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Abstract

We present the approach of the TurkuNLP
group to the IWPT 2020 shared task on Mul-
tilingual Parsing into Enhanced Universal De-
pendencies. The task involves 28 treebanks in
17 different languages and requires parsers to
generate graph structures extending on the ba-
sic dependency trees. Our approach combines
language-specific BERT models, the UDify
parser, neural sequence-to-sequence lemmati-
zation and a graph transformation approach
encoding the enhanced structure into a depen-
dency tree. Our submission averaged 84.5%
ELAS, ranking first in the shared task. We
make all methods and resources developed for
this study freely available under open licenses
from https://turkunlp.org.

1 Introduction

The Universal Dependencies1 (UD) effort (Nivre
et al., 2016, 2020) seeks to create cross-
linguistically consistent dependency annotation
and has to date produced more than 150 treebanks
in 90 languages. UD is a broad and open commu-
nity effort with more than 300 contributors (Ze-
man et al., 2019), and the resources they have cre-
ated have been instrumental in driving progress
in dependency parsing in recent years, also serv-
ing as the basis of widely attended CoNLL shared
tasks on multilingual parsing in 2017 and 2018 (Ze-
man et al., 2017, 2018). While UD resources, the
CoNLL shared tasks, and recent advances in deep
learning-based parsing technology (Dozat et al.,
2017; Kanerva et al., 2018; Kondratyuk and Straka,
2019) have contributed substantially to accurate de-
pendency parsing using a consistent syntactic rep-
resentation for a wide range of human languages,
these efforts have focused almost exclusively on
the basic UD dependency trees. UD defines also an

∗Equal contribution by all three authors
1https://universaldependencies.org/

enhanced graph representation, which allows more
detailed representation of the sentence. Common
types of enhancements include null nodes for elided
predicates, propagation of conjuncts for making
connections between words more explicit, and aug-
mentation of modifier labels with prepositional or
case-marking information. The ability to produce
enhanced UD graphs from raw text, previously ex-
plored by e.g. Schuster and Manning (2016), Nivre
et al. (2018), and Schuster et al. (2018), would
represent a further advance over existing tools.

The IWPT 2020 Shared Task on Multilingual
Parsing into Enhanced Universal Dependendies2

(Bouma et al., 2020) is the first shared task evalu-
ation targeting the enhanced UD graph. The task
was organized using data from 28 UD treebanks
covering 17 languages, representing Baltic, Finnic,
Germanic, Romance, Semitic, Slavic, and Southern
Dravidian languages. We participated in the IWPT
shared task with our parsing pipeline consisting of
components for segmentation, part-of-speech and
morphological tagging, lemmatization, dependency
parsing, and enhanced dependency graph analysis.
Our approach builds on custom pre-trained deep
language models (Devlin et al., 2018), a deep neu-
ral network-based parser (Kondratyuk and Straka,
2019), a character-level sequence-to-sequence lem-
matizer (Kanerva et al., 2020), and a custom graph
transformation approach encoding an enhanced de-
pendency graph in a labeled tree structure. The
parsing pipeline is fully language agnostic, and
therefore trainable with any UD treebank. Our sub-
mission to IWPT achieved an average enhanced
labeled attachment score (ELAS) of 84.5%, the
best performance among the 35 evaluated submis-
sions from ten participating groups with an approx-
imately 2% point margin to the second-best sub-
mission.

2https://universaldependencies.org/
iwpt20/

https://turkunlp.org
https://universaldependencies.org/
https://universaldependencies.org/iwpt20/
https://universaldependencies.org/iwpt20/
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2 Shared Task Data

The shared task data invoves 28 UD treebanks for
17 languages, representing the subset of treebanks
for which enhanced dependencies are available.
The enhanced dependencies fall into five types:
gapping, propagation of conjuncts, controlled and
raised subjects, relative clause antecedents, and
case information. However, not all treebanks have
all of these types. While the training data is di-
vided according to individual treebanks, test data
is divided on language level through pooling of
the individual treebank test sets, without any direct
possibility to identify which test set sentence orig-
inates from which source treebank. We note that
this is a departure from previous UD parsing shared
tasks, where the treebank distinction was preserved
also in the test data. The training and development
data range from less than 10,000 words for Tamil
to over a million for Czech. Table 1 gathers statis-
tics of the enhanced dependencies, compared to
the base parse trees. We can see that the number
of unique relation types increases by an order of
magnitude, yet roughly 70-80% of the enhanced
dependencies are copied unmodified from the base
tree, and roughly 90-95% are a base dependency
with its relation type modified.

3 System Overview

We next introduce our system and our approach to
predicting enhanced dependencies.

3.1 Segmentation
For tokenization, multiword token expansion and
sentence splitting we apply the Stanza toolkit by Qi
et al. (2020) and its downloadable models trained
on UD version 2.5 treebanks. Stanza implements a
neural model that treats segmentation as a tagging
problem over sequences of characters, where for
a given character the model predicts whether it is
the end of a token, the end of a sentence, or the
end of a multiword token. Predicted multiword
tokens are then expanded using a combination of
a dictionary compiled from the training data and a
sequence-to-sequence generation model.

3.2 Base Parser
We use the UDify dependency parser introduced by
Kondratyuk and Straka (2019). UDify is a multi-
task model for part-of-speech and morphological
tagging, lemmatization and dependency parsing
supporting fine-tuning of pre-trained BERT models

Treebank Base Enh R% UR%
Arabic-PADT 36 1074 66.1 92.9
Bulgarian-BTB 36 173 84.7 96.1
Czech-CAC 43 639 72.4 89.3
Czech-FicTree 42 295 78.7 90.5
Czech-PDT 43 759 75.6 91.8
Dutch-Alpino 35 416 83.3 95.7
Dutch-LassyS. 35 293 82.2 95.3
English-EWT 49 375 82.3 94.7
Estonian-EDT 38 560 76.1 98.3
Estonian-EWT 39 178 74.1 92.6
Finnish-TDT 45 418 74.1 91.1
French-Sequoia 46 71 93.9 95.3
Italian-ISDT 44 348 78.6 94.8
Latvian-LVTB 40 133 75.9 90.6
Lithuanian-A. 35 194 66.9 88.8
Polish-LFG 40 178 88.8 97.1
Polish-PDB 67 859 77.2 91.8
Russian-SynTag. 40 635 77.5 93.9
Slovak-SNK 41 268 81.0 94.3
Swedish-Talbank. 40 302 79.1 93.2
Tamil-TTB 28 116 69.3 97.3
Ukrainian-IU 57 351 77.5 91.6

Table 1: Statistics of base and enhanced relations from
the training sections of the treebanks: Base is the num-
ber of unique relations in the base tree, Enh is the num-
ber of unique relations in the enhanced graph, R% is
the proportion of enhanced dependencies also present
in the base tree, and UR% is the proportion of unla-
belled enhanced dependencies also present in the base
tree. The letter R refers to recall.

on UD treebanks. UDify implements a multi-task
network where a separate prediction layer for each
task is added on top of the pre-trained BERT en-
coder. Additionally, instead of using only the top
encoder layer representation in prediction, UDify
adds attention vertically over the 12 layers of BERT,
calculating a weighted sum of all intermediate rep-
resentations of BERT layers for each token. All
prediction layers as well as layer-wise attention are
trained simultaneously, while also fine-tuning the
pre-trained BERT weights.

In our shared task system we use UDify for part-
of-speech tagging (UPOS), predicting morpholog-
ical features (FEATS) as well as for dependency
parsing. By contrast to the original UDify work,
we train separate language-specific models rather
than one model covering all languages.

3.3 Lemmatizer

For lemmatization we use the Universal Lemma-
tizer by Kanerva et al. (2020) trained on the shared
task training data. The lemmatizer casts the task as
a sequence-to-sequence rewrite problem where the
input token is represented as a sequence of charac-
ters followed by a sequence of its part-of-speech
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and morphological tags, and the desired lemma is
then generated a character at time from the input.
Following this approach, the contextual informa-
tion needed for disambiguating between possible
lemmas for ambiguous words is obtained directly
from the predicted morphological tags, thus creat-
ing a compact context representation which gener-
alizes well. In order to obtain predicted tags for
lemmatization, we apply the lemmatizer as the final
component in our pipeline.

3.4 Enhanced Representation

Since our base parser is only capable of reproduc-
ing trees, the enhanced representation needs to ei-
ther be encoded into the base trees by enriching the
set of dependency types, or alternatively introduced
in a separate step after base parsing. In our system
submission, we chose the former, but have also ex-
perimented with the latter approach. The overall
approach of encoding the graph into a tree is well-
known and has been applied previously, e.g. by a
number of teams in the SemEval tasks on semantic
dependency parsing (Oepen et al., 2014, 2015).

Our choices adhered to the following princi-
ples: (a) the LAS of the base parser must not be
compromised, (b) the encoding must be language-
independent and applicable to any treebank, and
(c) the method must be sufficiently simple to be
included in a production-grade parsing pipeline.

3.4.1 Encoding into Base Tree
In order to encode enhanced dependencies into
the base tree, we focused on a just four structures,
which nevertheless cover the vast majority of the
edges in the enhanced representation (see Table 2
below). The four structures and their encoding are
shown in Figure 1. In the encoding, the base tree
structure does not change; the enhanced relations
are encoded into the base tree relations, also record-
ing whether the enhanced dependency goes from
or to the head in the base tree, or from or to the
head of the head in the base tree. This encoding
makes the decoding process straightforward and
deterministic, because there can be at most one
head and at most one head of head in the parse tree.
The downside of this approach is that the number
of unique relation types which the parser needs to
predict increases substantially. Note that this en-
coding applies straightforwardly to cases where a
token is the head or dependent in several enhanced
relations; their encoding is simply concatenated.

The main reason for the increase in the num-

Figure 1: The four enhanced dependency structures cur-
rently captured in our encoding. The base (b) and en-
hanced (e) relations in the left column are encoded in
a tree structure as in the right column. In the encoding,
the symbol > stands for ”relation from”, < stands for
”relation to”, H is the head in the base tree, and HH is
the head of the head in the base tree.

ber of unique relation types is the lexicalized rela-
tions which encode the lemma of a functional word
(e.g. the case dependent) into the enhanced relation.
To address this issue in a language-independent
manner, we scan the enhanced relations for occur-
rences of a lemma of a dependent of the head or
the dependent in the enhanced relation. If one is
found, it is replaced with a placeholder encoding
which position the lemma occurred at. For instance
{lemma-d-case} indicates that this placeholder is to
be replaced with the lemma of a case dependent of
the dependent in this enhanced relation. Similarly,
{lemma-h-case} indicates that this placeholder is
to be replaced with the lemma of a case dependent
of the head in this enhanced relation. Such delexi-
calization is once again straightforward to reverse
and in practice deterministic, although not so in
theory, since a word can have several dependents
of the same type.

The final feature of the enhanced representation
that we address is the empty nodes occuring in el-
liptic constructions. Here, we once again rely on
encoding of information into the base tree. The
shared task evaluation procedure includes a step
whereby empty nodes are removed and encoded in
the form of enhanced relations that every two rela-
tions (h, e, r1), (e, d, r2) produce a new enhanced
relation (h, d, r1>r2) which encodes the presence
of an empty node. Once all relations of the empty
node are encoded in this manner, the empty node
is removed. This representation is easy to reverse,
and in practice allows one to reconstruct the empty
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nodes in the enhanced representation except for
their position in the sentence, which is not par-
ticularly relevant nor evaluated in the shared task.
Only cases where a word has several empty node
dependents with the same relation type cannot be
reconstructed correctly.

The overall procedure for encoding the enhanced
representation is:

1. Encode empty nodes as enhanced relations, re-
move from the graph

2. Replace all recognized function word lemmas
with their corresponding placeholders

3. Encode all enhanced relations of the four types
using the encoding in Figure 1, discard any other
enhanced relations

This sequence of steps produces a tree represen-
tation that a standard dependency parser can be
trained on. The output of the parser is decoded
in the reverse order of the encoding steps, pro-
ducing the enhanced representation. The decod-
ing must take into account any errors the parser
produced which might impair the decoding of the
encoded representation, or produce an enhanced
graph which does not validate as Universal Depen-
dencies. In particular:

• Any relation headed by the root is given the type
root regardless of the parser’s prediction.

• If a lemma placeholder cannot be reversed (e.g.
when a parser predicts a placeholder {lemma-
d-case} but there is no such dependent in the
tree, the enhanced relation is discarded. Note
that leads to unconnected words in the enhanced
graph.

• Any word that remains unconnected in the en-
hanced graph is made the dependent of the same
head, with the same relation, as in the base tree.

• For any (undirected) connected component that
does not include the root node, we identify a
word that all other words of the component can
be reached from in the directed graph, and make
this word a dependent of the root node. If no
such word can be found, then the set of words
with no incoming edge in the component are
made dependents of the root node. This latter
condition did not trigger in practice.

The encode-decode procedure can be evaluated
by first encoding the enhanced training graphs into

Treebank Rels ELAS
Arabic-PADT 1,108 99.28
Bulgarian-BTB 152 99.22
Czech-CAC 939 98.13
Czech-FicTree 355 98.38
Czech-PDT 1,079 98.75
Dutch-Alpino 569 99.16
Dutch-LassySmall 420 99.23
English-EWT 611 98.89
Estonian-EDT 359 99.88
Estonian-EWT 202 99.74
Finnish-TDT 451 97.96
French-Sequoia 79 99.09
Italian-ISDT 561 99.53
Latvian-LVTB 405 97.94
Lithuanian-ALKSNIS 267 98.12
Polish-LFG 146 99.21
Polish-PDB 845 98.34
Russian-SynTagRus 1,119 99.57
Slovak-SNK 281 99.44
Swedish-Talbanken 494 99.16
Tamil-TTB 78 99.79
Ukrainian-IU 363 98.88

Table 2: Number of unique dependency relations af-
ter the encoding procedure, and the ELAS value after
an encode-decode cycle. The latter number reflects to
what extent the original enhanced graphs can be recon-
structed after the encoding. The numbers are reported
on the training portions of the treebanks.

trees, decoding back, and measuring the ELAS of
the decoded data against the original. A lossless
representation would result in ELAS of 100%. As
shown in Table 2, this value is in the 97.9–99.9%
range across all treebanks, meaning the encoding
is not far from lossless, and only little gain can
be expected from encoding more complex struc-
tures. Note, however, that this reflects the compara-
tive structural simplicity of the enhanced relations
present in the UD data, rather than the generality of
our encoding. Table 2 also reports on the number of
unique dependency relations in the training section
of each treebank, showing an order of magnitude
increase compared to the base tree.

3.4.2 Enhanced Relations as Tagging

The encoding of the enhanced relations into the
base tree can also be seen as a tagging task, since
every word has exactly one base relation, and there-
fore also exactly one relation in the encoded tree.
It is therefore possible to first parse the sentence
with a parser that predicts the base tree, and then
subsequently tag the words with tags correspond-
ing to the encoding of the enhanced relations, as
introduced earlier, with the base parse tree serving
as a source of features. The main advantage of
such an approach would be guaranteeing that the
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Model Languages References
Arabic-BERT Arabic https://github.com/alisafaya/Arabic-BERT
BERTje Dutch https://github.com/wietsedv/bertje; (de Vries et al., 2019)
BERT (original) English https://github.com/google-research/bert; (Devlin et al., 2018)
FinBERT Finnish https://turkunlp.org/FinBERT/; (Virtanen et al., 2019)
CamemBERT French https://camembert-model.fr/; (Martin et al., 2020)
Italian BERT Italian https://github.com/dbmdz/berts
RuBERT Russian https://github.com/deepmipt/deeppavlov/; (Kuratov and Arkhipov, 2019)
Slavic-BERT Slavic1 https://github.com/deepmipt/Slavic-BERT-NER; (Arkhipov et al., 2019)
Swedish BERT Swedish https://github.com/Kungbib/swedish-bert-models
mBERT 104 lang. https://github.com/google-research/bert

Table 3: Previously released BERT models for shared task languages. 1Slavic-BERT is trained on Bulgarian,
Czech, Polish, and Russian.

base LAS of the parser does not change, while the
main disadvantage is the added complexity of an
additional step and the possibility of error chaining.

We pursued this alternative approach in parallel
to the main line of work. As the results presented
in Section 5 show, however, the encoding of the
enhanced dependencies does not negatively affect
the base LAS, undermining the motivation for a
separate tagging approach with its added software
complexity. In our preliminary experiments on the
development data, the tagging approach resulted in
a minimally worse performance than the primary
approach, and was therefore not pursued further.

4 Language Models

We apply transfer learning using pre-trained BERT
models, using multilingual BERT3 (mBERT) as
a starting point. Based on recent studies intro-
ducing language-specific BERT models (Arkhipov
et al., 2019; Virtanen et al., 2019; de Vries et al.,
2019; Martin et al., 2020), we anticipated that pars-
ing performance could be substantially improved
by replacing the multilingual model with dedi-
cated language-specific ones. To identify or cre-
ate a model that would improve on performance
with mBERT for every treebank in the shared task,
we adopted a three-stage approach: 1) use previ-
ously released models, 2) pre-train a new model
on Wikipedia data, and 3) continue pre-training on
texts from a web crawl.

4.1 Previously Released Models

We considered the previously released models sum-
marized in Table 3. Based on preliminary experi-
ments, we focused on cased models in cases where
both cased and uncased variants are available. We
evaluated mBERT for all shared task treebanks,

3https://github.com/google-research/
bert/blob/master/multilingual.md

Slavic-BERT for Bulgarian, Czech, Polish, and
Russian, and the other models for treebanks for the
individual languages that those models target.

4.2 Unannotated Texts

Our primary source of unannotated texts in various
languages is Wikipedia. To extract plain text, we
processed the full 2020/01/20 Wikipedia database
backup dumps4 for the various languages with
WikiExtractor5. The basic statistics of extracted
Wikipedia texts for the IWPT languages are sum-
marized in Table 9 in the Appendix. We note that
the sizes of these unnanotated texts vary greatly
between languages, ranging just over 20 million
tokens for Latvian to nearly 3 billion for English.
In many cases, languages with large Wikipedias
also have large annotated treebanks, and vice versa;
the language with the smallest amount of annotated
training data in the shared task, Tamil, also ranks
second from bottom in terms of the available unan-
notated Wikipedia data. We augmented the col-
lection of unannotated texts for selected languages
with texts drawn from OSCAR6 (Ortiz Suárez et al.,
2019), using unshuffled versions provided by the
creators of the corpus (see Table 8 in the Appendix).
The unshuffled version of the corpus is used since
BERT training is carried out on text segments of up
to 512 sub-words, far longer than most individual
sentences. To reduce the level of noise in the web-
crawled texts, we filtered the OSCAR source using
5-gram perplexity with a KenLM7 language model
estimated on Wikipedia data. In brief, we measured
the average sentence-level perplexity t and filtered
out any document where the average perplexity was
greater than t. In terms of tokens, this procedure

4https://dumps.wikimedia.org/
5https://github.com/attardi/

wikiextractor
6https://traces1.inria.fr/oscar/
7https://github.com/kpu/kenlm

https://github.com/alisafaya/Arabic-BERT
https://github.com/wietsedv/bertje
https://github.com/google-research/bert
https://turkunlp.org/FinBERT/
https://camembert-model.fr/
https://github.com/dbmdz/berts
https://github.com/deepmipt/deeppavlov/
https://github.com/deepmipt/Slavic-BERT-NER
https://github.com/Kungbib/swedish-bert-models
https://github.com/google-research/bert
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://dumps.wikimedia.org/
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://traces1.inria.fr/oscar/
https://github.com/kpu/kenlm
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Model
Treebank mBERT Language-specific
Arabic PADT 83.62 82.76 (Arabic-BERT)
Bulgarian BTB 90.75 91.83 (Slavic-BERT)
Czech CAC 91.80 92.99 (Slavic-BERT)
Czech FicTree 92.31 93.27 (Slavic-BERT)
Czech PDT 92.58 93.44 (Slavic-BERT)
Dutch Alpino 92.58 93.36 (BERTje)
Dutch LassySmall 88.30 87.69 (BERTje)
English EWT 90.08 91.82 (BERT-large)
Estonian EWT 71.27 73.08 (WikiBERT-et)
Finnish TDT 87.83 92.89 (FinBERT)
French Sequoia 93.12 92.99 (CamemBERT)
Italian ISDT 92.75 93.44 (Italian BERT)
Latvian LVTB 86.71 85.96 (WikiBERT-lv)
Lithuanian ALKSNIS 83.02 85.26 (WikiBERT-lt)
Polish LFG 95.34 96.22 (Slavic-BERT)
Polish PDB 91.90 93.37 (Slavic-BERT)
Russian SynTagRus 92.06 93.34 (RuBERT)
Slovak SNK 92.52 91.89 (WikiBERT-sk)
Swedish Talbanken 86.96 90.56 (Swedish BERT)
Tamil TTB 69.12 67.38 (WikiBERT-ta)
Ukrainian IU 89.60 91.25 (WikiBERT-uk)
Average 88.30 89.28

Table 4: UDify development set LAS performance with
mBERT compared to language-specific BERTs

filtered out approx. 10% of the OSCAR data for
Latvian and Slovak and 24% for Tamil.

4.3 Pre-training

For pre-training new BERT models, we largely
follow the approach used to create the original
BERT-base English model by Devlin et al. (2018).
Specifically, we adapt the preprocessing pipeline
and pre-training process introduced by Virtanen
et al. (2019) for creating the Finnish BERT model.
In brief, we train BERT-base models for 1M steps,
the initial 900K with a maximum sequence length
of 128 and the last 100K with 512, using the orig-
inal BERT software8 and the same optimizer pa-
rameters as Devlin et al. (2018) with the exception
of batch size. Due to memory limitations, a batch
size of 140 was used with 4 GPUs for the first
900K steps and a batch size of 20 with 8 GPUs
for the last 100K steps. Nvidia V100 GPUs with
32 GB memory were used for pre-training. For
comprehensive details of the preprocessing and
pre-training process, we refer to the documentation
of our pipeline.9

4.4 Language Model Evaluation

For evaluating pre-trained language models, we
trained UDify with the shared task training data for

8https://github.com/google-research/
bert

9https://github.com/TurkuNLP/wikibert

Model
Treebank mBERT Language-specific
Arabic PADT 83.62 84.79 (WikiBERT-ar)
Dutch Alpino 92.58 93.47 (WikiBERT-nl)
Dutch LassySmall 88.30 89.23 (WikiBERT-nl)
French Sequoia 93.12 93.21 (WikiBERT-fr)
Average 89.41 90.18

Table 5: UDify development set LAS performance with
mBERT compared to additional WikiBERTs

Model
Treebank mBERT Language-specific
Latvian LVTB 86.71 88.47 (Wiki+OSCAR-BERT-lv)
Slovak SNK 92.52 92.52 (Wiki+OSCAR-BERT-sk)
Tamil TTB 69.12 71.02 (Wiki+OSCAR-BERT-ta)
Average 82.78 84.00

Table 6: UDify development set LAS performance with
mBERT compared to Wiki+OSCAR-BERTs

each language and evaluated on the corresponding
development dataset using gold standard tokeniza-
tion. The standard LAS metric was used to assess
model performance.

Table 4 summarizes evaluation results com-
paring parsing performance with mBERT and
language-specific models. As expected, we find
that language-specific models outperform the mul-
tilingual model in most cases, averaging approx-
imately 1% point higher LAS (∼8% reduction
in error). There are nevertheless a number of
cases where UDify with mBERT outperforms the
language-specific model. To address these cases,
we introduced additional WikiBERT models for
Arabic, Dutch, and French. Results comparing
the performance of these models with mBERT are
summarized in Table 5. We find that in each case
using the WikiBERT model improves on results
with mBERT, with absolute differences around 1%
point for the Arabic and Dutch treebanks but very
limited (∼0.1% point) difference for French, aver-
aging 0.8% point higher LAS than mBERT (∼7%
reduction in error).

Finally, there are three languages for which no
previously released language-specific model was
available and the WikiBERT failed to improve on
performance with mBERT: Latvian, Slovak, and
Tamil. For these languages, we continued pre-
training with texts from OSCAR for an additional
300,000 steps. Table 6 summarizes performance
with these models. For Slovak, the new model
improves over the WikiBERT model performance
but merely matches the performance with mBERT,
while the Latvian and Tamil models outperform

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/TurkuNLP/wikibert
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Team
Language adapt clasp emory fastparse koebsala orange robert shanghai turku unipi
Arabic 57.19 51.26 67.26 66.92 60.84 70.96 0.0 63.41 77.82 57.79
Bulgarian 77.29 84.90 88.19 84.86 68.88 89.42 0.0 78.67 90.73 84.93
Czech 66.41 67.13 85.51 77.21 61.11 86.95 0.0 75.43 87.51 75.99
Dutch 67.67 78.93 80.72 77.37 62.93 85.14 0.0 70.94 84.73 77.62
English 70.44 82.87 85.30 78.45 65.37 85.21 88.94 72.34 87.15 83.95
Estonian 61.12 60.44 81.36 74.09 59.07 81.03 0.0 74.91 84.54 57.24
Finnish 72.37 65.96 82.96 75.73 67.54 86.24 0.0 75.99 89.49 72.13
French 74.74 72.76 86.23 77.77 67.93 83.63 0.0 76.99 85.90 78.85
Italian 71.98 87.14 88.52 84.77 69.08 90.83 0.0 73.08 91.54 89.14
Latvian 72.41 66.01 79.19 75.57 64.75 82.11 0.0 77.77 84.94 68.23
Lithuanian 58.36 52.56 66.12 61.41 56.28 75.89 0.0 66.85 77.64 61.06
Polish 65.86 71.22 82.39 74.54 61.34 80.39 0.0 71.01 84.64 70.61
Russian 75.27 70.37 88.60 80.35 64.23 89.84 0.0 78.26 90.69 76.90
Slovak 68.43 65.16 82.72 73.46 64.08 84.36 0.0 73.14 88.56 81.40
Swedish 68.39 71.35 78.19 75.24 64.50 83.27 0.0 69.60 85.64 78.73
Tamil 48.47 42.15 54.26 46.99 47.44 64.23 0.0 48.20 57.83 48.50
Ukrainian 66.43 63.24 79.69 74.02 64.17 84.64 0.0 72.98 87.22 73.90
Average 67.23 67.85 79.84 74.04 62.91 82.60 5.23 71.74 84.50 72.76

Table 7: ELAS results for submissions to IWPT 2020 shared task. Team names abbreviated for space: emory =
emorynlp, orange = orange deskin, robert = robertnlp, shanghai = shanghaitech alibaba, turku = turkunlp.

mBERT with a nearly 2% point absolute differ-
ence in LAS. On average, the new models improve
on mBERT by 1.2% points, again an approx. 7%
reduction in error.

5 Results

For our final submission, we trained a model for
each language using the largest treebank (in terms
of token count) for the language in the shared task
data release. All segmentation, tagging, parsing,
and lemmatization models are thus monolingual
and trained using only a single treebank. Each UD-
ify model is fine-tuned for 160 epochs using a num-
ber of warm-up steps10 roughly equal to a single
pass over the training dataset. For each language
the fine-tuning is based on a custom pre-trained
BERT model selected as detailed in Section 4.4.
Lemmatization models do not require any exter-
nal resources, and all hyperparameters follow the
values used in Kanerva et al. (2020).

The primary evaluation metric in the shared task
is ELAS (Labeled Attachment Score on Enhanced
dependencies), which calculates F-score over the
set of enhanced dependencies in the system out-
put and gold standard.11 Table 7 summarizes the
ELAS results for all ten teams participating the
shared task. We note that in addition to achieving

10During warm-up, the learning rate is gradually increased
from zero to its initial value, so as to avoid large changes at
the very beginning of the training.

11Note that in UD many of the base layer relations are re-
peated in the enhanced graph, and therefore the ELAS metric
evaluates a combination of basic dependencies and enhance-
ments as seen in statistics presented in Table 1.

the best average ELAS performance, our system
also outperforms all other submissions for 13 out
of the 17 individual languages included in the task.
For these 13 languages, the largest absolute dif-
ferences for the second-best result are for Arabic
(∼6.9% points), Slovak (∼4.2% points), Estonian,
and Finnish (both slightly above 3% points).

For the four languages where our system did not
achieve the highest ELAS results, the differences
to the highest-performing submission are small
(0.3-0.4% points) for Dutch and French, and 1.8%
points for English. However, there is a more than
6% point difference to the top result for Tamil, the
language with the smallest treebank in the shared
task. This difference indicates a tradeoff of our ap-
proach in training monolingual models: languages
with particularly limited resources do not gain sup-
port from annotations in other languages as they
would in multilingual training.

Table 10 in the Appendix shows average re-
sults for all metrics excepting for XPOS, which
due time limitations we decided not to predict,
and AllTags, which is not meaningfully defined
when not predicting XPOS. We note that our sys-
tem achieves the best performance for all but two
metrics, outperforming other systems in segmen-
tation (Tokens, Words, Sentences), part-of-speech
tagging (UPOS), lemmatization (Lemmas) as well
as for all but one of the seven dependency attach-
ment score (*AS) metrics. Our system falls behind
the best-performing submission (orange deskin)
for the UFeats and MLAS metrics. As MLAS
(Morphology-Aware Labeled Attachment Score)
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requires selected features to match, the results for
these two metrics likely both reflect performance
for morphological features. The absolute differ-
ence of our system to the top result for UFeats is
1.2% points, reflecting a 20% relative increase in
error and indicating a clear remaining point for
improvement in our system.

6 Discussion

Cross-lingual compatibility is a major goal of the
UD effort and the ability to train multilingual mod-
els where lower-resourced languages can benefit
from data in higher-resourced languages a clearly
desirable aim in language modeling. While our
approach – which trains monolingual models and
uses language-specific pre-trained models – can
be seen as running counter to these goals, we do
nevertheless share them. Our choice to train sepa-
rate models for each language for the shared task is
based in part in awareness of remaining compatibil-
ity issues in UD treebanks, even within languages.
We hope contrasting results for joint and language-
specific models for this shared task will help iden-
tify and resolve some of these challenges. Regard-
ing multilingual language models, we note that in
aiming to cover more than 100 languages without
a corresponding increase in model and vocabulary
size, mBERT faces multiple challenges in its ca-
pacity, and the model training does not fully bal-
ance lower- and higher-resourced languages. While
we here found language-specific models to outper-
form a specific mBERT model, highly multilingual
models addressing these challenges might well be
competitive with language-specific ones, and the
creation of such models would greatly benefit prac-
tical parsing efforts targeting a large number of
languages.

To study the impact of the language-specific lan-
guage models in our shared task results, we re-
produce our pipeline using exactly same configu-
rations except for replacing all language-specific
BERT models with the multilingual mBERT. In this
experiment, all languages are using the same multi-
lingual language model as a starting point, later in-
dividually fine-tuned for each language while train-
ing the language-specific parsing models. When
comparing these models to the official submissions
of all 10 teams, the average ELAS is approximately
1.7% points below our own primary submission
(∼11% increase in error), but still slighty above
the second best submission by approximately 0.2%

points. This means that, our pipeline would have
reached the highest average ELAS score among
the official submissions also without the language-
specific BERT models, but only with a very thin
margin to the next best team.

7 Conclusions

We have presented the approach of the TurkuNLP
group to the IWPT 2020 shared task on Multi-
lingual Parsing into Enhanced Universal Depen-
dencies. Our approach is based on deep transfer
learning with language-specific models, the state-
of-the-art UDify neural parsing pipeline, sequence-
to-sequence lemmatization, and a graph transforma-
tion approach to predicting enhanced dependency
graphs. Our submission to the shared task achieved
the highest performance for the primary evaluation
metric (ELAS) both on average as well as for 13
out of the 17 languages involved in the task, also
achieving the highest average performance for most
other evaluation metrics.

All of the methods and resources developed for
this study are made freely available under open
licenses from https://turkunlp.org.
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Flavio Massimiliano Cecchini, Giuseppe G. A.
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Aurélie Collomb, Çağrı Çöltekin, Miriam Con-
nor, Marine Courtin, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Elvis
de Souza, Arantza Diaz de Ilarraza, Carly Dicker-
son, Bamba Dione, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam
Ephrem, Olga Erina, Tomaž Erjavec, Aline Eti-
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plied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

Daniel Zeman, Martin Popel, Milan Straka, Jan
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Jaroslava Hlavacova, Václava Kettnerová, Zdenka
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silä, Christopher D. Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
dePaiva, Kira Droganova, Héctor Martı́nez Alonso,
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A Appendix

Table 8 shows the same statistics for the OSCAR
corpora of selected languages, and Table 9 sum-
marizes the basic statistics of extracted Wikipedia
texts for the IWPT languages. Table 10 shows aver-
age results for various metrics for all submissions
to IWPT 2020 shared task.

Language Docs Sents Tokens Chars
Latvian 1.6M 34M 628M 4.0B
Slovak 5.5M 99M 1.5B 9.1B
Tamil 1.3M 39M 528M 3.8B

Table 8: OSCAR source statistics for selected IWPT
2020 shared task languages

Language Docs Sents Tokens Chars
Arabic 1.0M 8.0M 184M 889M
Bulgarian 259K 4.1M 71M 397M
Czech 444K 7.9M 143M 804M
Dutch 2.0M 19M 300M 1.7B
English 5.9M 124M 2.7B 14B
Estonian 205K 2.7M 38M 252M
Finnish 477K 7.4M 97M 731M
French 2.2M 34M 858M 4.5B
Italian 1.6M 22M 579M 3.0B
Latvian 99K 1.3M 21M 126M
Lithuanian 196K 2.3M 34M 207M
Polish 1.4M 16M 282M 1.7B
Russian 1.6M 31M 565M 3.5B
Slovak 232K 2.8M 39M 229M
Swedish 3.7M 30M 364M 2.1B
Tamil 132K 1.9M 26M 195M
Ukrainian 979K 15M 260M 1.5B

Table 9: Wikipedia source statistics for IWPT 2020
shared task languages

Team
Metric adapt clasp emory fastparse koebsala orange robert shanghai turku unipi
Tokens 99.54 99.72 99.66 99.66 99.66 99.68 5.85 99.67 99.74 99.63
Words 98.96 99.12 99.06 99.06 99.06 99.09 5.85 99.08 99.13 99.03
Sentences 89.22 92.34 91.25 91.18 91.25 90.24 5.07 91.97 92.41 90.56
UPOS 95.88 95.48 93.63 93.60 93.63 96.69 5.63 0.63 96.75 92.78
UFeats 91.36 90.66 87.35 88.11 87.35 93.98 5.57 32.84 92.77 86.02
Lemmas 95.40 95.15 92.30 92.23 92.30 95.80 5.62 0.02 95.96 91.35
UAS 87.18 86.41 88.95 82.55 79.97 89.45 5.26 13.01 89.92 84.90
LAS 84.09 82.66 86.14 77.57 75.41 86.79 5.11 0.99 87.31 80.74
CLAS 81.56 79.66 83.81 72.97 71.18 84.42 5.00 1.22 85.23 77.42
MLAS 72.57 69.55 67.84 60.82 60.54 77.75 4.51 0.01 76.63 62.73
BLEX 78.11 76.00 76.11 66.70 65.38 80.86 4.73 0.00 81.93 70.03
EULAS 69.42 80.18 81.26 75.96 64.93 84.62 5.26 73.01 85.83 78.82
ELAS 67.23 67.85 79.84 74.04 62.91 82.60 5.23 71.74 84.50 72.76

Table 10: Average results for different metrics for submissions to IWPT 2020 shared task. Team names abbreviated
for space: emory = emorynlp, orange = orange deskin, robert = robertnlp, shanghai = shanghaitech alibaba, turku
= turkunlp.


