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Abstract

This paper describes our system to predict en-
hanced dependencies for Universal Dependen-
cies (UD) treebanks, which ranked 2nd in the
Shared Task on Enhanced Dependency Pars-
ing with an average ELAS of 82.60%. Our
system uses a hybrid two-step approach. First,
we use a graph-based parser to extract a basic
syntactic dependency tree. Then, we use a set
of linguistic rules which generate the enhanced
dependencies for the syntactic tree. The appli-
cation of these rules is optimized using a classi-
fier which predicts their suitability in the given
context. A key advantage of this approach is
its language independence, as rules rely solely
on dependency trees and UPOS tags which are
shared across all languages.

1 Introduction

Parsing Enhanced Universal Dependencies (EUD)
(Schuster and Manning, 2016) is an interesting ex-
tension of dependency parsing. EUDs provide syn-
tactic information which can be crucial for any
NLP processing based on syntactic analysis.

The shared task on EUD parsing (Bouma et al.,
2020) provided the platform to develop and com-
pare various systems. Our team participated using a
hybrid system (machine learning/rule-based) which
came second in both metrics, ELAS (82,6%) and
EULAS (84,6%).

1.1 Related Work
Whereas basic dependencies are strict surface syn-
tax trees, enhanced dependencies are implicite
syntactic links in constructions like coordina-
tions, raise/control constructions or relative clauses.
EUDs also enrich existing basic dependencies such
as obl and nmod relations by adding information
about the adposition used and morphological cases.
Finally EUDs propose the syntactic annotation of
elided words, absent in the actual sentence (Nivre

et al., 2018). Even though the basic dependen-
cies tree (apart from the orphan relation) is part
of the EUD graph, the latter is no longer a tree,
since individual tokens can have more than one
head. Most of the EUDs can be predicted deter-
ministically (Nivre et al., 2018), others, notably
the prediction of EUDs for elided words, are more
complex (Schuster et al., 2018).

2 System description

The data of Universal Dependencies treebanks
(Nivre et al., 2016)1 used for the shared task and
annotated with enhanced dependencies (other than
copied basic dependencies) is small. In total, all
training treebanks contain about 5.1 million words,
only 5.6% of those have a second enhanced depen-
dency attached to them (the first being the copied
basic dependency). Another 7.2% and 8.3% of
words have an enhanced dependency like obl:...
or nmod:... which correspond to the basic de-
pendency but also give the adposition and morpho-
logical case (if existing in the language in question).
In total, only 21.1% or 1 million words have any
non basic enhanced dependency.

The enhanced dependencies address specific and
well known linguistic phenomena, and are rela-
tively deterministic (Nivre et al., 2018), once the
basic dependency tree is available. For this rea-
son, we decided to utilise a hybrid system, using a
graph-based parser to produce first a dependency
tree and a rule system which uses the generated
dependency tree to determin the enhanced depen-
dencies. The latter uses a (learned) filter to control
the application of rules in certain contexts. The
system functions as a pipeline (cf. Figure 1). Thus
errors in earlier parts of the pipeline will impact
the results of the following components.

1https//universaldependencies.org/

https//universaldependencies.org/
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Figure 1: System architecture: gray boxes indicate data,
white boxes indicate processing

2.1 Sentence segmentation, tokenisation

For sentence segmentation and tokenisation of the
incoming raw text, we use UDPipe 1.2 (Straka and
Straková, 2017) ([a] in Figure 12). We trained a
tokenizer per language using the training files ([a’]
in Fig. 1) of each treebank. For languages with
more than one treebank, we chose the one with
the largest training file. A python postprocessing
script ([b] in Fig. 1) deals with obvious tokenization
errors, such as quotes concatenated to letters (e.g.
like word" , word” or "word) and separates
these tokens into two.

2.2 Tagging and parsing

To tag and parse the texts, we use a special version
of UdpipeFuture ([c] in Fig. 1) (Straka, 2018), win-
ner in terms of the Morphology-aware Labeled At-
tachment Score (MLAS)3 metric of the shared task
on Dependency Parsing in 2018. In our version, we
also use contextual embeddings, however instead of
using ELMo (Peters et al., 2018), we experimented
with a range of contextual embeddings, either mul-
tilingual as BERT (Devlin et al., 2019) or XLM-R
(Conneau et al., 2019), or language specific mod-
els like RoBERTa-large (English, Liu et al. (2019)),
CamemBERT (French, Martin et al. (2019)). Exper-
iments with these embeddings on the CoNLL 2018
Shared Task (Zeman et al., 2018) data show that
XLM-R outperforms the best score for nearly all
treebanks of the 2018 Shared Task. The Content-
Word Labeled Attachment Score (CLAS)4 scores

2Letters in brackets refer to the architecture diagrams
shown in Figures 1 and 4. Identical letters refer to the same
component.

3MLAS is metric inspired by the Content-Word Labeled
Attachment Score (CLAS) (Zeman et al., 2018) which takes
into account POS tags and morphological features.

4CLAS is a variant or the classical Labeled Attachment
Score (Nivre and Fang, 2017). It only takes into account de-
pendency reations between content words, in order to be able

for these experiments on the treebanks which are
used for the Enhanced Dependencies Shared Task
are given in Table 1.

treebank BERT XLM-R CoNLL 2018
best score

ar-padt 80.35 82.43 74.00
bg-btb 88.49 90.23 88.40
cs-cac 89.79 92.08 90.06
cs-fictree 87.89 90.22 89.61
cs-pdt 90.09 92.18 90.53
cs-pud 79.97 79.97 83.57
en-ewt 86.89 87.24 81.64
en-pud 87.60 87.60 85.68
et-edt 83.46 86.07 83.74
fi-pud 88.15 90.00 88.72
fi-tdt 86.65 89.90 87.42
fr-sequoia 90.03 90.47 87.26
it-isdt 89.11 90.01 88.32
lv-lvtb 79.75 83.18 81.17
nl-alpino 85.57 88.20 85.23
nl-lassysmall 84.07 85.18 81.71
pl-lfg 93.02 94.28 93.18
ru-syntagrus 91.60 93.30 91.00
sk-snk 87.42 89.35 87.01
sv-pud 81.19 82.25 79.01
sv-talbanken 86.68 88.72 86.94
uk-iu 83.83 86.97 85.99

Table 1: Results (CLAS) on CoNLL 2018 Shared Tasks
treebanks also present in the IWPT 2020 Shared Task
(best values in bold)

Although the CoNLL 2018 Shared Task is based
on UD v2.2, we were able to produce similar
promising results with the data provided by the
current shared task, based on UD v2.5.

To prepare for the shared task, we first merged
treebanks of the same language when more than
one was available: this was the case for Czech,
Dutch, Estonian and Polish. Then, we trained and
tested the tagging and parsing using UDPipeFu-
ture with all contextual word embedding models
available for the given language (unless the tree-
bank did not provide a dev-file, as e.g. the PUD
treebanks). In addition to the multilingual contex-
tual embeddings BERT and XLM-R, we also tested
some language-specific transformers such as Ara-
bic BERT5, CamemBERT6 (French, Martin et al.

to compare parsing results of typologically different languages
5https://github.com/alisafaya/Arabic-BERT
6https://camembert-model.fr/

https://github.com/alisafaya/Arabic-BERT
https://camembert-model.fr/
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(2019)), Finnish BERT7 (Virtanen et al., 2019), Ital-
ian BERT8, Swedish BERT9, Slavic BERT10 (Czech,
Bulgarian, Polish, Russian; Arkhipov et al. (2019))
and BERTje11 (Dutch, Vries et al. (2019)). The
results are shown in Table 2.

lang. XLMR BERT language specific
(ml) embeddings

ar 84.44 82.86 84.86 Arabic BERT

bg 91.30 90.52 91.45 Slavic BERT

cs 93.95 92.35 93.29 Slavic BERT

en 90.56 89.03 90.11 RoBERTa
et 89.13 86.68 (no emb. available)
fi 90.69 87.96 90.98 Finnish BERT

fr 92.70 92.91 93.43 CamemBERT

it 93.04 92.46 93.25 Italian BERT

lt 84.92 81.82 (no emb. available)
lv 89.03 86.14 (no emb. available)
nl 90.79 90.63 91.78 BERTje
pl 93.16 91.63 92.47 Slavic BERT

ru 93.65 92.04 92.73 Slavic BERT

sk 90.85 89.94 88.79 Slavic BERT12

sv 87.78 86.46 89.29 Swedish BERT

ta 72.84 69.44 (no emb. available)
uk 90.78 88.86 85.84 Slavic BERT

Table 2: Parsing test results (LAS) using different con-
textual word embeddings, best results in bold (train/dev
corpora of the shared task)

Evaluations on the development corpora showed
that XLM-R gave the best results for nearly all lan-
guages, with some exceptions: for Arabic (Arabic
BERT), Bulgarian (Slavic BERT), Finnish (Finnish
BERT), French (CamemBERT), Italian (Italian
BERT) and Dutch (Dutch BERT) the language-
specific versions of BERT gave better results in
terms of Labeled Attachment Score (LAS) for the
parsing.

2.3 Determining enhanced dependencies

To extract enhanced dependencies we implemented
a script ([d1] in Figure 1) which interprets the basic

7https://huggingface.co/TurkuNLP/
bert-base-finnish-cased-v1

8https://huggingface.co/dbmdz/bert-base-italian-cased
9https://huggingface.co/KB/bert-base-swedish-cased

10https://huggingface.co/DeepPavlov/
bert-base-bg-cs-pl-ru-cased

11https://huggingface.co/wietsedv/bert-base-dutch-cased
12Slavic BERT works nearly as well as XLM-R for Polish

and Russian. However, for Ukrainian and Slovak, which are
not part of Slavic BERT), the comparatively lower result is not
surprising.

dependency tree and applies some linguistic rules.
We built the rules by analysing manually the differ-
ent types of EUDs in all the provided treebanks.

To obtain a language-independent system which
can predict enhanced dependencies on any lan-
guage, we need homogeneous annotations in all
the treebanks. Since these annotations, which re-
quire time-consuming manual work, are currently
missing in many UD treebanks, and the existing
annotations are not always homogeneous, we opted
for a rule-based system. For example, dep is
used frequently as an additional13 enhanced depen-
dency in the Czech and Arabic treebanks. Other
differences stem from language differences, e.g.
in Finnish-TDT and Polish-PDB case informa-
tion is sometimes given with the nmod:poss
enhanced dependency, which is absent in other
treebanks for languages without morphological
case. Similarly, the conj enhanced dependency
is enriched with the lemma of the cc relation
only in the treebanks of Dutch, English, Ital-
ian and Swedish. Similar differences can be ob-
served for relative pronouns or case information
for oblique nominals (obl:<prep>:<case>)
or nominal modifiers (nmod:<prep>:<case>).
The French-Sequoia treebank frequently em-
ploys nmod:enh, amod:enh, nsubj:enh and
nsubj:passxoxobjenh which are not defined
in the guidelines.

Our script takes into account these language spe-
cific differences. For example, it discards preposi-
tions and case information in nmod/obl enhanced
dependencies for languages where this informa-
tion has not been annotated. In general, the script
mainly exploits basic dependencies and UPOS, i.e.
universal information, to determine the enhanced
dependencies.

The script first initialises enhanced dependen-
cies by copying all basic dependencies (except
orphan). In a second step we look for all words
with a obl and nmod relation and check whether
they have a case-dependant. If so, we enrich the
enhanced dependencies with the lemma of this de-
pendant. If present, we add the Case-feature to
obl:<ADP> and nmod:<ADP> as well.

For coordinations of nouns, we simply take the
heads of words with a conj-relation (cf. relation
(A) in Figure 2) and determine the dependency
relation of its head (relation (B) in Fig. 2). With this

13I.e. an enhanced dependency which is not a basic depen-
dency.

https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1
https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1
https://huggingface.co/dbmdz/bert-base-italian-cased
https://huggingface.co/KB/bert-base-swedish-cased
https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased
https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased
https://huggingface.co/wietsedv/bert-base-dutch-cased
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information we can add the enhanced dependency
relation of the coordinated noun to its enhanced
head (relation (C) in Fig. 2). We also enrich the
conj-relation (relation (D) in Fig. 2) using the
lemma of the cc-dependant (relation (E) in Fig. 2).

Paul and Mary are running

nsubj (B)

cc (D)
conj (A)

conj:cc (E) nsubj (C)

aux

root

Figure 2: Rule to predict EUDs for coordination:
A + B→ C and A + D→ E

xcomp (relation (F) in Fig. 3) relations are pro-
cessed in a similar way by going through the de-
pendency tree to find the subject (rel. (G) in Fig.
3) of the head of the xcomp. We then can add the
enhanced dependency relation nsubj (rel. (H) in
Fig. 3). Referents for relative clauses are processed
in an equivalent manner too.

John wanted to buy a hat

nsubj (G)

nsubj (H)

root

mark
xcomp (F)

det
obj

Figure 3: Rule to predict EUDs for xcomp subjects:
F + G→ H

In order to insert elided nodes, we interpret the
orphan relation. Whereas the insertion itself
works fine, we were not able to predict correctly
the needed enhanced dependencies for elided nodes
and have abandoned this prediction for the shared
task.

We validated the rules for enhanced dependency
extraction on gold basic dependencies from the
validation corpora to avoid the accumulation of
errors from the tagging and parsing step. This
yielded encouraging results presented in Table 3.

To further improve the performance of the rule-
based approach, and to take into account the errors
in the tagging/parsing step, we add the ICSIBoost14

classifier (Favre et al., 2008).
This classifier (cf. [g] in Figures 1 and 4) esti-

mates the probability of success of a given rule in

14https://github.com/benob/icsiboost

Language ELAS EULAS
ar 95.18 96.84
bg 97.84 98.34
cs 94.67 95.79
en 98.04 98.96
et 92.61 95.90
fi 94.40 97.07
fr 96.42 98.21
it 98.41 99.32
lt 94.55 96.61
lv 91.03 95.74
nl 94.40 98.42
pl 91.13 97.23
ru 95.42 96.94
sk 95.44 96.42
sv 96.07 98.38
ta 96.95 99.54
uk 94.58 96.64
Average 95.13 97.43

Table 3: Enhanced dependencies on gold basic depen-
dencies (development files; without ICSIBoost)

a given context. For this task, we trained a single
classifier using the following features:

• rule name
• treebank language
• enhanced dependency label
• UPOS of enhanced dependency head
• (basic) dependency relation of the enhanced

dependency head,
• distance (in words) of the basic dependency

head
• distance of the enhanced dependency head

To generate the training corpus of ICSIBoost,
we ran our enhance-script ([d2] in Fig. 4) on the
training CoNLL-U files ([a’] in Fig. 4), with gold
UPOS and basic dependencies) of each language
to obtain the list of appropriate features and the
information whether the rule produced a correct
EUD or not within the given context ([d’] in Fig. 4).
We then trained ICSIBoosts on this list to obtain a
classifier model ([f’] in Fig. 4) which we integrated
into the enhance-script ([d3] in Fig. 4) to obtain
more accurate predictions.

To get the best threshold for each language, we
ran our script ([d3]) on the development CoNLL-U
files with various thresholds for each language with
UPOS and basic dependencies predicted by Ud-
pipeFuture using contextual embeddings. Rules

https://github.com/benob/icsiboost
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Figure 4: ICSIBoost training

whose score fell below the threshold, in a given
context, were not applied. It turned out that thresh-
olds between 30% and 60% gave the best result
in terms of ELAS (cf. Table 4). However, the
gain from this classification is small for most lan-
guages. We observed the biggest increase in ELAS
for Estonian, where a threshold of 40% results in
2.13 percent points more than without any filter,
whereas for Bulgarian or Italian the difference is
only 0.12 or 0.14 points, respectively. On average,
the gain is about 0.7 points.

Arabic 40%
Bulgarian 55%
Czech 40%
English 55%
Estonian 40%
Finnish 47%
French 50%
Italian 60%
Lithuanian 60%

Latvian 50%
Dutch 40%
Polish 40%
Russian 35%
Slovak 30%
Swedish 40%
Tamil 55%
Ukrainian 50%

Table 4: ICSIBoost thresholds to apply a rule in a given
context

Running our entire pipeline on gold UPOS and
basic dependencies shows that we can predict en-
hanced dependencies with a very high precision (cf.
Table 5).

Applying the entire pipeline on the raw text files
provided for the evaluation produced the results
shown in Table 6. Since the script which gener-
ates the enhanced dependencies depends on basic
dependencies and indirectly on the UPOS tags, a
lower LAS yields a lower ELAS. By definition,
EULAS is always slightly above ELAS. We do not
exploit XPOS, since they are too language-specific.
Thus the bad results for Finnish XPOS tags do not
have an impact on the E(U)LAS score (Table 6).
Interestingly the poor sentence segmentation re-

Language ELAS EULAS
ar 95.33 97.06
bg 97.74 98.27
cs 94.74 95.88
en 98.19 99.02
et 92.40 96.08
fi 94.94 97.02
fr 97.69 99.10
it 98.18 99.34
lt 93.88 96.10
lv 90.65 95.62
nl 96.36 98.36
pl 88.85 97.08
ru 95.58 97.12
sk 96.00 96.80
sv 95.93 97.86
ta 98.11 99.58
uk 94.82 96.91
Average 95.26 97.48

Table 5: Predicting enhanced dependencies on gold ba-
sic dependencies

sults for Arabic, English and Dutch did not impact
the final results since tagging (UPOS) and parsing
(LAS) nevertheless gave good results.

3 Conclusion and perspectives

Considering that training data was heterogeneous,
partially incomplete, and in general not very volu-
minuous, our hybrid machine-learning (ML)/rule-
based approach gave very good results for the
shared task. A possible extension would be the
processing of elided nodes.

Even if for the long term a purely ML-based
approach may prove more efficient, at least our
language-independent system can help to pre-
annotate existing UD treebanks which, after human
validation, can be the basis of an ML approach on
predicting enhanced dependencies.
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