Adaptation of Multilingual Transformer Encoder for
Robust Enhanced Universal Dependency Parsing

Han He
Computer Science
Emory University

Atlanta GA 30322, USA

han.he@emory.edu

Abstract

This paper presents our enhanced dependency
parsing approach using transformer encoders,
coupled with a simple yet powerful ensemble
algorithm that takes advantage of both tree and
graph dependency parsing. Two types of trans-
former encoders are compared, a multilingual
encoder and language-specific encoders. Our
dependency tree parsing (DTP) approach gen-
erates only primary dependencies to form trees
whereas our dependency graph parsing (DGP)
approach handles both primary and secondary
dependencies to form graphs. Since DGP does
not guarantee the generated graphs are acyclic,
the ensemble algorithm is designed to add sec-
ondary arcs predicted by DGP to primary arcs
predicted by DTP. Our results show that mod-
els using the multilingual encoder outperform
ones using the language specific encoders for
most languages. Moreover, the ensemble mod-
els generally show higher labeled attachment
score on enhanced dependencies (ELAS) than
the DTP and DGP models. As the result, our
best parsing models rank the third place on the
macro-average ELAS over 17 languages.

1 Introduction

Dependency parsing can generate computational
structures for a wide range of typologically differ-
ent languages, which provides structural relations
that have been found to be useful for various NLP
applications. However, these applications often re-
quire richer dependency relations carrying on deep
semantics, which are missing in traditional depen-
dency trees. Thus, enhanced dependencies emerge
to explicitly capture deep semantic relations over
surface structures (Schuster and Manning, 2016).
Recently, there has been lots of interests in con-
structing and parsing advanced graph structures
beyond tree representations. Choi (2017) introduce
deep dependency graphs that address several limi-
tations in UD tree structures. Schuster et al. (2017)

181

Jinho D. Choi
Computer Science
Emory University

Atlanta GA 30322, USA

jinho.choilemory.edu

analyze gapping constructions in the enhanced UD
representation. Nivre et al. (2018) evaluate both
rule-based and data-driven systems for adding en-
hanced dependencies to existing treebanks. Apart
from syntactic relations, researchers are moving to-
wards semantic dependency parsing (Oepen et al.,
2015) for more direct analysis of entities and events.
The efforts of treebank construction stimulates the
interest of many researchers in improving the per-
formance of semantic parsers (Dozat and Manning,
2018; Du et al., 2015; Almeida and Martins, 2015).

This paper presents our parsing approach to the
Shared Task on Enhanced Universal Dependen-
cies at IWPT 2020 (Nivre et al., 2016; Bouma
etal.).! Our system is a simplified version of the
transformer-based dependency parsers presented
by He and Choi (2020), which employs the deep
biaffine dependency parsing decoder (Dozat and
Manning, 2017) over the transformer encoder,
BERT (Devlin et al., 2019). We simplify their net-
work by removing the LSTM and fine-tuning their
static transformer encoder. In order to effectively
predict the enhanced dependencies, we also ensem-
ble the dependency tree parser with an dependency
graph parser through a greedy searching algorithm.
At last, we perform extensive experiments on the ef-
fects of transformer encoders to perform a detailed
analysis.

Our experiments show that the multilingual en-
coder has a substantial advantage over the language-
specific encoders. Moreover, our analysis shows
that tree parsing model can accurately predict pri-
mary dependencies in long sentences, while graph
parsing model excels at label prediction. By taking
advantages from both sides, our ensemble models
outperform individual models in most languages.”

!'This work purely focuses on parsing not pre-steps such as
sentence split or tokenization, although we recognize that it
is important to address the pre-steps to win this competition.

2All our resources are available at https://github.

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 181-191
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

https://github.com/emorynlp/iwpt-shared-task-2020

MLPUekh) v plare) MLPT(NW \”‘PI«AL—(]; MLI’T‘““"‘) \”‘Ptmw MLI,TNM', MTpared) NP re-h) yppplearc) \pppleekd) \gy plare-d) \p,plrel-h) \ppplarch) \pp pleeld) g plare-d)
| Loy J | Loy J | [N J | [N J

(relh)T _ 5o0n -eepee)

% O o@lele + (@ @]0[0 0)
rel rel O Q’Q’O ﬁ]g 8 8

Z/{ um H(rel—d) (H(rel—h) Q;/H(rel

(@ O]H(m.m (0¥oXoJo) i
C {OOO} « [o[e[ore |
(0X©) 000 olololo
@J U(arc) H(arc—d)
Rlrelh) p(hf“)| plare-d) j
O

Figure 1: The overview of our transformer-based biaffine dependency parsing model.

2 Approach section proposes an even more simplified approach
that no longer uses embeddings from POS tags, so
it can be easily adapted to languages that may not
The data in the training and development sets are have dedicated POS taggers, and drops the Bidirec-
already sentence segmented and tokenized. For the tional LSTM encoder while integrating the trans-
test set, UDPipe is used to segment raw input into former encoder directly into the biaffine decoder to
sentences, where each sentence gets split into a list ~ minimize the redundancy of multiple encoders for
of tokens (Straka and Strakovd, 2017). A custom the generation of contextualized embeddings.
script written by us is used to remove multiwords
but retain their splits (e.g., remove vdmonos but
retain vdmos nos), as well as to collapse empty
nodes in the CoNLL-U format.

2.1 Preprocessing

Every token w; in the input sentence is split into
one or more sub-tokens by the transformer encoder
(Section 2.2). The contextualized embedding that
corresponds to the first sub-token of wy; is treated as
the embedding of w;, say e;, and fed into four types
of multilayer perceptron (MLP) layers to extract
features for w; being a head (*-h) or a dependent
(*-d) for the arc relations (arc-*) and the labels
(rel-*) (k and [are the dimensions of the arc and
label representations, respectively):

2.2 Transformer Encoder

Our parsing models use contextualized embeddings
generated by transformer encoders such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2020)
or ALBERT (Lan et al., 2020) that are pretrained
on large corpora for language modeling. Each sen-
tence in the preprocessed data by Section 2.1 is fed
into a transformer encoder that further splits every

token into sub-tokens using SentencePiece (Kudo hgarc_h) = MLP(arC'h)(el) e Rkx1
and Richardson, 2018). The sub-token embeddings pae-d) _ v, plarc-d (e;) € R¥*!
from the last layer of the transformer encoder are l(rel_h) (rel-h) Ix1
fed into the biaffine decoder in Section 2.3. h; = MLP (e;) € R
hgrel—d) — MLP(rel—d) (ez) c Rlxl
2.3 Biaffine Decoder
Our dependency parsing approach is based on the
biaffine decoder that has shown state-of-the-art re- All feature vectors, h', ... h’, from each repre-

sults on syntactic tree and semantic graph parsing
in both English and Chinese (He and Choi, 2020).
This model is simplified from the original biaffine
parser introduced by Dozat and Manning (2017)
such that trainable token embeddings are removed
and lemmas are used instead of word forms. This

sentation are stacked into a matrix (n is the number
of tokens in a sentence); these matrices together are
used to predict dependency relations among every
token pairs. Note that bias terms are appended to
the feature vectors hg*'d) that represent dependent
nodes to estimate the likelihood of a certain relation
com/emorynlp/iwpt-shared-task-2020 given only the head node:

182

https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020
https://github.com/emorynlp/iwpt-shared-task-2020

H(dIC -h) (h(arc h) h(dIC h)) c kan
yare-d) _ ((drc d)) h%arc—d)) ®le R(kz—i—l)xn
(rel h) _ (h(rel h) h(rel—h)) c Rlxn

Fel-d) (h(rel d) h(rel d)) @1e R(l—H)

The bilinear and biaffine classifiers are then used
for the arc and label predictions respectively, where
yare) Ui(reD and V() are trainable parameters,
and m is the number of dependency labels. In par-
ticular, a separate weight matrix U is dedicated
to the prediction of each label:

S(arc) — H(arc-h)T . U(arc) . H(arc—d) e R*n
u(rel) H(rel -h)T U;rel) . H(rel-d) c RX1
1
S (Z R 7\)
+ (H(rel—h) @ H(rel—d))T . V(rel) e RMxnxn

2.4 Dependency Tree & Graph Parsing

The arc score matrix S@ and the label score ten-
sor STD generated by the bilinear and biaffine clas-
sifiers can be used for both dependency tree parsing
(DTP) and graph parsing (DGP). For DTP, which
takes only the primary dependencies to learn tree
structures during training, the Chu-Liu-Edmond’s
Maximum Spanning Tree (MST) algorithm is ap-
plied to S@© for the arc prediction, then the label
with largest score in ST corresponding to the arc
is taken for the label prediction (Aprp: the list of
predicted arcs, Lptp: the labels predicted for Aptp,
Z: the indices of Aprp in STeD):

_ MST(S(arC))
= argmax (S [Z(Aprp)])

ADTP

Lptp

For DGP, which takes the primary as well as the
secondary dependencies in the enhanced types to
learn graph structures during training, the sigmoid
function is applied to S instead of the softmax
function (Figure 1) so that zero to many heads can
be predicted per node by measuring the pairwise
losses. Then, the same logic can be used to predict
the labels for those arcs as follows:

Apgp = SIGMOID(S®)
Lpcp = argmax(S™V[Z(Apgp)])

It is worth mentioning that the performance of DTP
is generally better than the one achieved by DGP

183

for finding the primary dependencies that form tree
structures; however, DTP completely dismisses the
secondary dependencies so that DGP outperforms
DTP for the overall performance on the enhanced
dependencies. Section 2.5 describes our ensemble
parsing approach that adapts the best of both worlds
by taking the predictions of primary dependencies
from DTP and augmenting them with the predic-
tions of secondary dependencies from DGP.

2.5 Ensemble Parsing

The UD guidelines require a graph formed by only
primary dependencies to be always a spanning tree,
while such a restriction is not applied to graphs with
secondary dependencies. We find that the majority
of dependency graphs in the training set, however,
can be viewed as directed acyclic graphs (DAGs).
In fact, all graphs can be transformed into DAGs
by removing 0.87% of the secondary dependencies.
Therefore, our ensemble parsing method focuses
on building maximum spanning DAGs (MSDAGS)
by combining arcs from both dependency trees and
graphs generated by the DTP and DGP models,
respectively (Section 2.4).3

Unfortunately, finding MSDAGs from the out-
put of the DGP model is NP-hard (Schluter, 2014).
Thus, we design an ensemble approach that finds
approximate MSDAGS using a greedy algorithm.
Given the score matrices S\ and Sg‘gg from the
DTP and DGP models respectively and the label
score tensor ngi) from the DGP model, Algo-
rithm 1 is applied to compute the MSDAG:
The algorithm begins by initializing scores related
to the root in Sgﬁ% (L1-3). The label matrix R is
created by taking the argmax of every dependent
and head pair (d, h) in Sg‘é}, such that each cell con-
tains the most likely label for that pair (L4). Given
the arc list Aptp from the DTS model (1.5), the
graph G is generated by taking all arcs in Aptp and
their corresponding labels in R (1L.6-9).* Finally,
given the arc list Apgp from the DGP model sorted
in descending order (1.1 0), arcs in Apgp are greed-
ily added to G, as long as they do not create any

3The motivation behind this DAG approach was to reduce
potential confusion in learning caused by cyclic structures,
which we later realized may have not been necessary, but we
described this approach here for the replicability of our work.
S0l is used to find the labels of arcs predicted by both the
DTP and DGP models. From our experiments, we find that
the DGP model outperforms the DTP model for the label
predictions of even primary dependencies, which may be due
to the greater number of labels in DGP training data; thus,

Steh, is used for all types of dependencies instead of S{y.

AR BG CS EN ET FI FR IT LT LV NL PL RU SK SV | TA | UK

TRN | 6,075 | 8,907 | 102,133 | 12,543 | 25,749 | 12,217 | 2,231 | 13,121 | 2,341 | 10,156 | 18,051 | 31,496 | 48,814 | 8,483 | 4,303 | 400 | 5,496

DEV 909 | 1,115 | 11,182 | 2,002 | 3,125 | 1,364 | 412 564 617 | 1,664 | 1,394 | 3960 | 6,584 | 1,060 504 | 80 672

TST 794 | 1,112 | 12,713 | 2,800 | 3,588 | 2,616 | 2,679 482 652 | 1,835 | 1,154 | 4923 | 6,495 | 1,052 | 2,258 | 122 905

> 256 4 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0

(a) Sentence counts.

The > 256 row shows the number of sentences in the test set whose lengths are greater than 256 tokens.

| AR | BG cs EN ET | FI | FR | IT | LT | LV | NL | PL | RU | SK | SV | TA | UK
TRN [[254.3K | 1243K | 1783.1K [204.6K [361.8K | 163.0K | 51.9K [294.4K [47.6K | 167.6K | 261.0K | 388.5K [870.5K | 80.6K | 66.6K | 6.8K | 92.4K
DEV | 342K | 161K | 187.3K | 251K | 446K | 183K | 103K | 127K | 11.6K | 26.0K | 22.9K | 48.0K | 118.5K | 124K | 9.8K | 1.4K | 12.6K
TST || 30.8K | 157K | 220.5K | 463K | 58.7K | 36.9K | 353K | 112K | 10.8K | 264K | 226K | 657K | 117.4K | 13.0K | 39.3K | 2.IK | 17.1K

(b) Token counts in thousands (K).

Table 1: Statistics of the training (TRN), development (DEV), and test (TST) sets preprocessed by UDPipe. AR:
Arabic, BG: Bulgarian, CS: Czech, EN: English, ET: Estonian, FI: Finnish, FR: French, IT: Italian, LT: Lithuanian,
LV: Latvian, NL: Dutch, PL: Polish, RU: Russian, SK: Slovak, SV: Swedish, TA: Tamil, UK: Ukrainian.

Algorithm 1: Ensemble parsing algorithm
S(arc) S(arc)

Input: Sypp. Spgp. and ngéi,
Output: G, that is an approximate MSDAG

1 7 < root_index (Aprtp)

(rel)
SDGP

Sl [root, 7, 7] + 400
R+ argmax(ngé)P)) e R™m
ADTP — MST(S](;?;CP))
G« 0
foreach arc (d, h) € Aprp do
| G« GU{(d,h,R[d,h]}
end
Apgp sorted,descend(SIGMOID(Sgglg
foreach arc (d, h) € Apgp do

N~

[root, :, :] < —o0

w

FN

)

2 | GUM — GuU{(d,h,R[dh]}
13 if is_acyclic(G(®")) then

14 | G+ GUm

15 end

16 end

184

cyclein G (L11-16).

2.6 Postprocessing

As mentioned in Section 2.1, empty nodes in the en-
hanced dependencies are collapsed before training
using the script provided by the UD project.> Once
dependency structures are generated by any parsing
model, empty nodes are restored using our custom
script.® At last, the postprocessing script provided
by the UD project is applied to normalize the Uni-
code encoding and amend the SpaceAfter=No
annotation as recommended by the organizers.’

3 Experiments

3.1 Datasets

Table 1 shows the statistics of data splits used for
our experiments, that are preprocessed by UDPipe
trained on UD v2.5 (Straka and Strakova, 2017).
Training and development sets for treebanks from
the same languages are concatenated together. In
particular, the following treebanks are merged for
Czech, Estonian, and Dutch such that no individual
models are developed for those treebanks:

e Czech: UD_.Czech-CAC/FicTree/PDT
e Estonian: UD_Estonian—-EDT/EWT
e Dutch: UD_Dutch-Alpino/LassySmall

Since transformer encoders usually restrict the in-
put sequence length to be under 512 sub-tokens, our

*https://github.com/
UniversalDependencies/tools/blob/master/
enhanced_collapse_empty_nodes.pl

®https://gist.github.com/hankcs/
776e7d95c19e5££5da8469fe4e9ab050

"https://github.com/
UniversalDependencies/tools/blob/master/
conllu-quick-fix.pl

https://github.com/UniversalDependencies/tools/blob/master/enhanced_collapse_empty_nodes.pl
https://github.com/UniversalDependencies/tools/blob/master/enhanced_collapse_empty_nodes.pl
https://github.com/UniversalDependencies/tools/blob/master/enhanced_collapse_empty_nodes.pl
https://gist.github.com/hankcs/776e7d95c19e5ff5da8469fe4e9ab050
https://gist.github.com/hankcs/776e7d95c19e5ff5da8469fe4e9ab050
https://github.com/UniversalDependencies/tools/blob/master/conllu-quick-fix.pl
https://github.com/UniversalDependencies/tools/blob/master/conllu-quick-fix.pl
https://github.com/UniversalDependencies/tools/blob/master/conllu-quick-fix.pl

AR BG CS EN ET FI FR IT LT LV NL PL RU SK Sv TA UK
DTP || 61.28 | 79.58 | 78.37 | 75.70 | 68.08 | 70.37 | 85.29 | 75.21 | 63.91 | 71.68 | 71.08 | 74.33 | 74.62 | 70.12 | 70.92 | 54.26 | 77.04
DGP || 63.56 | 86.66 | 79.38 | 82.31 | 75.94 | 72.03 | 74.35 | 86.46 | 61.59 | 71.58 | 76.94 | 70.39 | 83.19 | 81.37 | 77.39 | 40.10 | 79.56
ENS || 67.26 | 88.19 | 85.51 | 83.24 | 81.36 | 80.54 | 81.97 | 87.83 | 66.12 | 79.19 | 80.72 | 82.39 | 88.60 | 82.72 | 78.19 | 46.67 | 79.69
DTP || 49.38 | 55.76 | 71.73 | 76.99 | 44.61 | 72.40 | 86.23 | 75.50 - - 70.95 | 57.35 | 63.51 | 30.41 - - -
DGP || 43.71 | 45.25 | 68.47 | 83.22 | 43.90 | 79.38 | 78.87 | 86.45 - - 76.46 | 51.90 | 63.44 | 26.03 - - -
ENS || 48.02 | 52.16 | 51.05 | 85.30 | 51.82 | 82.96 | 81.45 | 88.52 - - 80.02 | 59.59 | 71.19 | 30.08 - - -
(a) Labeled attachment score on enhanced dependencies (ELAS) on the test sets.
| AR | BG | CS | EN | ET | FI | FR | IT | LT | LV | NL | PL | RU | SK | SV | TA | UK
DTP || 71.83 | 89.61 | 87.20 | 84.61 | 82.81 | 85.43 | 87.47 | 90.49 | 73.55 | 81.17 | 83.67 | 88.29 | 89.71 | 86.83 | 81.72 | 58.66 | 85.36
DGP || 65.49 | 87.31 | 80.38 | 82.74 | 76.42 | 72.62 | 75.49 | 86.98 | 63.10 | 71.95 | 77.37 | 74.54 | 83.47 | 83.39 | 78.32 | 41.36 | 80.18
ENS || 69.46 | 88.84 | 86.63 | 83.68 | 81.98 | 81.44 | 83.34 | 88.35 | 68.24 | 79.66 | 81.21 | 86.79 | 88.93 | 84.73 | 79.11 | 48.50 | 80.34
DTP || 56.69 | 62.27 | 79.53 | 86.24 | 53.31 | 88.19 | 88.28 | 90.89 - - 83.47 | 67.58 | 76.05 | 34.50 - - -
DGP || 46.75 | 46.84 | 69.79 | 83.67 | 44.62 | 80.10 | 80.12 | 86.92 - - 76.97 | 55.58 | 64.16 | 26.82 - - -
ENS || 51.37 | 54.01 | 53.45 | 85.76 | 52.74 | 83.70 | 82.83 | 89.04 - - 80.59 | 63.82 | 72.13 | 31.19 - - -

(b) Labeled attachment score on enhanced dependencies where labels are restricted to the UD relation (EULAS).

Table 2: Parsing results on the test sets for all languages. For both (a) and (b), the rows 2-4 show the results by the
multilingual encoder and the rows 5-7 show the results by the language-specific encoders if available.

parsing models cannot handle sentences beyond
this length. As the distribution of sentence lengths
in each dataset is measured, we find out that most
sentences consist of fewer than 256 tokens. Thus,
we discard sentences beyond 256 tokens from all
training and development sets. For such sentences
in the test sets, we rely on the parsing outputs from
UDPipe; this choice is made due to the negligible
numbers of those sentences (Table 1a) although it
can be obviously improved.

3.2 Encoder Models

Two types of transformer encoders are used for
the development of our models. One is the mul-
tilingual BERT (mBERT) pretrained on a mix-
ture of large corpora in 100 languages (Devlin
et al., 2019). The mBERT encoder uses one
model to generate token embeddings for all lan-
guages, which encourages transfer learning in mul-
tilingual parsing. The other is language specific
encoders that have been made to public by the com-
munity. Table 3 shows details about 12 language-
specific encoders.® More details about the sources
of these models are described in Section A.2.

3.3 Development Configuration

Following He and Choi (2020), we use the AdamW
optimizer (Loshchilov and Hutter, 2019) with a lin-
ear learning rate warm-up and decay for finetuning
the pretrained encoders. For the decoder weights,
we use the Adam optimizer (Kingma and Ba, 2015)
with a learning rate 20 times smaller than the one
for finetuning. For the contextualized embeddings,
we apply a shared dropout mask for each time step

8We could not find public models for the other 5 languages.

similar to variational dropout often used for recur-
rent neural networks (Gal and Ghahramani, 2016).

The KMeans clustering algorithm is adopted to
bucket sentences into mini-batches according to
their lengths counted by sub-tokens. The NVIDIA
RTX GPUs with 24GB memory are used to develop
these models. Unfortunately, most of our models
cannot be fit into GPUs with smaller memory due
to the extensive memory use of both the encoder
and the decoder. We will explore innovative ways
of reducing our parsing models such as teacher-
student learning (Shin et al., 2019).

3.4 Parsing Results

All models are evaluated with 5 metrics, unlabeled
attachment score (UAS), labeled attachment score
(LAS), content labeled attachment score (CLAS),
LAS on enhanced dependencies where labels are
restricted to the UD relation (EULAS), and LAS on
enhanced dependencies (ELAS). Models with the
highest ELAS on the development sets are used to
generate the final parse outputs on the test sets. Ta-
ble 2 shows the ELAS and EULAS on the test sets
for all languages. Detailed parsing results evalu-
ated with all 5 metrics are described in Section A.3.
For ELAS, our ensemble models (ENS) outperform
the other models on 15 out of 17 languages. The
only 2 exceptions are French and Tamil; these two
languages consist of relatively fewer numbers of
multi-head tokens as illustrated in Figure 2. Out
of 12 languages with language-specific encoders
(Table 3), models using the multilingual encoder
outperform 8 of them, indicating the promise of the
multilingual encoder to build robust parsing mod-
els for low-resource languages. The 4 exceptions

185

Lang. || Encoder | Corpus | Provider
AR BERT 8.2B Hugging Face
EN ALBERT | 16 GB | Hugging Face
ET BERT N/A TurkuNLP
FR RoBERTa | 138 GB | Hugging Face
FI BERT 24 B Hugging Face
IT BERT 13 GB | Hugging Face
NL BERT N/A Hugging Face
PL BERT 1.8B Hugging Face
SV BERT 3B Hugging Face
BG BERT N/A Hugging Face
CS BERT N/A Hugging Face
SK BERT N/A Hugging Face

Table 3: Language-specific transformer encoders to de-
velop our models. The corpus column shows the corpus
size used to pretrain each encoder (B: billion tokens,
GB: gigabytes). BERT and RoBERTa adapt the base
models whereas ALBERT adapts the large model. Pub-
lications and resource links are shown in Table 5.

are English, Finnish, French, and Italian, which ei-
ther use more advanced encoding methods or their
language models are trained on larger corpora.
For EULAS, the multilingual encoding approach
still outperforms 8 out of the 12 languages as
for ELAS. However, DTP models completely out-
perform both DGP and ENS models, indicating
that the primary and secondary dependencies are
not distinguishable by our current DGP approach,
which complies with the fact that DGP is trained on
enhanced relations rather than the basic dependen-
cies DTP is trained on. We believe the performance
of DGP could be improved through ad-hoc strate-
gies to handle enhancement of case and lemma.

0.10 1

ooolll““|

et ta bg nl it fr en sk ru sv pl ar Iv fi cs uk It
language

o ° °
o o o
S o (s3]

tokens with multiple heads

o
o
N

Figure 2: Percentages of tokens with multiple heads.

4 Analysis

This section analyzes factors that affect our models
the most, common error made across languages
and what possible improvement that can be made.

4.1 Data Size

We use the same hyper-parameters for all datasets,
which may have led to possible overfitting (or un-
derfitting). To verify this, we compute the differ-
ences between the ELAS scores of our models and
that of the highest models from other teams. We
then plot the differences as a function of the log
training data size and fit the differences to a linear
regression model shown in Figure 3.

ELAS difference

-10

=121, - T T T T
25 3.0 3.5 4.0 4.5 5.0
dataset size

Figure 3: Difference in ELAS between our parser and
the top team as a function of dataset size.

We also fit the differences with sentence scores as
random effects to another regression model, find-
ing that the p values for sentence scores and dataset
sizes are 0.760 and 0.001. It shows that our sys-
tem performs relatively better on larger datasets
while overfits to smaller datasets, suggesting that
decreasing model capacity may improve ELAS for
languages with less training data.

42 00OV

To investigate the performance of each model on
Out-Of-Vocabulary (OOV) tokens, we evaluate
them on the OOV-only subset of English treebank.
As shown in Figure 4, language specific encoder
outperforms multilingual encoder in therse model
settings, which is not surprising.

4.3 Sentence Length

We evaluate the ELAS of English treebank offline
relative to sentence length with gold tokenization
and sentence split. As shown in Figure 5, DTP
models are very stable on long sentences while the
performance of DGP models dramatically drops
with the increase of sentence length. Performance
of multilingual encoder models tends to drop faster
than their language-specific counterparts.

186

s multilingual
I language-specific

ELAS of OOV
o
w

o©
N

o
A

0.0 -

DTP DGP ENS

Figure 4: ELAS of Out-Of-Vocabulary tokens.

5 Related Work

Our work in utilizing multilingual Transformers
as the encoder for parser model is most closely re-
lated to the UDify system (Kondratyuk and Straka,
2019). UDity is a multilingual multi-task model
leveraging a multilingual BERT to accurately pre-
dict universal part-of-speech, morphological fea-
tures, lemmas, and dependency trees simultane-
ously across 75 languages. UDify concatenates
all training sets together to encourage knowledge
transferring across languages, which benefits low-
resource languages the most. In our multilingual
BERT approach, each model is trained separately.

0.900 A

0.875

—— multilingual-DTP
\ —— multilingual-DGP
N —— multilingual-ENS
N —=- language-specific-DTP
AN —-=- language-specific-DGP
—-=- language-specific-ENS

0.850 .

ELAS
-,

0.825

0.800 A

0.775 A

0.750

5 10 15 20 25 30 35 40 45
sentence length

Figure 5: ELAS of the English treebank relative to sen-
tence length.

For the encoder, pre-trained Transformers (Devlin
et al., 2019; Liu et al., 2020; Lan et al., 2020) has
been shown to be effective in tagging and parsing
tasks without heavily engineered decoders(He and
Choi, 2020). The encoder representations embed
entire syntax trees according to the structural probe
(Hewitt and Manning, 2019), encouraging the appli-
cation of Transformers in parsing task. Not only in

the embedding space, syntactic structures are used
in the Tree Transformer (Wang et al., 2019), where
constituent attention is gradually learned bottom-
up layer by layer. Our parser employs pre-trained
transformer models in Section 3.2.

For the decoder, the deep biaffine attention
(Dozat and Manning, 2017) dominates the graph
based approach since its establishment. The
top ranked graph-based dependency parser at the
CoNLL 2017 Shared Task (Dozat et al., 2017)
adopts biaffine attention with rich character level
features. With a parsing algorithm other than MST,
the biaffine parser is successfully extended to se-
mantic dependency parsing (Dozat and Manning,
2018). The current state-of-the-art dependency
parsing records on English Penn Treebank (Mar-
cus et al., 1993) and Chinese Treebank (Xue et al.,
2005) are maintained by the Head-Driven Phrase
Structure parser (Zhou and Zhao, 2019), which
jointly learns constituency parsing and dependency
parsing with layers including biaffine attention.
Apart from parsing, biaffine attention has also been
applied to graph related task including relation ex-
traction (Nguyen and Verspoor, 2019) and corefer-
ence resolution (Zhang et al., 2018).

6 Conclusion

This paper describes our parsing approach to en-
hanced universal dependencies for the IWPT 2020
shared task. We find that the multilingual BERT
encoder is able to parse various languages without
language specific network design. Our proposed
ensemble method is shown to be beneficial for the
secondary dependency prediction.

In the future, we will improve the secondary
dependency prediction in a more systematic way.
We believe our current approach generating de-
pendency graphs satisfying the tree constraint of
primary dependencies can be further improved if
the constraint can be applied to biaffine attention
during training time, and the MSDAGs constraint
can be relaxed for better performance. We leave
these exciting topics for future work.

Acknowledgments

We gratefully acknowledge the support of the AWS
Machine Learning Research Awards (MLRA). Any
contents in this material are those of the authors
and do not necessarily reflect the views of AWS.

187

References

Mariana SC Almeida and André FT Martins. 2015.
Lisbon: Evaluating turbosemanticparser on multiple
languages and out-of-domain data. In Proceedings
of the 9th International Workshop on Semantic Eval-
uation (SemEval 2015), pages 970-973.

Mikhail Arkhipov, Maria Trofimova, Yuri Kuratov, and
Alexey Sorokin. 2019. Tuning multilingual trans-
formers for language-specific named entity recogni-
tion. In Proceedings of the 7th Workshop on Balto-
Slavic Natural Language Processing, pages 89-93,
Florence, Italy. Association for Computational Lin-
guistics.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
Overview of the IWPT 2020 Shared Task on Parsing
into Enhanced Universal Dependencies. In Proceed-
ings of the 16th International Conference on Pars-
ing Technologies and the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
Association for Computational Linguistics.

Jinho D. Choi. 2017. Deep Dependency Graph Con-
version in English. In Proceedings of the 15th In-
ternational Workshop on Treebanks and Linguistic
Theories, TLT 17, pages 35-62, Bloomington, IN.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of the 5th International
Conference on Learning Representations, ICLR’17.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but More Accurate Semantic Dependency
Parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL’18, pages 484-490.

Timothy Dozat, Peng Qi, and Christopher D Manning.
2017. Stanford’s graph-based neural dependency
parser at the conll 2017 shared task. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
20-30.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and
Xiaojun Wan. 2015. Peking: Building Semantic De-
pendency Graphs with a Hybrid Parser. In Proceed-
ings of the 9th International Workshop on Semantic
Evaluation, SemEval’ 15, pages 927-931.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019-1027.

188

Han He and Jinho D. Choi. 2020. Establishing
strong baselines for the new decade: Sequence
tagging, syntactic and semantic parsing with bert.
In Proceedings of the 33rd International Florida
Artificial Intelligence Research Society Conference,
FLAIRS’20.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4129-4138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference for Learn-
ing Representations, ICLR’15.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779-2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a Large Anno-
tated Corpus of English: The Penn Treebank. Com-
putational Linguistics, 19(2):313-330.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Suérez, Yoann Dupont, Laurent Romary, Eric Ville-
monte de la Clergerie, Djamé Seddah, and Benofit
Sagot. 2020. Camembert: a tasty french language
model. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics.

https://doi.org/10.18653/v1/W19-3712
https://doi.org/10.18653/v1/W19-3712
https://doi.org/10.18653/v1/W19-3712
http://cl.indiana.edu/tlt15/
http://cl.indiana.edu/tlt15/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/pdf?id=Hk95PK9le
https://openreview.net/pdf?id=Hk95PK9le
http://www.aclweb.org/anthology/P18-2077
http://www.aclweb.org/anthology/P18-2077
http://www.aclweb.org/anthology/S15-2154
http://www.aclweb.org/anthology/S15-2154
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/D19-1279
https://www.aclweb.org/anthology/D19-1279
https://www.aclweb.org/anthology/D19-1279
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://aclweb.org/anthology/J93-2004
http://aclweb.org/anthology/J93-2004

Dat Quoc Nguyen and Karin Verspoor. 2019. End-to-
end neural relation extraction using deep biaffine at-
tention. In European Conference on Information Re-
trieval, pages 729-738. Springer.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659-1666.

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing universal de-
pendency treebanks: A case study. In Proceedings
of the Second Workshop on Universal Dependencies
(UDW 2018), pages 102-107.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkovd, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
915-926.

Natalie Schluter. 2014. On maximum spanning dag
algorithms for semantic dag parsing. In Proceed-
ings of the ACL 2014 Workshop on Semantic Pars-
ing, pages 61-65.

Sebastian Schuster, Matthew Lamm, and Christo-
pher D Manning. 2017. Gapping constructions in
universal dependencies v2. In Proceedings of the
NoDalLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017), pages 123—-132.

Sebastian Schuster and Christopher D Manning. 2016.
Enhanced english universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 2371-2378.

Bonggun Shin, Hao Yang, and Jinho D. Choi. 2019.
The Pupil Has Become the Master: Teacher-Student
Model-Based Word Embedding Distillation with En-
semble Learning. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence,
IJCAT’ 19, pages 3439-3445.

Milan Straka and Jana Strakova. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88-99, Vancouver, Canada.
Association for Computational Linguistics.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
Bert for finnish. arXiv preprint arXiv:1912.07076.

189

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061-1070, Hong Kong, China. As-
sociation for Computational Linguistics.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The Penn Chinese TreeBank: Phrase
Structure Annotation of a Large Corpus. Natural
Language Engineering, 11(2):207-238.

Rui Zhang, Cicero Nogueira dos Santos, Michihiro
Yasunaga, Bing Xiang, and Dragomir Radev. 2018.
Neural coreference resolution with deep biaffine at-
tention by joint mention detection and mention clus-
tering. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 102-107, Melbourne,
Australia. Association for Computational Linguis-
tics.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on Penn treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396-2408, Florence, Italy. Association for Compu-
tational Linguistics.

https://www.ijcai19.org/
https://www.ijcai19.org/
https://www.ijcai19.org/
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.18653/v1/P18-2017
https://doi.org/10.18653/v1/P18-2017
https://doi.org/10.18653/v1/P18-2017
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

A Supplemental Materials
A.1 Hyperparameters

Table 4 shows the hyperparameters used to train
models for all languages.

A.3 Parsing Results

Table 6 shows the parsing results using the 5 evalu-
ation metrics, unlabeled attachment score (UAS),
labeled attachment score (LAS), content labeled
attachment score (CLAS), LAS on enhanced de-
pendencies where labels are restricted to the UD
relation (EULAS), and LAS on enhanced depen-
dencies (ELAS).

Transformer
Max sequence length 256
Warm up steps 10%
Learning rate le™®
End learning rate 0
Weight decay rate 0
Adam (1 0.9
Adam (2 0.999
Adam € le™S
Parser
MLP®” 500
MLPU 100
Clip norm 5
Learning rate le™3
Adam (1 0.9
Adam (2 0.9
Adam € le 12
Anneal factor 0.75
Anneal every 5000
Dropout Rates
Embeddings 33%
MLP 33%
Optimizer
Batch size ~ 150
Train epochs 1000

Table 4: Hyperparameters used for our experiments.

A.2 Language-Specific Encoders

Table 5 shows the authors and the sources of the
language-specific transformer decoders used to de-
velop our parsing models.

Lang. || Source Link
AR Unknown huggingface.co/asafaya/bert-base-arabic
EN Lan et al. (2020) huggingface.co/albert-xxlarge-v2
ET Unknown dl.turkunlp.org/estonian-bert/etwiki-bert/pytorch/
FI Virtanen et al. (2019) huggingface.co/TurkuNLP /bert-base-finnish-cased-v1
FR Liu et al. (2020); Martin et al. (2020) | huggingface.co/dbmdz /bert-base-italian-cased
1T Unknown huggingface.co/dbmdz/bert-base-italian-cased
NL Unknown huggingface.co/wietsedv/bert-base-dutch-cased
PL Unknown huggingface.co/dkleczek/bert-base-polish-uncased-vl
SV Unknown huggingface.co/KB/bert-base-swedish-cased
BG Arkhipov et al. (2019) huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased
CS Arkhipov et al. (2019) huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased
SK Arkhipov et al. (2019) huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased

Table 5: The authors and sources of the language specific transformer encoders used to develop our models.

190

huggingface.co/asafaya/bert-base-arabic
huggingface.co/albert-xxlarge-v2
dl.turkunlp.org/estonian-bert/etwiki-bert/pytorch/
huggingface.co/TurkuNLP/bert-base-finnish-cased-v1
huggingface.co/dbmdz/bert-base-italian-cased
huggingface.co/dbmdz/bert-base-italian-cased
huggingface.co/wietsedv/bert-base-dutch-cased
huggingface.co/dkleczek/bert-base-polish-uncased-v1
huggingface.co/KB/bert-base-swedish-cased
huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased
huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased
huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased

Multilingual Encoder Language-Specific Encoder

UAS | LAS | CLAS | EULAS | ELAS || UAS | LAS | CLAS | EULAS | ELAS
DTP || 79.05 | 74.75 | 71.76 71.83 61.28 || 67.06 | 58.80 | 51.77 56.69 49.38
AR | DGP || 73.51 | 69.50 | 65.28 65.49 63.56 || 59.84 | 51.99 | 43.88 46.75 43.71 3
ENS || 79.05 | 74.75 | 71.76 69.46 67.26 || 67.06 | 58.80 | 51.77 51.37 48.02
DTP || 9437 | 91.77 | 89.19 89.61 79.58 || 70.99 | 63.54 | 55.96 62.27 55.76
BG | DGP || 92.64 | 90.00 | 86.44 87.31 86.66 || 59.45 | 52.72 | 41.07 46.84 45.25 3
ENS || 9437 | 91.77 | 89.19 88.84 88.19 || 70.99 | 63.54 | 55.96 54.01 52.16
DEP || 93.72 | 91.91 | 90.74 87.20 78.37 || 86.83 | 83.58 | 80.84 79.53 71.73
CS SDP || 8549 | 83.81 | 78.52 80.38 79.38 || 75.95 | 72.96 | 66.06 69.79 68.47 3
ENS || 93.72 | 9191 | 90.74 86.63 85.51 || 86.83 | 83.58 | 80.84 53.45 51.05
DTP || 89.37 | 87.01 | 84.63 84.61 75.70 || 90.94 | 88.70 | 87.01 86.24 76.99
EN | DGP || 87.17 | 84.79 | 81.20 82.74 82.31 87.62 | 85.43 | 81.82 83.67 83.22 3
ENS || 89.37 | 87.01 | 84.63 83.68 83.24 || 90.94 | 88.70 | 87.01 85.76 85.30
DTP || 87.35 | 84.25 | 82.58 82.81 68.08 || 62.39 | 54.23 | 50.25 53.31 44.61
ET | DGP || 80.73 | 78.11 | 73.93 76.42 75.94 || 52.39 | 4598 | 39.66 44.62 43.90 2
ENS || 87.35 | 84.25 | 82.58 81.98 81.36 || 62.39 | 54.23 | 50.25 52.74 51.82
DEP || 91.10 | 88.95 | 87.37 85.43 70.37 || 93.32 | 91.84 | 90.90 88.19 72.40
FI SDP || 78.61 | 76.71 | 71.06 72.62 72.03 || 85.89 | 84.29 | 80.89 80.10 79.38 3
ENS || 91.10 | 88.95 | 87.37 81.44 80.54 || 93.32 | 91.84 | 90.90 83.70 82.96
DTP || 92.32 | 88.49 | 84.27 87.47 8529 || 92.52 | 89.33 | 85.53 88.28 86.23
FR | DGP || 82.39 | 79.07 | 67.42 75.49 74.35 || 87.46 | 84.70 | 77.91 80.12 78.87 1
ENS || 92.32 | 88.49 | 84.27 83.34 81.97 || 92.52 | 89.33 | 85.53 82.83 81.45
DTP || 94.96 | 93.32 | 89.88 90.49 75.21 95.03 | 93.66 | 90.67 90.89 75.50
IT DGP || 92.33 | 90.70 | 85.30 86.98 86.46 || 91.38 | 90.13 | 83.67 86.92 86.45 4
ENS || 94.96 | 93.32 | 89.88 88.35 87.83 || 95.03 | 93.66 | 90.67 89.04 88.52
DTP || 81.97 | 77.63 | 75.27 73.55 63.91 - - - - -

LT | DGP || 72.23 | 68.60 | 63.21 63.10 61.59 - - - - - 4
ENS || 81.97 | 77.63 | 75.27 68.24 66.12 - - - - -
DTP || 89.07 | 85.98 | 83.79 81.17 71.68 - - - - -
LV | DGP || 78.35 | 7592 | 69.89 71.95 71.58 - - - - - 3
ENS || 89.07 | 8598 | 83.79 79.66 79.19 -
DTP || 88.75 | 86.29 | 81.18 83.67 71.08 || 88.46 | 86.02 | 80.87 83.47 70.95
NL | DGP || 83.18 | 80.98 | 72.41 77.37 76.94 || 82.80 | 80.60 | 72.31 76.97 76.46 3
ENS || 88.75 | 86.29 | 81.18 81.21 80.72 || 88.46 | 86.02 | 80.87 80.59 80.02
DTP || 94.27 | 91.88 | 90.35 88.29 74.33 || 76.45 | 70.03 | 64.65 67.58 57.35
PL | DGP || 80.23 | 77.88 | 73.53 74.54 70.39 || 65.67 | 60.41 | 51.18 55.58 51.90 2
ENS || 94.27 | 91.88 | 90.35 86.79 82.39 || 76.45 | 70.03 | 64.65 63.82 59.59
DTP || 94.20 | 92.87 | 91.71 89.71 74.62 || 8231 | 7843 | 74.97 76.05 63.51
RU | DGP || 87.18 | 86.13 | 81.47 83.47 83.19 || 71.19 | 68.04 | 60.93 64.16 63.44 3
ENS || 94.20 | 92.87 | 91.71 88.93 88.60 || 8231 | 7843 | 74.97 72.13 71.19
DTP || 92.64 | 90.61 | 89.29 86.83 70.12 || 46.19 | 35.72 | 27.97 34.50 30.41
SK | DGP || 89.91 | 87.78 | 85.48 83.39 81.37 || 38.37 | 29.66 | 20.49 26.82 26.03 3
ENS || 92.64 | 90.61 | 89.29 84.73 82.72 || 46.19 | 35.72 | 27.97 31.19 30.08
DTP || 88.29 | 85.23 | 83.63 81.72 70.92 - - - - -

SV | DGP || 85.53 | 82.41 | 79.58 78.32 77.39 - - - - - 4
ENS || 88.29 | 85.23 | 83.63 79.11 78.19 - - - - -
DTP || 65.57 | 58.69 | 54.73 58.66 54.26 - - - - -
TA | DGP || 50.95 | 45.54 | 40.35 41.36 40.10 - - - - - 3
ENS || 65.57 | 58.69 | 54.73 48.50 46.67 - - - - -
DTP || 91.01 | 88.91 | 86.45 85.36 77.04 - - - - -
UK | DGP || 88.50 | 86.30 | 82.93 80.18 79.56 - - - - - 3
ENS || 91.01 | 88.91 | 86.45 80.34 79.69 - - - - -

DTP || 88.71 | 85.80 | 83.34 82.85 71.87 56.03 | 52.58 | 49.49 51.00 44.40
AVG | DGP || 81.70 | 79.07 | 74.00 75.36 74.28 || 40.95 | 38.22 | 33.70 36.03 35.25 3
ENS || 88.71 | 85.80 | 83.34 80.07 78.83 || 50.92 | 47.66 | 44.74 43.95 43.01

Rank

Table 6: Parsing results on the test sets evaluated by the 5 metrics, UAS, LAS, CLAS, EULAS, and ELAS. The
Rank column indicates the ranking of our best model for the corresponding language. AR: Arabic, BG: Bulgarian,
CS: Czech, EN: English, ET: Estonian, FI: Finnish, FR: French, IT: Italian, NL: Dutch, LT: Lithuanian, LV: Latvian,
PL: Polish, RU: Russian, SK: Slovak, SV: Swedish, TA: Tamil, UK: Ukrainian.

191

