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Abstract

The earliest models for discontinuous con-
stituency parsers used mildly context-sensitive
grammars, but the fashion has changed in re-
cent years to grammar-less transition-based
parsers that use strong neural probabilistic
models to greedily predict transitions.

We argue that grammar-based approaches still
have something to contribute on top of what
is offered by transition-based parsers. Con-
cretely, by using a grammar formalism to re-
strict the space of possible trees we can use
dynamic programming parsing algorithms for
exact search for the most probable tree.

Previous chart-based parsers for discontinuous
formalisms used probabilistically weak gener-
ative models. We instead use a span-based
discriminative neural model that preserves the
dynamic programming properties of the chart
parsers. Our parser does not use an explicit
grammar, but it does use explicit grammar for-
malism constraints: we generate only trees
that are within the LCFRS-2 formalism. These
properties allow us to construct a new parsing
algorithm that runs in lower worst-case time
complexity ofO(l n4+n6), where n is the sen-
tence length and l is the number of unique non-
terminal labels. This parser is efficient in prac-
tice, provides best results among chart-based
parsers, and is competitive with the best transi-
tion based parsers.

We also show that the main bottleneck for fur-
ther improvement in performance is in the re-
striction of fan-out to degree 2. We show that
well-nestedness is helpful in speeding up pars-
ing, but lowers accuracy.

1 Introduction

Most constituency parsers are designed to predict a
projective (or continuous) tree representation. This
type of tree representation is not expressive enough
to model (structurally) long-range dependencies

that are a major concern of most syntactic theories.
Take for instance the sentence in Figure 1. It con-
tains a long range dependency between “on” and
“what”. This is represented differently across syn-
tactic theories. In dependency parsing, there would
be a direct arc between these two words that would
cause the dependency tree to be non-projective,
i.e. there would be crossed dependencies (Nivre
et al., 2016). In constituency treebanks this is mod-
elled either by using traces that are co-indexed with
the moving element, as in English Penn treebank
(Marcus et al., 1993), or by having a direct discon-
tinuous constituent, as in German Negra and Tiger
treebanks (Brants et al., 2004).

Here we adopt the discontinuous constituency
approach because of its well defined formal prop-
erties, but the results are also relevant for other
representations. The Penn treebank trace represen-
tation can be converted to a discontinuous repre-
sentation (Evang and Kallmeyer, 2011)1 and non-
projective dependency trees can be interpreted as
lexicalised versions of discontinuous constituency
trees (Kuhlmann and Möhl, 2007).

There are two different approaches to predict-
ing discontinuous constituency structure directly.2

The first approach, usually grammar-based chart
parsing, limits the type of trees that are accept-
able (for example TAG (Joshi, 1985) or LCFRS
(Vijay-Shanker et al., 1987; Seki et al., 1991)) and
searches for the best tree with an exact search al-
gorithm like CKY. The second approach, usually
transition-based, does not limit the type of trees
but searches for the best tree only approximately

1This is a lossy conversion because the discontinuous rep-
resentation does not contain information about the initial loca-
tion of the constituent before it was displaced, nor the attach-
ment point in the surface tree.

2Indirect approaches work by conversion to some other
simpler formalism, parsing in the simpler formalism, and then
converting the result back. They are not the focus of this
article but their results are reported in the Section 5.4.
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with a beam search. Lately, with the success of
neural models, transition-based parsers have been
preferred to grammar-based approaches because
transition-based models do not need to make any
independence assumptions and strong neural mod-
els can be used to their full potential. Grammar-
based methods have more difficulty incorporating
rich probabilistic models due to the necessary inde-
pendence assumptions needed for exact dynamic
programming algorithms like CKY. Another dis-
advantage of grammar based models is that, even
though their parsing algorithms are polynomial,
they are significantly slower in practice due the
high polynomial degrees and a large grammar con-
stant.

In this work we try to improve both speed and
accuracy of chart-based parsers. The accuracy is
improved by using a modified version of neural
span-based scoring of non-terminal nodes (Cross
and Huang, 2016; Stern et al., 2017) which does
not break the independence assumptions needed for
efficient parsing. Speed is improved by restricting
the set of acceptable trees to the ones recogniz-
able with an LCFRS-2 grammar formalism, but no
explicit grammar is used, removing the grammar
constant from the worst-case complexity.3 Addi-
tionally, the parser is implemented using an imper-
ative approach to Viterbi CKY parsing (as opposed
to deductive approach), similar to standard CFG
CKY implementations with embedded loops. By
avoiding the usage of standard weighted deductive
parsing (Shieber et al., 1995; Nederhof, 2003). we
avoid the need to maintain heap property of the
agenda, further reducing the worst-case parsing
complexity.

This results in a fast chart-based LCFRS-2 parser
that outperforms all previous chart-based parsers
for discontinuous structures, and gives performance
that is on par with the best transition-based parsers.

2 LCFRS-2 Trees

LCFRS (Vijay-Shanker et al., 1987; Seki et al.,
1991; Kallmeyer, 2010) is a grammar formalism
that works in a similar way to CFG: it applies a
series of recursive rewriting rules that eventually
generate a sentence. What makes it different from
CFG is that it allows each non-terminal node in the

3Note that not having explicit LCFRS-2 grammar but only
explicit set of non-terminals is equivalent to having an LCFRS-
2 grammar that overgenerates. This is prevented with a strong
span-based probabilistic model.

derivation tree to contain more than one continuous
span of words.

What do they work on

PP

VP

S

S

Figure 1: Discontinuous tree example.

For instance, if we look back at the example
from Figure 1, we can represent the discontinu-
ous PP as PP(what, on), or in terms of spans
PP

(
(0, 1), (4, 5)

)
. An LCFRS rule that forms this

constituent can be expressed as:
PP(X,Y ) → WH(X) P(Y )

These individual spans are often called compo-
nents and the number of them per non-terminal is
called the fan-out of the non-terminal. The fan-out
of an LCFRS grammar is defined by the maximal
fan-out of its non-terminals.

The fan-out of the grammar has significant con-
sequences to its expressivity and the parsing com-
plexity. For binary LCFRS the worst-case parsing
complexity is O(G · n3φ) where G is the grammar
constant (total number of LCFRS rules) and φ is the
grammar’s fan-out (Seki et al., 1991; Kallmeyer,
2013). If fan-out is 1 we get only the power of a
standard CFG and a very efficient parser. If the
fan-out is unrestricted (as big as the sentence be-
ing parsed), we could process any discontinuous
structure but will get a non-polynomial parser.

Clearly, we need to restrict fan-out to some small
constant number. Maier et al. (2012) suggested
that restricting fan-out to 2 is sufficient to process a
large portion of discontinuous structures in German
treebanks. We adopt this proposal and show the
consequences of it in the experiments section. We
will refer to this grammar as LCFRS-2.

Another useful restriction of LCFRS is a well-
nestedness property (Kuhlmann and Nivre, 2006;
Maier and Lichte, 2009). For any LCFRS rule
which contains some non-terminals A and B on
its right-hand side we say that it is well-nested
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if there are no components A1 and A2 from A,
and B1 and B2 from B that form a linear order
A1 < B1 < A2 < B2. This property allows for
efficient parsing (Gómez-Rodrı́guez et al., 2010),
but in our case of a binary LCFRS with fan-out 2,
the effect of well-nestedness will be only propor-
tional to some constant. Maier and Lichte (2009)
state that well-nestedness holds for the majority of
constituents in German treebanks. We will test it
in our experiments. We will refer to this type of
grammar as LCFRS-wn-2. Tree-Adjoining Gram-
mars (TAG) (Joshi, 1985) are weakly equivalent to
LCFRS-wn-2.

3 Neural Span-Based Model

We borrow and modify some ideas already popular
in CFG parsing to improve LCFRS-2 chart parsing.
In particular, span-based scoring is a popular ap-
proach for modelling scoring of parse trees without
breaking the dynamic programming assumptions
of chart parsers (Cross and Huang, 2016; Stern
et al., 2017; Gaddy et al., 2018; Kitaev and Klein,
2018a,b).

In this approach words are first encoded with bi-
LSTM (Hochreiter and Schmidhuber, 1997; Graves
et al., 2005). These word encodings are afterwards
used to score spans. For each span we take en-
codings of two words that are at its borders and
pass them through feed-forward (Cross and Huang,
2016; Gaddy et al., 2018) or bi-affine classifier
(Dozat and Manning, 2017; Stern et al., 2017) that
predicts the score for each possible label (non-
terminal) occupying that span. Unaries are all
collapsed into a single non-terminal to simplify
scoring. The score of a whole tree is defined as
a sum of the scores all of its nodes. These scores
are often optimised for max-margin loss (Taskar
et al., 2004a) by decoding the currently best tree
according to the model and minimising the margin
violation in case the predicted tree is not the gold
tree.

Stern et al. (2017) show that span labelling and
span combination (parsing) part can be done inde-
pendently for this model because the best label for
each span does not depend on the span’s children
nodes, unlike the standard PCFG. Computing opti-
mal labels for each span takesO(l n2) for sentence
of length n and l labels (non-terminals).

There are a couple of things that need to be
addressed before this approach can be used for
LCFRS-2 parsing. First is that non-terminals in

LCFRS-2 can have two spans and applying the ap-
proach of Stern et al. (2017) would give labelling al-
gorithm that runs in O(l n4) which is prohibitively
large considering the hidden constant factor of ma-
trix multiplication done by the neural scoring layer.

To reduce the computational complexity of span
scoring we introduce independence assumption that
score of some discontinuous constituent with label
X and spans

(
(a, b), (c, d)

)
is:

score(X
(
(a, b), (c, d)

)
) = score(Xleft(a, b))+

score(Xgap(b+1, c−1))+
score(Xright(c, d))

where Xleft, Xgap, Xright are newly created non-
terminals for each X . This decomposes the dis-
continuous constituent scoring as scoring of three
continuous constituents. The labelling complexity
with l labels is still O(l n4) but the neural matrix
multiplication will be done only O(n2) times just
like in CFG case of Stern et al. (2017). In Sec-
tion 5.3 we will show that most of the time is spent
in the neural component and span combination,
and that the labelling component takes a negligible
proportion of time.

The second aspect of span-based models that we
needed to change is the objective function. The
original max-margin parsing objective proposed
by Taskar et al. (2004b) maximised the margin be-
tween the gold tree and all other trees. Because
that approach was too slow in practice it is usu-
ally approximated by maximising only the margin
between the gold and the highest scoring tree, in
case highest scoring tree is not the gold tree. This
approach gave good results in CFG parsing (Stern
et al., 2017), but it was very unstable in our tests.
The reason for this may be in the difference be-
tween the number of possible hypotheses between
CFG and LCFRS-2 which increases quadratically
from the order ofO(n3) toO(n6). In this case, op-
timising for just a single margin violation may be
a too weak learning signal. Decreasing the scores
of one bad tree alone may increase the score of
another bad tree.

That is why instead of the structured max-margin
training we used an alternative method where we
treat each triple (span start, span end, label) as
a binary classification task and train the model to
predict the probability of that triple being part of the
gold tree. For training we use not only the triples
from the gold tree but all possible triples for a given
sentence. We consider the probability of the tree to
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be the product of probabilities of the triples coming
from each of its nodes. This probability model is
obviously making some independence assumptions
that are not correct. For instance, the probability of
a constituent with a span (1, 3) does not inform the
probability of a constituent with a span (2, 5) even
though it is clear that both constituents cannot exist
at the same time. This model may nevertheless give
good parsing results because the optimal result of
these classifications would give the optimal tree.

This method is much more stable in comparison
to the max-margin approach of Stern et al. (2017)
because the gradient takes into consideration the
components of all possible trees at the same time
instead of only the highest scoring one. In com-
parison to Max-Margin Markov Networks method
of Taskar et al. (2004b) which also considers all
trees, our approach is much faster because it does
not need to build chart for each training instance.

As mentioned before, we collapse all unary
chains into a single non-terminal which contains
sufficient information to be unchained after parsing.
Nodes that have more than 2 children are binarized
with the same method as Stern et al. (2017) by
labelling all new sub-nodes as ∅. Again, there
are some aspects to consider before applying the
method of Stern et al. (2017). First, binarization
of LCFRS, unlike binarization of CFG, can in-
crease the generative power by increasing the fan-
out (Kallmeyer, 2010). If we have a tree that can
be generated with LCFRS-2 and arbitrarily choose
binarization method, the binarised tree may turn
out not to be within the strong generative power
of LCFRS-2. Hence, choosing the right binariza-
tion is important. Second, different binarizations
actually correspond to different latent derivations
of the tree we are modelling. These latent deriva-
tions will have different probabilities and its not
easy to see which one of them should be used. The
approach we will pursue is to model all of them by
treating every possible triple that can be extracted
from every possible binarization of a gold tree to
be a positive class.

4 Direct CKY Parsing Algorithm

The algorithms for LCFRS are usually presented,
and implemented, as deductive rules. These deduc-
tive rules, combined with a deduction engine of
Shieber et al. (1995) can form a conceptually sim-
ple mechanism for parsing. In case of weighted de-
ductive rules the modification of Nederhof (2003)

can be used. It modifies the method of search to
explore the most probable search space first by
implementing the agenda as a priority queue. Al-
most all Probabilistic LCFRS (PLCFRS) parsers
have been implemented in this way (Kallmeyer and
Maier, 2010; Maier et al., 2012; van Cranenburgh
et al., 2016).

However, there are many reasons not to use this
approach with our span-based model. First, im-
plementing the agenda as a priority queue adds
a O(log n) multiplicative term to the worst-case
complexity. Second, the multiplicative grammar
constant that exists in PLCFRS approaches does
not exist in ours since there is no explicit grammar,
and the optimal label for each span is independent
of the other spans. Third, because of the difficulty
of implementing optimal chart lookup under deduc-
tive approaches means that most PLCFRS parsers
optimise lookup only on the non-terminal labels
and not on span indices, representing a serious bot-
tleneck.

The parsing approach we propose has instead
worst-case complexityO(l n4+n6) because it does
not use an explicit grammar, nor priority queue, and
it has very straightforward lookup based on indices.
It consists of two parts. First part takes the scores
from the neural model and computes the optimal
score for each possible LCFRS-2 combination of
spans of which there are n4. That makes its com-
plexity O(l n4) where l is the number of distinct
non-terminals. The second part does the actual
parsing by combining these scores to form the best
tree. It is a generalisation of how non-deductive
CFG CKY algorithm works by having multiple em-
bedded for loops and a multi-dimensional array to
represent a chart. Both chart and loops have to be
adapted to LCFRS.

We have two data structures involved that are
both indexed by the span: a lookup table for op-
timal span label (and its score), and a lookup ta-
ble for the optimal backpointer to children nodes
(and its score). We will refer to the first one as
labChart and to the second one as chart. Each
one of them could be used for looking up continu-
ous spans (only 2 indices) or discontinuous spans
(4 indices). We can implement them with multi-
dimensional arrays that provide constant lookup.

To find which loops are needed we borrow Ta-
ble 1 from Maier et al. (2012) who have found
all possible rule shapes for binary LCFRS-2. We
augment this table with the worst-case complex-
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ity for each rule given in the fourth column. This
complexity can be easily derived using the method
of McAllester (2002) which states that the com-
putational complexity of each rule depends on the
number of free variables on the left-hand side of the
rule, assuming rules are non-deleting. For instance,
for CFG rule #3 there are three free variables: index
at the start ofX , index betweenX and Y and index
at the end of Y . Therefore its complexity is O(n3).
Each of these indices requires an embedded for
loop.

ID Type counts O(.)
#1 A(X)→ B(X) 49 O(n2)
#2 A(X, Y)→ B(X, Y) 1 O(n4)
#3 A(XY)→ B(X) C(Y) 14,430 O(n3)
#4 A(X,Y)→ B(X) C(Y) 1,644 O(n4)
#5 A(XYZ)→ B(X,Z) C(Y) 621 O(n4)
#6 A(X,YZ)→ B(X,Y) C(Z) 100 O(n5)
#7 A(X,YZ)→ B(X,Z) C(Y) 142 O(n5)
#8 A(XY,Z)→ B(X,Z) C(Y) 172 O(n5)
#9 A(XY,Z)→ B(X) C(Y,Z) 582 O(n5)
#10 A(XY,ZU)→ B(X,Z) C(Y,U) 7 O(n6)
#11 A(XY,ZU)→ B(X,U) C(Y,Z) 0 O(n6)
#12 A(X,YZU)→ B(X,Z) C(Y,U) 12 O(n6)
#13 A(XYZ,U)→ B(X,Z) C(Y,U) 12 O(n6)
#14 A(XYZU)→ B(X,Z) C(Y,U) 13 O(n5)

Table 1: LCFRS-2 rule instances from (Maier et al.,
2012) with frequency counts from Tiger sentences of
length 30.

This is simple when we have only one rule shape
as in the case of CFG, but with LCFRS we need to
make sure that all rules are tested in the right order.
We know that bigger spans are always composed
of smaller spans. Therefore we can have a top
for loop that would iterate over the total span size.
The for loop below it would split that total span
size between left and right span in case of rules
that produce discontinuous constituents. These top
loops are needed only to ensure that constituents
are built in a bottom-up topological order. Further
loops are used only to compute all other needed
indices for each rule. The space in this paper is
not sufficient to present the implementation for all
14 rules but the example in Algorithm 1 for rule
#6 should be sufficient to show how the rest of
the algorithm works. The number of embedded
for loops for this rule clearly corresponds to its
computational complexity.

By designing which rules from this schema we
use we can get different generative power accom-
panied with a different computational complexity.

Algorithm 1 Direct CKY LCFRS-2 Parsing
for sizeSpan in [1 . . . n] do

. . .
for a in [0 . . . n− sizeSpan− 1] do

b← a+ sizeSpan
// processing a continuous constituent
// with the span (a, b)
// using rules 3, 5 and 14

. . .
for sizeLeft in [1 . . . sizeSpan−1] do

sizeRight← sizeSpan− sizeLeft
. . .
for a in [0 . . . n− sizeSpan− 1] do

b← a+ sizeLeft
for c in [b+ 1 . . . n− sizeRight] do

d← c+ sizeRight
best← −∞
// processing a discontinuous
// constituent with two components
// (a, b) and (c, d)
// finding best solution with
// discontinuous rules 2, 4, 6,
// 7,8,9,10,11,12,13
. . .
// rule 6: A(X, YZ)→ B(X,Y)C(Z)
// X=(a, b), Y=(c, e), Z=(e, d)
for e in [c+ 1 . . . d− 1] do

score← chart[a, b, c, e]+
chart[e, d]

if score > best then
best← score

. . .
chart[a, b, c, d]← best+

labChart[a, b, c, d]

If we use only rule #3 we get a CFG parser that can
be run in O(n3). If we use all of the rules we get
LCFRS-2 parser with complexityO(n6). However,
there are interesting subsets of rules in between full
LCFRS-2 and CFG. Well-nested LCFRS-2 is one
of those subsets. It includes all LCFRS-2 rules ex-
cept #10, #12, #13 and #14. Well-nested LCFRS-2
still has the same complexity as a full LCFRS-2 be-
cause it contains rule #11 that is O(n6). If we look
at its counts in the Negra treebank we can see that
that rule never appears. Therefore we find it also
interesting to try well-nested LCFRS-2 without the
rare rule. We will refer to it as LCFRS-wn-nr-2.
LCFRS-wn-nr-2 can be parsed in O(n5). We will
not use rule types #1 and #2 in any of the ap-
proaches because we handle unary rules in a differ-
ent way as previously described.



116

5 Experiments

The parser is implemented in Scala using DyNet
(Neubig et al., 2017) and is available on github.4

Experiments are conducted on German and En-
glish discontinuous constituency treebanks. The
reported development results are on the German
Negra treebank. The test set results, in addition
to German Negra, also contain German Tiger tree-
bank (Brants et al., 2004) and English Discontinu-
ous Penn Treebank (DPTB) (Evang and Kallmeyer,
2011). The treebanks were preprocessed using stan-
dard practice described in (Maier, 2015) by using
the treetools5 package. For evaluation we have
used the discodop6 package with the standard set-
tings (van Cranenburgh et al., 2016).

parameter value
word-embeddings dim. 32
char bi-lstm dim. 100
sentence-level bi-lstm layers 2
sentence-level bi-lstm dim. 200
compression MLP layers 2
compression MLP dim. 200
Adam optimiser lr. 0.001
batch size 1 sentence

Table 2: Hyper-parameters.

The architecture and hyper-parameters of the
neural model are chosen to be the same as in
(Coavoux and Cohen, 2019) to obtain a relatively
fair comparison. That is, we use a combination
of character bi-LSTM to embed each word. This
embedding is concatenated with the lookup table
embedding for each word and passed through a
two-layer bi-LSTM that runs over the whole sen-
tence. In case of MLP model we score labels for
each span by passing two bi-LSTM vectors at bor-
ders of the spans through a two-layer MLP. In the
case of the bi-affine model we compress bi-LSTM
vectors with a specialised MLP for left and right
index, analogous to the specialisation for head and
dependent vector in Dozat and Manning (2017),
and then score labels through a bi-affine layer.

5.1 What is the right objective function and
classification layer?

First we test if our new objective function that lo-
cally optimises span labelling is better than the

4https://github.com/stanojevic/
grammarless-lcfrs

5https://github.com/wmaier/treetools
6https://github.com/andreasvc/

disco-dop

parser all F1 disc F1
MLP margin 20.75 0.00
bi-affine margin 77.85 32.85
MLP local 82.49 38.62
bi-affine local 84.16 48.83

Table 3: Comparison on Negra dev set of different ob-
jectives and label classifiers.

max-margin approach of Stern et al. (2017) in the
context of discontinuous parsing. Table 3 shows
the results in which we can see that local model
gives much better results. This is especially true
for the version of the model that as its top layer
uses MLP which completely fails when trained
with max-margin but gives reasonable results when
trained with more stable objective that takes into
consideration all possible trees.

Therefore in further experiments we are going to
use only the bi-affine version of the model trained
with the local objective.

5.2 Is restriction to LCFRS-2 a good
approach?

A particularly interesting point of reference is the
work of Coavoux and Cohen (2019) which also
uses span-based scoring, but in transition-based
setting. Our model can be seen as a dynamic pro-
gramming alternative to their parser.

Dynamic programming (i.e. chart parsing) pro-
vides us with an exact search mechanism, unlike
the approximate greedy search used by Coavoux
and Cohen (2019). However, that benefit does not
come for free. The development set results shown
in Table 4 show that in a comparable setting (same
hyper-parameters of the encoder) there are aspects
in which each of the chart-based and transition-
based approaches has an advantage. Why is that?

One explanation could be that the setting in
which two parsers are tested is not fully compa-
rable. What we mean by that is that there are
algorithmic reasons why the neural architecture
cannot be exactly the same. Let us take a con-
stituent with a gap as an example where the left
component is a span (a, b) and the right component
is (c, d). Coavoux and Cohen (2019) predict the
probability of the next transition by encoding the
gap constituent with all 4 embeddings together as
(a, b, c, d). In our case we had to split the decision
on the label into three independent decisions: the
first one that takes (a, b), the second one for (b, c)
and the final one for (c, d). This independence as-

https://github.com/stanojevic/grammarless-lcfrs
https://github.com/stanojevic/grammarless-lcfrs
https://github.com/wmaier/treetools
https://github.com/andreasvc/disco-dop
https://github.com/andreasvc/disco-dop
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parser
all disc

F1 P R F1 P R
Coavoux and Cohen (2019) 84.00 — — 54.00 — —
CFG 82.86 84.50 81.29 — — —
LCFRS-wn-nr-2 83.99 85.21 82.80 45.04 66.24 34.12
LCFRS-wn-2 83.99 85.21 82.80 45.04 66.24 34.12
LCFRS-2 84.16 85.34 83.02 48.83 67.21 38.34

Table 4: Development set results on Negra treebank. The column all contains the results computed over all
constituents, both continuous and discontinuous, while disc are results on the discontinuous constituents alone.

sumption is necessary because otherwise we would
need to run the MLP layer O(n4) times. This is
not an issue for Coavoux and Cohen (2019) be-
cause they consider only a subset of spans needed
in greedy search.

However, we think that the main property that
distinguishes these two models is expressive power,
i.e. the set of trees that they can generate. While the
transition-based parser could generate any discon-
tinuous tree, our chart-based parser can generate
only trees that are within the LCFRS-2 formalism.
To find evidence for the importance of this property
we modified the search to explore the different lev-
els of complexity in between CFG and LCFRS-2
while keeping the exactly same parameters of the
neural scoring model. From Table 4 we can see
that the higher we get on the complexity hierarchy
the better are results on the development set, both
for discontinuous constituents and all constituents.
In comparison to Coavoux and Cohen (2019), we
get better results overall but for discontinuous con-
stituents alone the transition-based parser still has
an edge.

parser with all disc
ideal scorer F1 R F1 R
CFG 97.53 95.19 — —
LCFRS-wn-nr-2 99.29 98.60 82.95 70.88
LCFRS-wn-2 99.35 98.71 83.04 71.01
LCFRS-2 99.69 99.39 93.32 87.48

Table 5: Oracle parsing results with an ideal scorer that
always assigns correct probabilities.

If we look at the results for discontinuous con-
stituents carefully we can see that precision is sig-
nificantly greater than recall. The reason for this
could be that the parser is good when the gold tree
is within the reach of the LCFRS-2 formalism, but
for discontinuous constituents that is sometimes
not the case.

To test the limitations that the formalism puts on
our model further we did oracle experiments that
would show what would results be if we had an

ideal scoring model that always gives perfect prob-
ability 1 to correct span labellings and probability
0 to incorrect ones. The results for the oracle ex-
periments are shown in Table 5. If we compare re-
sults over F1 of all types of constituents then there
is very little difference among the discontinuous
formalisms. However, if we evaluate only on the
discontinuous constituents, the change in coverage
(recall) when we remove the well-nestedness con-
straint of LCFRS-wn-2 to LCFRS-2 is very large,
around 16%.

The recall of 87% for our most expressive for-
malism LCFRS-2, seem to suggest that if we want
further increases in accuracy of chart-based dis-
continuous constituency parsers we will need more
than LCFRS-2 generative power. Furthermore, this
more expressive formalism will need to be able to
generate trees that are not well-nested.

This is not to be confused with requirements for
well-nestedness of dependencies. The need for ill-
nested dependencies was established in the work
of Chen-Main and Joshi (2010). However, gram-
mar formalisms like CCG can model ill-nested de-
pendencies without having ill-nested derivations
(Koller and Kuhlmann, 2009). Our statement about
the need of increasing fan-out and for allowing
ill-nested rules applies only to the prediction of
discontinuous constituency structures of the kind
found in the Negra treebank.

5.3 Parsing speed

Chart parsers have often been avoided for expres-
sive formalisms like LCFRS because of their high
worst-case complexity. Most previous work us-
ing them has either constrained sentences to those
less than 30 words in length, or used length fil-
tering in combination with heavy pruning (Evang
and Kallmeyer, 2011; van Cranenburgh and Bod,
2013; van Cranenburgh et al., 2016; Ruprecht and
Denkinger, 2019) it is therefore important to com-
pare our parser with previous approaches not only
in accuracy but also in speed.
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parser
DPTB Tiger Negra

all disc all disc all disc

L
C

FR
S this work 90.5 67.1 83.4 53.5 83.6 50.7

Evang and Kallmeyer (2011) ≤ 25 gold POS 79.0 81.6
van Cranenburgh et al. (2016) ≤ 40 87.0 74.8
Ruprecht and Denkinger (2019) ≤ 30 gold POS 69.0

tr
an

si
tio

n-
ba

se
d Coavoux and Cohen (2019) 90.9 67.3 82.5 55.9 83.2 56.3

Coavoux et al. (2019) 91.0 71.3 82.7 55.9 83.2 54.6
Stanojević and G. Alhama (2017) 77.0
Stanojević and G. Alhama (2017) gold POS 81.6 82.9
Maier (2015) gold POS 74.7 18.8 77.0 19.8
Coavoux and Crabbé (2017) gold POS 81.6 49.2 82.2 50.0

co
nv

er
si

on

Corro et al. (2017) 89.2
Corro et al. (2017) gold POS 90.1 81.6
Versley (2016) 79.5
Fernández-González and Martins (2015) 77.3
Fernández-González and Gómez-Rodrı́guez (2020) 85.3 59.1 85.4 58.8

Table 6: Test set results.

In theory our parser is certainly an improvement
because it runs inO(l n4+n6) while other parsers
in the worst-case use O(G n6 log n). To test if the
same holds in practice we ran the parser on Negra
dev set sentences of different length without using
any pruning techniques. The results up to length
50 are shown in Figure 2.

The neural component (mostly bi-LSTM) and
labelling component (with complexity O(l n4))
are shared across all parsing approaches we have
tried. The labelling component, despite its theoret-
ical complexity, has a very small influence on the
overall parsing speed even for long sentences.

Stern et al. (2017) state that in their experiments
the neural component took most of the time. While
in our experience that is true for CFG search, the
same conclusion does not hold for LCFRS for sen-
tences longer than 35 words.

Instead, parsing time for long sentences is dom-
inated by the chart parsing component. The well-
nested version that excludes the rare rule (LCFRS-
wn-nr) is the fastest, as predicted by its complexity
of O(n5). As we have seen in previous sections,
excluding the rare rule #11 does not affect outcome,
but it does affect speed significantly.

The more powerful, and accurate, formalism of
full LCFRS-2 changes the dynamics of parsing:
speed quickly decreases for sentences longer than
30 words. Nevertheless, parsing time stays under
1 second for all sentences under 45 words with-
out any need for pruning. This is significantly
faster than speeds reported for all previous chart-
based parsers that do not use pruning (see ddl-
cfrs, rparse and GF in Figure 4 in Ruprecht and
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tim
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Figure 2: Parsing speed on Negra.

Denkinger (2019)). The only parsers that could
compare in speed are heavily pruned versions of
DiscoDOP (van Cranenburgh and Bod, 2013) and
OP (Ruprecht and Denkinger, 2019) that get much
lower accuracy than our parser (see Table 6).

For sentences longer than 50 words (not visible
on the plot) parsing is significantly slower, but it
is still tractable. For our test set results we use
no pruning up to sentence length 60: for the rare
sentences above 60, we use the same model, but
with only well-nested parse search.

5.4 Test set results

Test set results for English and German are shown
in Table 6. Compared to previous chart-based
LCFRS parsers our parser provides the best results
on all measures for both English and German.

Compared to transition based parsers, it is com-
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petitive over all constituencies, but has slightly
lower score on discontinuous constituents alone.

The recent parser by Fernández-González
and Gómez-Rodrı́guez (2020) outperforms both
LCFRS and transition-based parsers. It treats dis-
continuous constituency parsing as a diconstinuous
dependency parsing with slightly enriched labels
that allow conversion back to the discontinuous
constituency structure. However, it is not easy to
see how to compare this approach to the ones dis-
cussed above.

6 Conclusion

We have presented a span-based LCFRS-2 parser
that outperforms all previous LCFRS parsers.
It is in addition competitive with the best
transition-based parsers, outperforming them in
all-constituency evaluation for both German tree-
banks.

The results from this paper also indicate that the
strong generative power of the grammar formalism
is correlated with the accuracy. LCFRS-2 power
is a great improvement over formalisms that are
lower in the complexity hierarchy, but is still inade-
quate for complete coverage of discontinuity. Our
results also show that well-nestedness significantly
limiting the coverage that could be achieved even
with an ideal scoring model.
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2015. Parsing as reduction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1523–1533, Beijing,
China. Association for Computational Linguistics.

https://doi.org/10.1007/s11168-004-7431-3
https://doi.org/10.1007/s11168-004-7431-3
https://www.aclweb.org/anthology/W10-4407
https://www.aclweb.org/anthology/W10-4407
https://www.aclweb.org/anthology/W10-4407
https://www.aclweb.org/anthology/W10-4407
https://www.aclweb.org/anthology/E17-1118
https://www.aclweb.org/anthology/E17-1118
https://www.aclweb.org/anthology/E17-1118
https://doi.org/10.18653/v1/D17-1172
https://doi.org/10.18653/v1/D17-1172
https://doi.org/10.18653/v1/D17-1172
http://dx.doi.org/10.15398/jlm.v4i1.100
http://dx.doi.org/10.15398/jlm.v4i1.100
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
http://dl.acm.org/citation.cfm?id=2206329.2206342
http://dl.acm.org/citation.cfm?id=2206329.2206342
http://www.aclweb.org/anthology/P15-1147


120

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999–1010.
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