
of heuristics. Avenues for future work include:

Post-processing Predict the head and label for
edges connecting fragments (as opposed to a
dummy “O:root” edge) where this information
could come from new edges available from lower-
ing the score threshold or from the basic tree.

Label Prediction The semantic parser performs
competitively despite treating enhanced depen-
dency labels containing lemmas and case informa-
tion as atomic units. However, a more sophisticated
approach should still be tried.

Multi-treebank Parsing When randomising the
proxy treebank for multi-treebank models, use a
different randomisation for each ensemble mem-
ber. Predict the best proxy treebank for each test
sentence or paragraph (Wagner et al., 2020).

Elided Tokens Our semantic parser handles
elided tokens by appending the elided token to the
adjacency matrix and offsetting the head indices.
While we used this approach during training on
gold data, we did not predict elided tokens and we
wish to explore methods for doing so.

Acknowledgments

This research is supported by Science Foundation
Ireland through the ADAPT Centre for Digital Con-
tent Technology, which is funded under the SFI
Research Centres Programme (Grant 13/RC/2106)
and is co-funded under the European Regional De-
velopment Fund. We thank the reviewers for their
insightful, detailed feedback. We acknowledge
Dell for the use of an NVIDIA V100 GPU as part
of the Dell Al Ready Bundle with Nvidia.

233

References

Mikhail Arkhipov, Maria Trofimova, Yuri Kuratov, and
Alexey Sorokin. 2019. Tuning multilingual trans-
formers for language-specific named entity recogni-
tion. In Proceedings of the 7th Workshop on Balto-
Slavic Natural Language Processing, pages 89-93,
Florence, Italy. Association for Computational Lin-
guistics.

Giuseppe Attardi and Felice Dell’Orletta. 2009. Re-
verse revision and linear tree combination for depen-
dency parsing. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Companion Volume: Short
Papers, pages 261-264, Boulder, Colorado. Associ-
ation for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55-64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the 5th International Confer-
ence on Learning Representations (ICLR 2017).

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484-490, Mel-
bourne, Australia. Association for Computational
Linguistics.

234

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1-
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Johan Hall, Jens Nilsson, Joakim Nivre, Giilsen Eryigit,
Beata Megyesi, Mattias Nilsson, and Markus Saers.
2007. Single malt or blended? a study in multi-
lingual parser optimization. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
933-939, Prague, Czech Republic. Association for
Computational Linguistics.

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation
of deep bidirectional multilingual transformers for
Russian language. ArXiv 1905.07213.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv 1907.11692.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suérez, Yoann Dupont, Laurent Romary, Eric Ville-
monte de la Clergerie, Djamé Seddah, and Benofit
Sagot. 2020. CamemBERT: a tasty French language
model. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL). To appear. Also available as ArXiv
1911.03894.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
22272237, New Orleans, Louisiana. Association
for Computational Linguistics.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 160—170, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Ali Safaya, Moutasem Abdullatif, and Deniz Yuret.
2020. Kuisail at semeval-2020 task 12: BERT-CNN
for offensive speech identification in social media.
In Proceedings of the International Workshop on Se-
mantic Evaluation (SemEval). To appear.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw

Text to Universal Dependencies, pages 197-207,
Brussels, Belgium. Association for Computational
Linguistics.

Milan Straka and Jana Strakova. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88—99, Vancouver, Canada.
Association for Computational Linguistics.

Milan Straka and Jana Strakova. 2019. Universal de-
pendencies 2.5 models for UDPipe (2019-12-06).
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (UFAL), Fac-
ulty of Mathematics and Physics, Charles Univer-
sity.

Milan Straka, Jana Strakové, and Jan Hajic¢. 2019. Eval-
uating contextualized embeddings on 54 languages
in POS tagging, lemmatization and dependency pars-
ing. ArXiv 1908.07448.

Sara Stymne, Miryam de Lhoneux, Aaron Smith, and
Joakim Nivre. 2018. Parser training with heteroge-
neous treebanks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 619-625.
Association for Computational Linguistics.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
BERT for Finnish. ArXiv 1912.07076.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. BERTje: A Dutch BERT
model. Arxiv 1912.09582.

Joachim Wagner, James Barry, and Jennifer Foster.
2020. Treebank embedding vectors for out-of-
domain dependency parsing. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics (ACL). To appear. Also avail-
able as ArXiv 2005.00800.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv 1910.03771.

235

Kgpsala: Transition-Based Graph Parsing via
Efficient Training and Effective Encoding

Daniel Hershcovich*

Miryam de Lhoneux*<
Elham Pejhan®
¢University of Copenhagen

Artur Kulmizev"”

Joakim Nivre”
YUppsala University

{dh,ml1, ep}@di.ku.dk,
{artur.kulmizev, joakim.nivre}@lingfil.uu.se

Abstract

We present Kgpsala, the Copenhagen-Uppsala
system for the Enhanced Universal Dependen-
cies Shared Task at IWPT 2020. Our system
is a pipeline consisting of off-the-shelf mod-
els for everything but enhanced graph pars-
ing, and for the latter, a transition-based graph
parser adapted from Che et al. (2019). We train
a single enhanced parser model per language,
using gold sentence splitting and tokenization
for training, and rely only on tokenized sur-
face forms and multilingual BERT for encod-
ing. While a bug introduced just before sub-
mission resulted in a severe drop in precision,
its post-submission fix would bring us to 4th
place in the official ranking, according to av-
erage ELAS. Our parser demonstrates that a
unified pipeline is effective for both Meaning
Representation Parsing and Enhanced Univer-
sal Dependencies.

1 Introduction

The IWPT 2020 Shared Task on Parsing into En-
hanced Universal Dependencies (Bouma et al.,
2020) involves sentence segmentation, tokeniza-
tion, lemmatization, part-of-speech tagging, mor-
phological analysis, basic dependency parsing, and
finally (for the first time) enhanced dependency
parsing. The enhancements encode case informa-
tion, elided predicates, and shared arguments due
to conjunction, control, raising and relative clauses
(see Figures 1 and 2).

In Universal Dependencies v2 (UD; Nivre et al.,
2020), enhanced dependencies (ED) are a sepa-
rate dependency graph than the basic dependency
tree (BD). However, ED is almost a super-set of
BD,! and so most previous approaches (Schuster
and Manning, 2016; Nivre et al., 2018) have at-
tempted to recover ED from BD using language-
specific rules. On the other hand, Hershcovich

*Equal contribution
'Some BD arcs are deleted in ED, e.g., orphan arcs.

root

punct
nsubj:pass

ArA

were made to feel very welcome

K nsubj:xsubj
nsubj: xsubj

Figure 1: ED for reviews-077034-0002 from
UD_English-EWT, containing a control verb (made).
Arcs above the sentence are also in BD.

et al. (2018) experimented with TUPA, a transition-
based directed acyclic graph (DAG) parser origi-
nally designed for parsing UCCA (Abend and Rap-
poport, 2013), for supervised ED parsing. They
converted ED to UCCA-like graphs and did not use
pre-trained contextualized embeddings, yielding
sub-optimal results. Taking a similar approach, we
adapt a transition-based graph parser (Che et al.,
2019) designed for Meaning Representation Pars-
ing (Oepen et al., 2019), but parse ED directly and
use BERT embeddings (Devlin et al., 2019).

The main contribution of our work is a transi-
tion system supporting the graph structures exhib-
ited by ED, including null nodes (meaning this
is not a strictly bilexical formalism), cycles and
non-crossing graphs (§3.1), as Figure 4 demon-
strates for the sentence from Figure 2. We parse
ED completely separately from BD, demonstrat-
ing the applicability of a full graph parser, starting
from only segmented and tokenized text, to ED.
Our code is available at https://github.com/

coastalcph/koepsala-parser.

2 Preprocessing

As the focus of this shared task is ED parsing, we
rely on existing systems for preprocessing. Here,
we consider two off-the-shelf pipelines: STANZA

236

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 236244
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

root

nsubj

punct

nmod:van

nsubj:relsubj

conj:en

acl:relcl

Figure 2: wiki-3745.p.38.s.5 from UD_Dutch-LassySmall, containing a null node NULL, not in the orig-
inal sentence, coordination and case suffixes (: en, :van, :aan), and propagation of conjuncts (hal — grootste).
The dashed edges are deleted in ED, and the edges below the sentence are added. Note the cycle NULL < voldoet.

(Qi et al., 2020)? and UDPIPE 1.2 (Straka and
Strakovd, 2017; Straka et al., 2016),> both of which
have models pre-trained on UD v2.5 treebanks. We
experiment with either pipeline during prediction
to process the raw text files for the dev and test
sets, eventually selecting UDPIPE for our primary
submission. This process entails sentence segmen-
tation, tokenization, lemmatization, part-of-speech
tagging, morphological feature tagging, and BD
parsing.* For training our ED parser (§3), how-
ever, we use gold inputs for simplicity. We use the
conllu Python package’ to read CoNLL-U files.

Preprocessing model selection. Since the dev
and test data do not denote their source treebanks,
we simply process the text using the pipeline model
trained on the language’s largest treebank. To ex-
periment with an alternative method, for languages
with more than one treebank, we also train UD-
PIPE models on combined training treebanks. Ta-
ble 1 shows the comparison of LAS on the com-
bined dev set, for these models and for the models
(pre-)trained on the language’s largest treebank.
The results show that using the combined training
sets does not lead to consistent improvements in
terms of LAS, and so we continue using pre-trained

https://stanfordnlp.github.io/stanza/
models.html

*https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3131

*The preprocessing output, except for segmentation and
tokenization, is not used in any way by the ED parser, since it
just uses BERT for token representation (§3.2).

Shttps://github.com/EmilStenstrom/
conllu

237

Language
CzECH DUTCH ESTONIAN POLISH
combined 78.88 76.50 77.01 82.96
largest 83.97 74.97 77.61 82.59

Table 1: LAS on the combined dev set for UDPIPE mod-
els trained on the language’s combined training tree-
banks and the models trained on the language’s largest
treebank. No consistent trend is observed.

treebank-specific preprocessing models henceforth.

3 Transition-Based Enhanced
Dependency Parser

Our system is a transition-based graph parser, based
on the HIT-SCIR system (Che et al., 2019), which
achieved the highest average score across frame-
works (AMR, EDS, UCCA, DM and PSD) in the
CoNLL 2019 shared task on Meaning Representa-
tion Parsing (MRP; Oepen et al., 2019). It is writ-
ten in the AllenNLP (Gardner et al., 2018) frame-
work. For training efficiently, it employs stack
LSTMs (Dyer et al., 2015), batching operations
across sentences. For better encoding, HIT-SCIR
fine-tuned BERT (Devlin et al., 2019) while train-
ing the parser.

A transition-based parser operates by manipulat-
ing a buffer (originally containing the input words
provided by the preprocessor, see §2) and a stack
(originally containing the root, i.e., word at index
0), to incrementally create the output dependency
graph. At each point in the parsing process, a tran-

sition is selected out of a pre-defined set of possible
transitions. A classifier is trained to predict the best
transition to apply at each step, by mimicking an
oracle during training (see §3.1).

HIT-SCIR used a different transition system per
framework (AMR, EDS, UCCA; and one system
for DM and PSD), according to the graph properties
of each and based on existing framework-specific
parsers (Liu et al., 2018; Buys and Blunsom, 2017,
Hershcovich et al., 2017; Wang et al., 2018). We
construct a transition system for ED using subsets
of transitions from two of the HIT-SCIR systems:
their system for DM and PSD, as well as their
system for UCCA, with some further adaptations
specific to ED graphs.

3.1 Transition System

Our system contains the following transitions:
{SHIFT, LEFT-EDGE;, RIGHT-EDGE;, REDUCE-
0, REDUCE-1, NODE, SWAP and FINISH}. The
SHIFT transition pops the first element of the buffer
and pushes it onto the stack. The LEFT-EDGE; and
RIGHT-EDGE; transitions add an arc® between the
two top items of the stack with label . We need two
different REDUCE transitions to pop the topmost
and second topmost items of the stack, which we
name REDUCE-0 and a REDUCE-1 respectively.
This makes it possible to construct length-2 cycles,
which ED allows (and most MRP frameworks do
not). The NODE transition inserts a null node as
the first element of the buffer, needed to support
null nodes. SWAP moves the second-top node of
the stack to the buffer, thus swapping the order
between the two top nodes of the stack. This is
necessary for handling crossing graphs (analogous
to non-projective trees). Finally, FINISH terminates
the transition sequence. A formal definition of the
transition set is shown in Figure 3.

Separate EDGE transitions exist for each edge la-
bel. Labels containing coordination or case suffixes
(such as nmod : van) are treated as any other label
and are not split, resulting in a large number of
transitions for some languages, shown in Table 2.

NODE transitions, on the other hand, do not se-

8For consistency, we keep the transition nomenclature us-
ing “EDGE”, although they create directed dependency arcs.
Note that in analogous transitions in some transition systems,
such as ARCEAGER (Nivre, 2003), the dependent of the tran-
sition is also popped out of the stack as part of either of these
two transitions. Here, since dependents can have multiple
heads and can have arcs with multiple labels, we stick to the
EDGE action and use our two REDUCE transitions to pop
elements of the stack when necessary.

238

Language | Total EDGE w/ suffix
ARABIC 402 395 345
BULGARIAN 197 191 137
CZECH 768 761 702
DUTCH 393 386 336
ENGLISH 300 293 232
ESTONIAN 445 438 381
FINNISH 266 259 210
FRENCH 112 106 59
ITALIAN 281 274 216
LATVIAN 238 232 161
LITHUANIAN 323 317 263
POLISH 676 669 615
RUSSIAN 944 938 861
SLOVAK 266 259 204
SWEDISH 209 202 153
TAMIL 146 140 103
UKRAINIAN 290 283 225

Table 2: Number of transitions for each language.

lect any label or features, since null nodes are only
evaluated with respect to their incoming and out-
going edges. All other information is ignored, and
thus not predicted by the parser: predicted null
nodes are thus only placeholders.

Constraints. In addition to the modified transi-
tion set, we change the constraints for some transi-
tions according to the required graph structure.

Since LEFT-EDGE; and RIGHT-EDGE; transi-
tions do not reduce the dependent, we need to en-
sure that we do not draw the same arc twice. For
this reason, these transitions are not allowed if there
is already an arc with label [between the two nodes.
We also disallow to add an arc with the root as de-
pendent.

To ensure every node gets attached to at least one
head, we disallow the REDUCE-0 and REDUCE-1
transitions for nodes that do not have a head yet.
We also disallow reducing the root.

For the SWAP transition, we maintain the gener-
ated order of each node, assigned when the node
is shifted (for words) or created (for null nodes).
To prevent infinite loops during inference, we only
allow swapping nodes whose order in the stack is
the same as their generation order.

To limit repeated actions, we arbitrarily con-
strain NODE transitions such that there are no
more null nodes than words (although a lower limit
would suffice), and EDGE transitions to limit the

Before Transition Transition After Transition Condition
Stack Buffer Nodes Arcs Stack Buffer Nodes Arcs Terminal?
b)) b|B V A SHIFT b B \% A -
2 so B \% A REDUCE-0 by B \% A — s0 # root A (+,89). € A
Y |s1,50 B | A REDUCE-1 | so B v A - s1 # 100t A (-, 51). € A
) B V. A | NobE b b|B VUu{b A -
¥|s1,s0 B \% A LEFT-EDGE; | X |s1,50 B \% AU {(so,s1)1} - s1 #root A (sg,s1)1 € A
X ‘ s1,50 B %4 A RIGHT-EDGE; | ‘ s1,s0 B 1% AU {(81, S())l} (81, .S’(])l g A
Y |s1,5 B \% A SWAP 3 so s1| BV A — s1 # root Ai(sy) < i(so)
[root] [1 \% A FINISH [1 [1 \% A +

Figure 3: Our transition set. We write the stack with its top to the right and the buffer with its head to the left.
(h, d); denotes an [-labeled dependency with head h and dependent d. i(x) is the generated order (see §3.1).

number of heads per node to 7.’

FINISH is only allowed when the buffer is empty
and the stack only contains the root. If no valid
transition is available, the sequence is terminated
prematurely by applying the FINISH transition, re-
gardless of the FINISH constraints.

Oracle. We use a static oracle similar to HI'T-
SCIR (a single “gold” transition sequence is given
during training, which the parser is forced to fol-
low), but develop one for our transition system.

The oracle deterministically chooses the transi-
tion to take given the current configuration. Let s1
and sg be the two top items of the stack and b the
first item of the buffer (if these are defined in the
current configuration). If the buffer is empty and
the stack only contains the root, take a FINISH tran-
sition. Otherwise, if there is an arc between s; and
so with label [that has not yet been constructed,
take the necessary RIGHT-EDGE; or LEFT-EDGE;
action. Otherwise, if sg has a node dependent, take
a NODE transition. Otherwise, if sg has all its heads
and dependents, take REDUCE-O, if s; has all its
heads and dependents, take REDUCE-1. Otherwise,
if s1 and sg are in their generated order and sg has
a head or a dependent in the stack that is not sy,
take a SWAP. Otherwise SHIFT. Figure 4 shows an
example transition sequence.

3.2 Classifier

The parser uses BERT (Devlin et al., 2019)
for token representation. = While Che et al.
(2019) used pre-trained English model
(wwm_cased_ L-24_H-102416), we re-
placed it with a pre-trained multilingual one
(multi_cased.L-12_H-76812)} trained

"While the observed number of heads per node in the data
goes up to 36, in the training data there is only a small minority
of cases where a node has more than 7 heads.

$https://github.com/google-research/
bert/blob/master/multilingual.md

on 104 languages, including all 17 languages
participating in the shared task. As done by Che
et al. (2019), we use the bert-pretrained
text field embedder from AllenNLP, which extracts
the first word-piece of each token, applying a
scalar mix on all layers of transformer.

The transition classifier is a stack-LSTM (Dyer
et al., 2015) with only BERT embedding features
for words, as well as a scalar feature denoting the
ratio between the number of (null) nodes and the
number of words (Hershcovich et al., 2017), as in
HIT-SCIR. We do not fine-tune BERT due to mem-
ory limitations, though fine-tuning would likely
result in improved performance.

3.3 Postprocessing

The enhanced graphs are required to be connected,
i.e., every node must be reachable from the root.’
While the transition constraints ensure that every
node has a head, there may be unconnected cycles
at the end of the parse, resulting in invalid graphs.
To fix the problem, at the end of the parse, we
iteratively find the unconnected node with the most
descendants, and attach it to the predicate (the first
dependent of the root) with an orphan-labeled
arc. In addition to unconnected cycles, this resolves
the problem of prematurely terminated transition
sequences due to no valid transition being available
according to the constraints: instead of resulting
in partially-constructed graphs, headless nodes are
similarly attached with an orphan-labeled arc to
the predicate, if it exists, or otherwise to the root.

Parsing tragedy. Our postprocessing procedure
to attach unconnected subgraphs had a bug at the
time of submission, where many nodes were in-
correctly identified as unconnected and thus un-

This is enforced by the task organizers by running
validate.py —--level 2 —--lang ud on the system
predictions before evaluation.

239

Transition Stack Buffer Arc added

ROOT | Dezeis (...)]

1-6 SHIFT (...) en grootste | hal van (...) |

7 LEFT-EDGE.c (...) en grootste] hal van (...) | (grootste, en)cc

8 REDUCE-1 (...) modernste grootste | hal van (...) |

9 RIGHT-EDGEconj:en (...) modernste grootste | hal van (...) | (grootste, modernste)cons:en

10 SHIFT (...) grootste hal] van Belgié (...)]

11 LEFT-EDGEnmoq (...) grootste hal | van Belgié (...)] (hal, grootste)nmoa

12 NODE (...) grootste hal | NULL van (...)]

13-21 Series of LEFT-EDGE and REDUCE-1 transitions

22 RIGHT-EDGE o0t ROOT hal | NULL van (...) | (ROOT, hal) o0t

23 SHIFT ROOT hal NULL | van Belgié (...)]

24 RIGHT-EDGEconj:en ROOT hal NULL | van Belgié (...)] (hal, NULL)con3:en

25-26 SHIFT (...) van Belgié | sen(...)]

27 LEFT-EDGEc.se (...) van Belgié | sen(...)] (Belgié, van)case

28 REDUCE-1 (...) NULL Belgié | sen(...)]

29 SwaAP ROOT hal Belgi¢ | NULL,(...)]

30 RIGHT-EDGEnnod: van (...) hal Belgig] NULL ,(...)] (hal, Belgié)nmod:van

31 REDUCE-0 ROOT hal | NULL,(...)]

32-34 SHIFT (...),en] de enige (...)]

35 SWAP (...)NULLen] de(..)]

36 RIGHT-EDGE. (...) NULLen] sde (...)] (NULL, en)..

37 REDUCE-0 ROOT hal NULL | ,de (...)]

38-39 SHIFT (...),de] enige die (...) |

40 SwAP (-..) NULL de | ,enige (...)]

41 RIGHT-EDGEget (...) NULL de] , enige (...)] (NULL, de)get

42 REDUCE-0 ROOT hal NULL | ,enige (...)]

43-44 SHIFT (...),enige] die voldoet (...)]

45 LEFT-EDGEpunct (...),enige] die voldoet (...)] (enige, ,)punct

46 REDUCE-1 (...) NULL enige | die voldoet (...) |

47 RIGHT-EDGE 104 (...) NULL enige | die voldoet (...)] (NULL, enige)nmoa

48 REDUCE-0 ROOT hal NULL | die voldoet (...) |

49 SHIFT (...) NULL die] voldoet aan (...) |

50 RIGHT-EDGE;.+¢ (...) NULL die] voldoetaan (...)] (NULL, die)yes

51 REDUCE-0 ROOT hal NULL] voldoet aan (...)]

52 SHIFT (...) NULL voldoet | aande (...) |

53 RIGHT-EDGE.c1:rei1c1 (...) NULL voldoet | aande (...)] (NULL, voldoet) ac1 : re1c1

54 LEFT-EDGEnsupi: re1subj (...) NULL voldoet | aande (...) | (voldoet, NULL)nsuns : re1suni

55-69 ¢.)

70 RIGHT-EDGEunct ROOT hal . |] (hal, .)punce

71-72 REDUCE-0 ROOT |]

73 FINISH ROOT |]

Figure 4: Oracle transition sequence for the sentence from Figure 2. Consecutive SHIFTs grouped for brevity.

necessarily attached to the predicate/root. While
this still yielded valid graphs, precision dropped
precipitously from before the introduction of the
postprocessing procedure. Due to the late stage
in the evaluation period at which we made this
change, we failed to properly monitor our develop-
ment scores and could not identify the cause for the
drop in time, resulting in low official scores. How-
ever, after submission we identified the bug and
fixed it,'” improving our parser’s accuracy back to
the range we had observed during development.

Yhttps://github.com/coastalcph/
koepsala-parser/commit/
1b872ad9fc2652649clleb0a8622c744c92e8cbb

240

3.4 Training

For training the ED parser we do not simply train
it on the largest treebank per language, but rather
train it on the concatenated training treebanks per
language. In preliminary experiments, this did lead
to improvements in terms of combined dev ELAS
over treebank-specific models, contrary to our find-
ings in BD parsing for preprocessing (§2). We train
our models on an NVIDIA P100 GPU with a batch
size of 8. All other hyperparameters can be found
in the configuration files in the repository.'!
Training until convergence took 1h30 (for Tamil,

Uhttps://github.com/coastalcph/
koepsala-parser/blob/master/config/
transition_eud. jsonnet

the smallest treebank) to up to 2 days (for Ara-
bic, which contains many long sentences). Predic-
tion on the dev set took between 4 minutes (for
Tamil) and 55 minutes (for Czech), ranging from
117 words/second (7 sentences/second, for Tamil)
to 1300 words/second (81 sentences/second, for
Czech), including the model loading time.

3.5 Baselines

In addition to providing validation scores for our
trained parsers, we consider three competitive base-
lines, as provided by the task organizers:

e B1: gold standard dependency trees copied as
enhanced graphs. Though this can be techni-
cally considered an upper bound, as gold tree
information is provided, it should nonethe-
less provide some idea of how much of the
enhanced graph can be derived from the de-
pendency tree.

e B2: predicted trees yielded by UDPipe mod-
els trained on UD v2.5 (using the largest tree-
bank where applicable), copied as enhanced
graphs. This is more representative than B1
of realistic parsing scenarios, which rely on
predictions.

e B3: similar to B2, but applying the Stanford
enhancer post-hoc over the predicted trees.
Scores for Finnish and Latvian were not pro-
vided.

4 Results

Table 3 displays our results on the per-language
(not per-treebank) test partitions of the shared task
data. As explained in §2, for languages with multi-
ple training treebanks available (Czech, Estonian,
Dutch, Polish), we preprocessed the raw text of
each treebank using the pipeline trained on the
largest treebank available for that language (e.g.
alpino for Dutch). Also, aforementioned in §3.4,
we then trained our parsers on the concatenation
of each language’s treebanks, so that we could
parse at the language level (as opposed to treebank).
Though we observed scant differences between the
two preprocessing pipelines, it was UDPIPE that
produced fewer validation errors. As such, we
adopted it as the main preprocessor for our official
submission.

It is apparent in Table 3 that the unconnected
graph issue (described in §3.3) severely affected

241

Language Baselines Ours
Bl B2 B3 official fixed
ARrRABIC 67.35 46.41 45.16 60.84 69.51
BULGARIAN 85.82 73.74 79.9 68.88 84.49
Czecu 78.44 65.31 63.62 61.11 74.79
Durcu 8248 62.97 72.65 62.93 7692
ENnGLIsH 84.30 66.83 76.16 65.37 81.05
EsTONIAN 76.38 57.53 54.34 59.07 72.38
FinNisH 78.26 61.71 - 67.54 81.58
FRENcH 97.49 71.14 63.31 67.93 82.76
ITaLian 80.20 70.33 83.03 69.08 84.66
LaTviAN 79.31 59.14 - 64.75 79.12
LITHUANIAN 7422 46.78 44.84 56.28 69.09
PoLisH 81.59 66.38 65.37 61.34 73.89
RussiaN 79.63 68.33 67.80 64.23 78.90
SLovak 77.60 60.02 58.05 64.08 77.44
SwepisH 80.98 62.18 71.53 64.50 78.61
TamiL 76.29 40.71 4025 4744 56.85
UKRAINIAN 77.24 58.73 5692 64.17 78.10
AVERAGE 79.86 61.07 6290 6291 76.48

Table 3: Main results for Enhanced Universal Depen-
dencies shared task (ELAS), as evaluated on the pro-
vided test sets. BI, B2, B3 refer to organizer-provided
baseline systems. official refers to our official submis-
sion, prior to fixing the unconnected graph issue (fixed).

our official submission to the shared task (observed
in the official column). After diagnosing and fixing
this problem, we observed an improvement of 14.1
ELAS, which is consistent with our scores on the
treebanks’ development sets. With this in mind, our
(fixed) parser tends to perform in a generally stable
fashion across languages, with an average ELAS of
76.48 and standard deviation of 6.86. Among our
highest scoring languages are Bulgarian, French,
and Italian—the former two of which are corrobo-
rated by the strong B/ baseline. Indeed, Tamil is
the notable exception among all results, with 56.85
ELAS. We surmise that treebank size is the biggest
factor in this degradation of performance, as Tamil
has, by far, the smallest treebank at 400 sentences.
As such, our parser has comparatively fewer graph
samples to train on than it would for some other
languages.

When comparing against the organizer-provided
baselines, we see a strong improvement in using
our system over both B2 and B3 systems. This is
encouraging, as it demonstrates the benefit of pars-
ing enhanced dependency graphs directly, rather

than relying on predicted trees to accurately re-
lay the enhanced structure (B/) or employing a
heuristic-driven post-processor to derive it (B2).
Furthermore, though the organizers consider B/ as
an indirect upper bound due to the gold-standard
tokenization and dependency structure employed
therein, we can nonetheless observe an advantage
in using our parser for some languages. These
are Arabic (+2.16 ELAS), Finnish (+3.32), Ital-
ian (+4.46), and Ukranian (+0.86). Again, this is
promising, given that our parser does not rely on
any tree structure in order to parse graphs.

4.1 Pre-processing Analysis

Since the test data was provided in a raw, untok-
enized format, we were interested in the extent of
accuracy loss we might observe when relying on
off-the-shelf pre-processors. Table 4 displays these
results over the development data. It is clear that
when we employ predicted segmentation, etc. us-
ing either STANZA or UDPIPE pipelines, we observe
a slight degradation in accuracy, as compared to the
gold data. Omitting Czech, Estonian, Dutch, and
Polish (which had several associated treebanks),
all other languages degrade by an average of 2.00
ELAS for STANZA and 2.32 for UDPIPE. Though
one typically expects such a degradation when eval-
uating with predicted segmentation, we did observe
some unreasonably large gaps in accuracy: namely
for Arabic (—4.02, —8.32 for STANZA and UDPIPE,
respectively) and Tamil (—12.19, —8.59). The lat-
ter can likely be explained via its small training set,
which undoubtedly affects all components of the
preprocessing pipeline.

When we examine the scores for all multi-
treebank languages, we do not notice a large dif-
ference between gold and predicted tokenization—
which we expect to be different across treebanks.
Here, we simply choose the one trained on the
largest treebank (FicTree for Czech, EDT for Es-
tonian, Alpino for Dutch, and LFG for Polish),
as we consider this a simple yet reliable heuris-
tic. However, when generating predictions for the
smaller treebanks using the bigger treebank’s pre-
processing model, we only notice a notable drop in
accuracy for Dutch (—2.15, —2.54 for STANZA and
UDPIPE, respectively). This indicates that there are
likely major differences in the treebanks’ domains
or how they are respectively segmented or anno-
tated. In general, however, the differences between
gold and predicted tokenization is surprisingly not

Language STANZA UDPIPE Gold Tok.
ARABIC 73.66 69.36 77.68
BULGARIAN 83.46 83.17 83.89
CZECH 75.60 75.47 76.00
DutcH 78.66 78.27 80.81
ENGLISH 80.79 79.80 82.77
ESTONIAN 75.43 75.32 75.81
FINNISH 80.87 80.59 81.89
FRENCH 86.05 85.29 88.97
ITALIAN 85.24 85.04 85.52
LAaTvIAN 79.00 78.39 79.28
LITHUANIAN 74.92 74.84 75.51
PoLisH 71.94 73.22 73.63
RussIaAN 78.53 78.60 78.87
SLOVAK 77.54 77.33 79.17
SweDISH 78.26 78.18 78.37
TamiL 50.66 54.26 62.85
UKRAINIAN 79.70 79.67 79.89
AVERAGE 77.08 76.87 78.88

Table 4: Development ELAS for our fixed parser.
While in all cases we train the parser on the con-
catenation of all of a language’s gold treebanks (ap-
plicable only to Czech, Dutch, Estonian, and Polish),
STANZA and UDPIPE refer to generating predictions on
the development data preprocessed by the correspond-
ing pipeline. Gold Tok. refers to generating predic-
tions over gold development data (tokenization, etc).

as large as we expected.

5 Conclusion

In this paper, we have described the IWPT 2020
Shared Task submission by the Copenhagen-
Uppsala team, consisting of graphs predicted by
a transition-based neural dependency graph parser
with pre-trained multilingual contextualized em-
beddings. While not ranked among the top sub-
mission according to the official scores, the parser
architecture proved effective for the type of depen-
dency graphs exhibited by ED, and after fixing a
critial bug we found the scores to improve dramat-
ically and agree with the scores we had observed
during development.

We expect that with more resources for BERT
fine-tuning, hyperparameter tuning, language-
specific pre-trained representations and careful pre-
and post-processing, our parser will be a competi-
tive system in this task. However, our contribution
is a transition system that can directly handle ED,
in a unified transition-based parsing system.

242

Acknowledgments

We thank the anonymous reviewers for their helpful
comments. ML is funded by a Google Focused Re-
search Award. We acknowledge the computational
resources provided by CSC in Helsinki and Sigma2
in Oslo through NeIC-NLPL (www.nlpl.eu).

References

Omri Abend and Ari Rappoport. 2013. Universal con-
ceptual cognitive annotation (UCCA). In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 228-238, Sofia, Bulgaria. Association
for Computational Linguistics.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1215-1226, Vancouver, Canada. Association
for Computational Linguistics.

Wanxiang Che, Longxu Dou, Yang Xu, Yuxuan Wang,
Yijia Liu, and Ting Liu. 2019. HIT-SCIR at MRP
2019: A unified pipeline for meaning representa-
tion parsing via efficient training and effective en-
coding. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 76-85, Hong Kong. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334-343, Beijing, China. Associa-
tion for Computational Linguistics.

243

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1-6.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127-
1138, Vancouver, Canada. Association for Computa-
tional Linguistics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Universal dependency parsing with a gen-
eral transition-based DAG parser. In Proceedings
of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
103-112, Brussels, Belgium. Association for Com-
putational Linguistics.

Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin,
and Ting Liu. 2018. An AMR aligner tuned by
transition-based parser. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2422-2430, Brussels, Bel-
gium. Association for Computational Linguistics.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, pages 149-160, Nancy, France.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Haji¢, Christopher D Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal dependencies v2:
An evergrowing multilingual treebank collection. In
Proc. of LREC.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing universal
dependency treebanks: A case study. In Proceed-
ings of the Second Workshop on Universal Depen-
dencies (UDW 2018), pages 102—107, Brussels, Bel-
gium. Association for Computational Linguistics.

Stephan Oepen, Omri Abend, Jan Hajic, Daniel Her-
shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdenka
Uresova. 2019. MRP 2019: Cross-framework mean-
ing representation parsing. In Proceedings of the
Shared Task on Cross-Framework Meaning Repre-
sentation Parsing at the 2019 Conference on Natural
Language Learning, pages 1-27, Hong Kong. Asso-
ciation for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English Universal Dependencies: An im-
proved representation for natural language under-
standing tasks. In Proc. of LREC. ELRA.

Milan Straka, Jan Hajic, and Jana Strakova. 2016.
Udpipe: trainable pipeline for processing conll-u
files performing tokenization, morphological anal-
ysis, pos tagging and parsing. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 4290-
4297.

Milan Straka and Jana Strakova. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88—99, Vancouver, Canada.
Association for Computational Linguistics.

Mingxuan Wang, Jun Xie, Zhixing Tan, Jinsong Su,
Deyi Xiong, and Chao Bian. 2018. Neural machine
translation with decoding history enhanced atten-
tion. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1464—
1473, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

244

RobertNLP at the IWPT 2020 Shared Task:
Surprisingly Simple Enhanced UD Parsing for English

Stefan Griinewald'>

Annemarie Friedrich?

"nstitut fiir Maschinelle Sprachverarbeitung, University of Stuttgart
2Bosch Center for Artificial Intelligence, Renningen, Germany
stefan.gruenewald|annemarie.friedrich@de.bosch.com

Abstract

This paper presents our system at the IWPT
2020 Shared Task on Parsing into Enhanced
Universal Dependencies. Using a biaffine
classifier architecture (Dozat and Manning,
2017) which operates directly on fine-tuned
RoBERTa embeddings, our parser generates
enhanced UD graphs by predicting the best de-
pendency label (or absence of a dependency)
for each pair of tokens in the sentence. We ad-
dress label sparsity issues by replacing lexical
items in relations with placeholders at predic-
tion time, later retrieving them from the parse
in a rule-based fashion. In addition, we ensure
structural graph constraints using a simple set
of heuristics. On the English blind test data,
our system achieves a very high parsing accu-
racy, ranking 1% out of 10 with an ELAS F1
score of 88.94 %.

1 Introduction

Enhanced Universal Dependencies are an exten-
sion of the widely used Universal Dependencies
(UD) framework for syntactic dependency anno-
tation (de Marneffe et al., 2014). Designed with
shallow natural language understanding tasks in
mind, enhanced UD extends basic UD trees by
including a number of additional dependencies be-
tween tokens in order to make relations between
content words more explicit, especially in the pres-
ence of linguistic phenomena such as coordination,
raising/control, and relative clauses (Schuster and
Manning, 2016). While there is evidence for the
utility of enhanced dependencies in downstream ap-
plications (Schuster et al., 2017), adding these rela-
tions means that dependency structures are not gen-
erally constrained to trees any more, which makes
parsing them a different problem with its own set
of challenges.

Research on UD parsing has so far mostly fo-
cused on producing syntax trees according to the

245

basic UD specification (e.g., in the CoNLL 2017
and 2018 Shared Tasks). Prior work on inducing
enhanced UD graphs (Nyblom et al., 2013; Simi
and Montemagni, 2018; Nivre et al., 2018) infers
enhanced UD representations by first parsing text
into basic UD trees and then adding enhanced rela-
tions by applying rule-based or machine-learning
modules. This approach has the disadvantage of
propagating errors in the basic layer to the en-
hanced parse. For our submission to the IWPT
2020 Shared Task (Bouma et al., 2020), we follow
an alternative approach. We do not distinguish be-
tween the basic UD tree and the enhanced part of
the graph, instead treating all types of dependencies
equally and extracting them jointly.

Following the approach of Dozat and Manning
(2018), we use a biaffine classifier architecture in
which we predict the most likely dependency label
(or absence of a dependency) for each pair of to-
kens in the sentence, forming a dependency graph
from the union of these predictions. Similar to Kon-
dratyuk and Straka (2019), we extract the inputs
for the biaffine classifier directly from fine-tuned
contextualized word embeddings, RoBERTa (Liu
et al., 2019b) in our case, using a scalar mixture
of hidden layers (Liu et al., 2019a). We overcome
the problem of sparsity issues caused by enhanced
UD’s large lexicalized label set by replacing lexi-
cal items with placeholders at prediction time and
later retrieving them from the full parse via a set
of rules. Surprisingly, this simple approach, com-
bined with a straightforward heuristic ensuring that
each node receives a head, results in valid enhanced
UD graphs for 99% of all sentences in the English
blind test data.

Despite being conceptually simple and easy to
implement, our system sets a new state of the art
for enhanced UD parsing for English, scoring first
out of ten submissions on the blind test data accord-
ing to the official ELAS evaluation metric. While

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 245-252
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

our system is currently available only for English,
adapting it to most other languages should be feasi-
ble with relatively little effort.

2 Our Model

This section describes the components of our parser
as submitted to the Shared Task.

2.1 Pre-processing

For tokenization and sentence segmentation, we
employ the StanfordNLP system (Qi et al., 2018),
which achieved state-of-the-art results for these
tasks on the English treebanks in the CoNLL 2018
Shared Task.

2.2 Input Token Representation

We use RoBERTa (Liu et al., 2019b) to gen-
erate contextualized word embeddings for the
tokens of the input sentence, fine-tuning the
model while training our parser. We create the
wordpiece-tokenized input for RoOBERTa by feed-
ing each token as identified by StanfordNLP into
the ROBERTa tokenizer. In addition, we prepend a
special [root] token to each sentence, which serves
as an artificial head of the root relation, which must
be present in every sentence. This token receives
a fixed, learned embedding instead of a contextu-
alized RoBERTa embedding, but with the same
number of dimensions.

Following Kondratyuk and Straka (2019), our
model produces an embedding r; for the original
token at position ¢ by forming a weighted sum of
the hidden layers’ embeddings at the positions cor-
responding to the first wordpiece token of the origi-
nal token. Weights for this scalar mixture of layers
are learned during training. Layers are randomly
dropped during training to prevent the model from
focusing on only a single layer.

We also experimented with using BERT (Devlin
et al., 2019) instead of RoBERTa, but found that
this yielded lower parsing accuracy (see Sec. 3).

2.3 Dependency Classification

Figure 1 shows an overview of our neural-network
based dependency classifier, which simulatenously
predicts relation labels or absence of a relation
between pairs of tokens.

Classifier architecture. Our dependency classi-
fier follows the architecture proposed by Dozat and
Manning (2018), which is capable of producing
general (bi-lexical) dependency graph structures.

246

Predicted label obj

Label scores

hihead’ hidep

65

Embeddings r;
(Scalar mixture

—
~
)
(O
_J

of layers)
[oo}i[_o (@@ O]
RoBERTa 0 -
(000]i(ece]ieeo]
i ! !
Input tokens Use cinnamon instead

Figure 1: Architecture of neural network predicting de-
pendency relations between pairs of tokens.

The approach works by creating, for each input
token embedding r;, a head representation h?ead
and a dependent representation h?eP via two single-
layer feedforward networks:

h?ead — FNNhead(I‘i) (1)
h?? — ENN?P(r;))

For each ordered pair (7, j) of tokens in the sen-
tence, their respective head and dependent repre-
sentations are then fed to a biaffine classifier (Eq.
3, Dozat and Manning, 2017), which outputs logits
s;,j over the possible dependency labels.! We en-
code the absence of a dependency relation between
two tokens as simply another label (&). This unfac-
torized approach is in contrast to recent approaches
that first predict presence or absence of relations
and then use a second classifier to predict labels. It
has already been proposed by Dozat and Manning
(2018), who found that it performed on par with
the factorized approach.

Finally, the most likely label y; ; can then be
extracted from these logits:

Biaff(x), %) = x; Uxy + W (x; @ x2) + b (3)
s;; = Biaff(h/*¢, hI) @)

P(y;,;) = softmax(s; ;) 3)

U, W and b in (3) are learned parameters; &
denotes the concatenation operation. The model is
"Note that this means that each pair of tokens is fed to the
classifier twice as an ordered pair, once with ¢ as the potential

head and j as the potential dependent, and once the other way
around.

trained to minimize cross entropy loss w.r.t. the
true dependency label between each pair of tokens.

De-lexicalizing dependency labels. Because en-
hanced UD adds lexical information to certain
dependencies (e.g. obl:instead_of), the number
of dependency labels is huge; the EWT corpus
contains 399 unique labels. To avoid sparsity is-
sues, we strip lexical information from labels dur-
ing training, instead replacing them with place-
holders (e.g. obl:[case]) indicating where in the
dependency graph the lexical information is ex-
pected to be found (see Sec. 2.4 for a detailed
description of the reconstruction process). This
way, we can remove all lexicalized relations from
the label vocabulary, instead adding only five
new placeholder labels: nmod:[case], obl:[case],
acl:[mark], advcl:[mark], and conj:[cc]. We keep
all other, non-lexicalized subtyped labels (such as
nmod:poss). This brings the total label count down
to 56 (including ©).

2.4 Post-processing

The outputs provided by the dependency classifier
can be regarded as a 3-dimensional tensor, or in
other words, each cell in the matrix as shown in
Figure 2 contains the probabilities predicted for the
label set with the row label corresponding to the
relation’s head and the column label corresponding
to the relation’s dependent. Figure 2 shows the
highest-scoring label per entry.

Ensuring graph structure constraints. Using
the outputs provided by the dependency classifier,
we can assemble a dependency graph by retriev-
ing the highest-scoring dependency (or &, i.e., no
relation) for each pair of tokens in the sentence
(omitting the diagonal as enhanced UD does not
allow links starting and ending at the same node)
and forming their union.

Although enhanced UD eliminates the require-
ment that dependency graphs must be trees, it main-
tains a set of structural constraints. Specifically,
each token needs to have at least one head and
must be reachable from at least one of the root(s)
of the graph.”> These global constraints are not
automatically adhered to by our simple graph con-
struction method, which operates on pairs of to-
kens. Nonetheless, we observe that around 99 % of
sentences are assigned structurally valid graphs as

2Graphs in enhanced UD may have more than one root.

247

= i
=] L
E| = g
ey <]] -
2l 2| E| = & g
25|35 & | % B 5 E
[root] g | root | O 1%/ %/ %} 1%/ %}
Use o & | obj o 1%/ obl:[case] | @ | obl:[case]
cinnamon | @ %] %] %] %] %] %]
instead g | @ %] & | fixed %] %] %]
of %) %) %) %) %) %) %) %]
sugar %] %} a | case %] %} | conj:[cc]
or %) %) %) %) %) %) %)
sweetener | & 1%} %) %) %} %) cc

Figure 2: Prediction matrix of the dependency classi-
fier. Cell entries show the highest-scoring label for each
ordered pair of tokens, with row/column labels indicat-
ing potential heads/dependents respectively.

determined by the official validation script.?

To make the graphs of the remaining 1 % sen-
tences structurally valid, we perform the following
steps. In the case of tokens lacking a head, the
@ label has received the highest score during clas-
sification for all possible heads. We now simply
retrieve all second-ranked labels and their scores
and pick the relation (and corresponding head) that
received the highest score across all possible heads.

Further, in order to ensure reachability from the
root, in the cases violating this constraint, we fall
back to an external dependency tree parse, i.e., a
representation of the UD basic layer, for generat-
ing candidate links to be added to our graph. We
here use the UDify parser (Kondratyuk and Straka,
2019) to predict basic UD trees. We determine the
set of nodes V' that are not reachable from any root,
and for each node v € V' we compute the number
of nodes in V that can be reached when starting
at v. We then pick the node v; that can reach the
largest number of nodes and check if the head of v;
in the basic layer tree can be when starting at a root
in our graph. If so, we add the relation between
v; and its head as present in the basic layer tree to
our graph, otherwise, we add a dep edge from the
sentence’s first root to v;. We repeat this procedure
until each node in the graph is reachable from at
least one root node.

Re-lexicalization of labels. As outlined in
Sec. 2.3, lexical information is stripped from de-
pendency labels during training, using the format
base:[placeholder]. At prediction time, we re-

*https://github.com/
UniversalDependencies/tools/blob/master/
validate.py

obl:instead_of

obl:instead_of

Use cinnamon instead of sugar or sweetener

(a) Dependency graph with lexicalization of labels.

F“?@T)

Rooms were outdated dlrty and small

(b) Dependency graph with * conjunction siblings.”

Figure 3: Re-lexicalization of dependency labels in the presence of conjunctions.

lexicalize predicted placeholder labels using the
following set of rules.

First, if the token has a dependent that is attached
via the placeholder of the de-lexicalized relation in
question, we lexicalize the relation with the token
of this dependent. For example, in Figure 3a, our
parser predicts obl:[case] and we re-lexicalize this
relation with the token(s) of the case dependents
of “sugar.”” (Multiword expressions, such as “in-
stead of”, are handled by concatenating word forms
linked by the fixed relation.)

If such a dependent does not exist, it may be due
to the presence of a conj relation. For example,
Figure 3a shows a case where for the de-lexicalized
link obl:[case] ending at “sweetener,” no case rela-
tion starts at this node. This is due to the presence
of a conj relation, ending at “sweetener.” We hence
check if the head of the conj relation has an incom-
ing lexicalized edge of the same base relation (here
obl) and if so, re-lexicalize accordingly.

Similarly, conj links ending at siblings in coor-
dinate constructions (here “dirty” and “small’’) are
always lexicalized with the same item (in this case
“and”). Unlike “small,” the dependent “dirty” does
not have its own cc dependent that could be used to
execute the first step, i.e., to replace the placeholder
of conj:[cc] with a dependent’s token. For such
nodes, we hence search the graph for siblings that
are linked to the common governor via conj rela-
tions. If we find any, we use the lexicalized label
of the corresponding conj relation for all siblings.

The above heuristics return a result for 98.9 % of
the de-lexicalized relations predicted for the blind
test data; in the remaining cases, we simply remove
the placeholder without substituting any lexical
material. Provided that the underlying base relation
was predicted correctly, we are able to retrieve the
correct lexical material for 98.4 % of relations.

248

Removal of relations. In addition, UD contains
several relations that empirically only appear on
their own, i.e., whose dependent may have only
one incoming edge of this type. These relations
are fixed, flat, goeswith, punct, and cc. However,
in around 0.4 % of cases our parser erroneously
predicts several of these relations for a single token
(e.g., punctuation being attached to several tokens
at once). In these cases, we remove all but the most
confidently predicted dependency.

3 Experiments

This section describes our submission to the Shared
Task, as well as a number of additional experiments
we conducted to contextualize our results.

3.1 Experimental Settings and
Hyperparameters

We use the training and development sections of
the EWT corpus for training and validation, respec-
tively. We use gold-tokenized and gold-segmented
sentences as input for our system during training.

For hyperparameter settings, we mostly stick
with the values used by Kondratyuk and Straka
(2019). An exception to this is the training regime,
where we found a low batch size, constant learn-
ing rate, no gradient clipping, and the AdamW
optimizer (Loshchilov and Hutter, 2019) to yield
the best results. The final hyperparameters can be
found in Table 1.

Our model was trained using a single nVidia
Tesla V100 GPU, stopping early when ELAS F1
score on the development set did not improve for
10 epochs. The best model was found after 63
epochs, i. e., 73 training epochs were performed in
total, taking ca. 9 hours. Parsing the English blind
test set (3077 sentences) takes around 3 minutes in
total, i.e. 0.06 seconds per sentence.

RoBERTa embeddings
Embeddings dimension 1024
Token mask probability 0.15

Layer dropout 0.1
Hidden dropout 0.2
Attention dropout 0.2
Output dropout 0.5

Biaffine classifier

Hidden size 1024

Dropout 0.33
AdamW Optimizer

Batch size 5

Learning rate 5e~°

B, B2 0.9, 0.999

Weight decay 0.0

Table 1: Hyperparameter values.

Submission IWPT-all EWT PUD
RobertNLP 88.94 88.06 89.97
TurkuNLP 87.15 86.14 88.35
median 83.41 82.04 85.02
Kgpsala 65.37 64.18 66.77
UDify + converter 85.67 84.55 87.00

Table 2: Parsing results (ELAS F1) on English blind
test data in the IWPT 2020 Shared Task.

3.2 Results of Submission

Table 2 shows the results (in terms of ELAS F1
score) on the blind English test data for our system
as well as the highest- and lowest-ranking compet-
ing submissions and the median submission. Our
system achieves an ELAS F1 score of 88.94 %,
ranking first with a margin of more than 1.5 points
over the second-ranking submission.

As an additional baseline, we used the state-of-
the-art UDify parser (Kondratyuk and Straka, 2019)
to predict basic dependencies and then ran the rule-
based converter by Schuster and Manning (2016)
on the output to extract enhanced relations. This
approach achieved an F-Score of 85.67 %, consid-
erably lower than our system, confirming that our
end-to-end graph parsing approach is superior to a
pipeline model of basic parsing + rule-based con-
version.

3.3 Analysis of Results

We here describe several experiments using varia-
tions of the setting used in our official submission.
These experiments aim at determining the impact
of different factors, including choice of pre-trained
embeddings, training data, as well as segmentation
and tokenization, on model performance. Some
of the experiments described in this section were

249

Embeddings Train IWPT-test EWT-dev
BERT-base EWT 87.49 87.64
RoBERTa-base =~ EWT 88.17 88.64
BERT-large EWT 88.18 88.61
RoBERTa-large EWT 88.94° 89.43
RoBERTa-large UD2.5° 87.85 88.59

Table 3: Effect of embeddings and training data on
model performance (ELAS F1, English blind test data).
aOfficial submission. °Concatenation of EWT, GUM,
LinES, and ParTUT training data.

conducted during the development of our system,
others constitute post-evaluation analyses. For con-
sistency, we present results for the blind test data
in this section. Most experiments were initially
conducted using the development data, showing
the same tendencies.

Choice of pre-trained embeddings. We exper-
iment with four different pre-trained embedding
models, namely BERT and RoBERTa in their
base and large variants respectively. As shown
in Table 3, RoBERTa outperforms BERT, and
the large variants outperform the base variants,
with BERT-large and RoBERTa-base performing
roughly equally. The best observed results are
achieved by RoBERTa-large (our official submis-
sion). The superior performance of RoBERTa may
stem from the fact that it was pre-trained on a con-
siderably larger amount of data, and that it dropped
the “next sentence prediction” objective, which
may be irrelevant or even detrimental for a single-
sentence task like syntactic parsing.

Effect of additional training data. While
preparing our submission, we experimented with
generating additional training data by using the
rule-based UD enhancer by Schuster and Manning
(2016), which was used to create the gold standard
enhanced layers of the EWT and PUD corpora, to
build enhanced versions of three other English UD
treebanks (GUM, LinES, and ParTUT).

However, we found in preliminary experiments
on the dev and test sections of the above mentioned
corpora that including this additional training data
actually slightly hurts performance if the test data
is from a different corpus. This is correlated with
the lexical distance between test and training data
as computed using the Bhattacharyya distance

Dg(p,q) = —In > /plx)g(z) (6)

zeX

Corpus Lex. dist. ELASF1
EWT 0.142 88.94
GUM 0.204 87.98
LinES 0.240 88.20
ParTUT 0.248 87.69

Table 4: Lexical (Bhattacharyya) distance and parsing
accuracy between the blind test data and the different
training corpora. The rightmost column indicates pars-
ing performance on the IWPT test set when adding the
respective corpus to the EWT training data. (First line
is EWT only.)

between the respective vocabulary probability dis-
tributions (Bhattacharya, 1943; Ruder and Plank,
2017).

As the lexical distance of the blind test set and
EWT is much smaller than the ones between the
test set and the other corpora (see Table 4), our
official submission’s model was trained only on
EWT. Post-evaluation experiments (see rightmost
column) confirm that when including corpora with
higher lexical distance, parsing accuracy decreases.
In addition, parsing results on the blind test set
when including all additional data (results see last
line in Table 3) confirm this approach. However, if
a different test set showed greater similarity to other
corpora, including them as training data would
likely be beneficial. As one of the anonymous
reviewers points out, in addition to lexical similar-
ity, factors such as mean dependency distance or
average sentence length may also play a role. In
conclusion, our experiments once more highlight
that selecting good training corpora for an applica-
tion domain is a critical factor and an interesting
direction for further research.

Effect of segmentation and tokenization.
While our parser was trained on gold-tokenized
and gold-segmented sentences, the Shared Task re-
quired parsing from raw text. In order to determine
the extent to which automatic segementation and
tokenization impacts results, we run our parser on
the gold-tokenized and gold-segmented version of
the test data.

We observe an ELAS F1 score of 90.80, which
constitutes an increase of nearly 2 points over
the results obtained using automatic segmentation.
This indicates that our system is rather sensitive
to these kinds of errors and would greatly benefit
from improvements in segmentation accuracy. It
might also be possible to increase the robustness
of our system w.r.t. these errors by training it on

system-predicted sentence segmentation.

Performance on basic vs. enhanced relations.
We further evaluate how performance of our parser
varies between (a) relations that result from en-
hancements, i. e., relations which are exclusive to
the enhanced layer, and (b) relations that occur in
the basic layer as well. Because our parser does not
differentiate between basic and enhanced relations
internally, we can only compute recall for the two
classes, but not precision and F1.* We perform this
evaluation for gold-segmented and gold-tokenized
input.

Recall is considerably lower on relations exclu-
sive to the enhanced layer (83.64 %) as opposed
to relations that are also present in the basic layer
(91.60 %), indicating that predicting the former is
indeed a more difficult task compared to predict-
ing the latter, as might be expected. The result
further suggests that it might be promising to use
our parser architecture in combination with a span-
ning tree algorithm to predict basic-layer style trees
as well (e. g. in a multi-task setting). This would
also eliminate the need to rely on external parser
input to post-process dependency graphs for the
rare cases of invalid graphs.

Performance on individual label types. Fi-
nally, while our system achieves a high parsing
accuracy overall, we also compute F1-Scores for
each individual label type in order to obtain a
finer-grained picture of its strengths and weak-
nesses. Again, we perform this evaluation for gold-
segmented and gold-tokenized input. A selection
of the results is displayed in Table 5.

As might be expected, the label types on which
our parser performs best are highly common func-
tional relations such as det and case, as well as
frequent content word dependencies such as nsubj
and amod. More interestingly, it also performs
close to the average on nsubj:xsubj, which is not
only considerably rarer than the aforementioned
relations but also exclusive to the enhanced repre-
sentation, demonstrating that our joint approach is
capable of capturing these dependencies as well.

Somewhat more challenging are the flat and com-
pound labels (85.53 and 83.51 F-Score, respec-
tively), which are used to annotate multiword ex-

“We compare to the gold standard which distinguishes
between basic and enhanced relations. Our parser does not
differentiate between basic and enhanced relations, i.e., the
full graph is constructed without internally identifying the
subgraph corresponding to the basic syntactic tree.

250

Label Freq. ELASFI1
det 3879 99.04
case 4481 97.16
nsubj 3708 94.78
amod 2552 92.49
(Total/avg.) 48298 90.80
nsubj:xsubj 569 88.22
fat 482 85.53
punct 5519 84.28
compound 2005 83.51
appos 347 66.31
parataxis 301 59.35
list 251 47.72

Table 5: Parsing accuracy (ELAS F1) for a selection of
label types. Scores were computed on gold-segmented
test data. Freq. denotes the number of occurrences of
the label in the gold annotations.

pressions. The computational identification and
treatment of such expressions is very challenging
and constitutes a long-standing research area in
itself (Gregoire et al., 2007; Savary et al., 2018,
2019).

The punct relation harbors perhaps the great-
est potential for improvement, yielding an F-Score
of only 84.28 despite being extremely common.
This is likely due to the rather complex set of rules
that determines which token a piece of punctua-
tion is attached to.” However, it might also be
the label where improvements are most difficult to
achieve, as the gold standard itself contains incon-
sistencies,® leading to a noisy training signal.

Finally, out of all label types which occur more
than 200 times in the test data, the worst perfor-
mance is observed on appos, parataxis, and list.
While their low frequency is almost certainly part
of the reason for this, it is also worth noting that
these dependencies are unusual in that they repre-
sent “side-by-side” relations between words rather
than more obviously hierarchical structures (as is
the case for most other label types). Investigating
parser performance on these kinds of constructions
in greater detail may present a promising avenue
for future work.

4 Discussion and Conclusion

With our submission to the IWPT 2020 Shared
Task, we have demonstrated a conceptually simple,

5See https://universaldependencies.org/
u/dep/punct.html.

®As noted on the treebank’s Github page at https:
//github.com/UniversalDependencies/UD_
English-EWT.

251

yet highly effective method for parsing Enhanced
Universal Dependencies from English text.

Although we have focused on English in our
submission, we believe that our system should in
principle be easily adaptable to other languages
as the only language-specific part of out model is
its handling of lexicalized relations. While cer-
tain other languages (e. g., Czech or Estonian) have
more complex label inventories including for exam-
ple case information as well, this should not pose a
problem for our delexicalization strategy. However,
the adaptation might require a moderate amount
of manual work, and it remains to be seen how
effective the lexicalization strategy is for other lan-
guages, a question that may be addressed in future
work.

Acknowledgments

We thank Jonas Kuhn, Heike Adel, Jannik Strotgen,
Lukas Lange and the anonymous reviewers for their
useful comments regarding this work.

References

Anil Bhattacharya. 1943. On a measure of divergence
between two statistical populations defined by their
population distributions. In Bulletin of the Calcutta
Mathematical Society, volume 35, pages 99-109.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency

parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484—490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Nicole Gregoire, Stefan Evert, and Su Nam Kim,
editors. 2007. Proceedings of the Workshop on
A Broader Perspective on Multiword Expressions.
Association for Computational Linguistics, Prague,
Czech Republic.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779-2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,

Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073-1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Uni-
versal Stanford dependencies: A cross-linguistic ty-
pology. In Proceedings of the Ninth International
Conference on Language Resources and Evalua-
tion (LREC’14), pages 4585-4592, Reykjavik, Ice-
land. European Language Resources Association
(ELRA).

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing universal
dependency treebanks: A case study. In Proceed-
ings of the Second Workshop on Universal Depen-
dencies (UDW 2018), pages 102-107, Brussels, Bel-
gium. Association for Computational Linguistics.

Jenna Nyblom, Samuel Kohonen, Katri Haverinen,

Tapio Salakoski, and Filip Ginter. 2013. Predict-
ing conjunct propagation and other extended Stan-
ford dependencies. In Proceedings of the Second In-
ternational Conference on Dependency Linguistics

252

(DepLing 2013), pages 252-261, Prague, Czech Re-
public. Charles University in Prague, Matfyzpress,
Prague, Czech Republic.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. In Proceedings of the CoONLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 160—170, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Sebastian Ruder and Barbara Plank. 2017. Learning to
select data for transfer learning with Bayesian opti-
mization. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 372-382, Copenhagen, Denmark. Association
for Computational Linguistics.

Agata Savary, Carla Parra Escartin, Francis Bond, Je-
lena Mitrovi¢, and Verginica Barbu Mititelu, ed-
itors. 2019. Proceedings of the Joint Workshop
on Multiword Expressions and WordNet (MWE-WN
2019). Association for Computational Linguistics,
Florence, Italy.

Agata Savary, Carlos Ramisch, Jena D. Hwang, Nathan
Schneider, Melanie Andresen, Sameer Pradhan, and
Miriam R. L. Petruck, editors. 2018. Proceedings of
the Joint Workshop on Linguistic Annotation, Mul-
tiword Expressions and Constructions (LAW-MWE-
CxG-2018). Association for Computational Linguis-
tics, Santa Fe, New Mexico, USA.

Sebastian Schuster, Eric Villemonte de La Clergerie,
Marie Candito, Benoit Sagot, Christopher Manning,
and Djamé Seddah. 2017. Paris and Stanford at EPE
2017: Downstream evaluation of graph-based depen-
dency representations. In Proceedings of the 2017
Shared Task on Extrinsic Parser Evaluation (EPE
2017), pages 47-59.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 2371-2378, PortoroZ,
Slovenia. European Language Resources Associa-
tion (ELRA).

Maria Simi and Simonetta Montemagni. 2018. Boot-
strapping enhanced universal dependencies for Ital-
ian. In 5th Italian Conference on Computational
Linguistics, CLiC-it 2018, volume 2253. CEUR-
WS.

Author Index

Anderson, Mark, 2, 192
Attardi, Giuseppe, 206

Balkir, Esma, 73

Barry, James, 227

Bernardy, Jean-Philippe, 221
Bjorkelund, Anders, 25
Bouma, Gosse, 151
Bowman, Samuel R., 105

Chiruzzo, Luis, 132
Choe, Hyonsu, 122
Choi, Jinho D., 122, 181
Cohen, Shay B., 62, 73

de Lhoneux, Miryam, 236
Dehouck, Mathieu, 192

Ek, Adam, 221

Falenska, Agnieszka, 25
Foster, Jennifer, 227
Friedrich, Annemarie, 245

Gebhardt, Kilian, 91

Gildea, Daniel, 73

Ginter, Filip, 162

Goldwasser, Dan, 40
Gobmez-Rodriguez, Carlos, 2, 192
Griinewald, Stefan, 245

Han, Ji Yoon, 122

Han, Na-Rae, 122
Havrylov, Serhii, 62

He, Han, 122, 181
Heinecke, Johannes, 174
Hershcovich, Daniel, 236
Hu, Zhifeng, 62

Hwang, Jena D., 122

Jiang, Yong, 215
Jin, Lifeng, 48, 145

Kanerva, Jenna, 162
Kann, Katharina, 105
Kim, Hansaem, 122

Kuhlmann, Marco, 14
Kuhn, Jonas, 25
Kulmizev, Artur, 236
Kurtz, Robin, 14

Merlo, Paola, 1
Mohananey, Anhad, 105
Morbitz, Richard, 98

Nivre, Joakim, 236

Oepen, Stephan, 14
Oh, Tae Hwan, 122

Park, Seokwon, 122
Pejhan, Elham, 236
Pyysalo, Sampo, 162

Ruprecht, Thomas, 98

Sartiano, Daniele, 206
Schuler, William, 48, 145
Seddah, Djamé, 151
Simi, Maria, 206
Stanojevi¢, Milos, 111
Steedman, Mark, 111

Titov, Ivan, 62
Tu, Kewei, 215

Wagner, Joachim, 227
Wang, Xinyu, 215
Wonsever, Dina, 132

Zeman, Daniel, 151
Zhang, Xiao, 40

	Program
	Syntactic Parsing in Humans and Machines
	Distilling Neural Networks for Greener and Faster Dependency Parsing
	End-to-End Negation Resolution as Graph Parsing
	Integrating Graph-Based and Transition-Based Dependency Parsers in the Deep Contextualized Era
	Semi-supervised Parsing with a Variational Autoencoding Parser
	Memory-bounded Neural Incremental Parsing for Psycholinguistic Prediction
	Obfuscation for Privacy-preserving Syntactic Parsing
	Tensors over Semirings for Latent-Variable Weighted Logic Programs
	Advances in Using Grammars with Latent Annotations for Discontinuous Parsing
	Lexicalization of Probabilistic Linear Context-free Rewriting Systems
	Self-Training for Unsupervised Parsing with PRPN
	Span-Based LCFRS-2 Parsing
	Analysis of the Penn Korean Universal Dependency Treebank (PKT-UD): Manual Revision to Build Robust Parsing Model in Korean
	Statistical Deep Parsing for Spanish Using Neural Networks
	The Importance of Category Labels in Grammar Induction with Child-directed Utterances
	Overview of the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies
	Turku Enhanced Parser Pipeline: From Raw Text to Enhanced Graphs in the IWPT 2020 Shared Task
	Hybrid Enhanced Universal Dependencies Parsing
	Adaptation of Multilingual Transformer Encoder for Robust Enhanced Universal Dependency Parsing
	Efficient EUD Parsing
	Linear Neural Parsing and Hybrid Enhancement for Enhanced Universal Dependencies
	Enhanced Universal Dependency Parsing with Second-Order Inference and Mixture of Training Data
	How Much of Enhanced UD Is Contained in UD?
	The ADAPT Enhanced Dependency Parser at the IWPT 2020 Shared Task
	Køpsala: Transition-Based Graph Parsing via Efficient Training and Effective Encoding
	RobertNLP at the IWPT 2020 Shared Task: Surprisingly Simple Enhanced UD Parsing for English

