Proceedings of the 1st International Workshop on Language Technology Platforms (IWLTP 2020), pages 59-65
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11-16 May 2020
(© European Language Resources Association (ELRA), licensed under CC-BY-NC

Towards Standardization of Web Service Protocols for NLPaaS

Jin-Dong Kim!, Nancy Ide?, Keith Suderman’
'Database Center for Life Science (DBCLS), 2Department of Computer Science, Vassar College
'Kashiwa, Chiba, Japan, ?Poughkeepsie, New York, USA
jdkim@dbcls.rois.ac.jp, ide@cs.vassar.edu, suderman @cs.vassar.edu

Abstract
Several web services for various natural language processing (NLP) tasks (“NLP-as-a-service” or NLPaaS) have recently been made
publicly available. However, despite their similar functionality these services often differ in the protocols they use, thus complicating
the development of clients accessing them. A survey of currently available NLPaaS services suggests that it may be possible to identify
a minimal application layer protocol that can be shared by NLPaaS services without sacrificing functionality or convenience, while at
the same time simplifying the development of clients for these services. In this paper, we hope to raise awareness of the interoperability
problems caused by the variety of existing web service protocols, and describe an effort to identify a set of best practices for NLPaaS
protocol design. To that end, we survey and compare protocols used by NLPaa$S services and suggest how these protocols may be further

aligned to reduce variation.

Keywords: NLPaaS, web services, standards, synchronous protocols, asynchronous protocols

1. Introduction

There is considerable demand within both academia and
industry for immediately available natural language process-
ing (NLP) capabilities that can analyze and mine the vast
amounts of textual data thar have become available in recent
years. To answer this need, “NLP-as-a-service” (NLPaaS)
web services are beginning to be developed, including Natu-
ral Language API of Google!, Amazon Comprehend? and
CLARIN-D NLP services?, to name a few.

Every web service supports one or more protocols to re-
motely invoke its API (Application Programming Interface)
in order to provide programmable access to its functionality.
Among others, protocols which follow the REST (REpre-
sentational State Transfer) architectural style (Fielding and
Taylor, 2000) have become popular, due to its simplicity and
flexibility. However, REST itself is a protocol design style,
not a specific protocol, which leaves it to the implementer to
decide how data objects are exchanged in client-server com-
munication. This flexibility, while attractive to web service
developers, has led to a lack of consistency in the proto-
cols used by different NLPaaS services. As a result, those
implementing clients for NLPaaS services that come from
different developers often have to accommodate different
communication protocols.

In this paper, we describe an effort to identify a minimal
common protocol for NLPaaS based on best practices, with
the aim of raising awareness of the interoperability prob-
lems caused by the variety of existing web service APIs
and soliciting input for a standard set of NLPaaS service
APIs. To that end, we survey and compare APIs used by
NLPaaS services and provide a draft proposal intended to
serve a basis for the eventual development of an NLPaaS
API standard. We restrict the scope of NLP services to those
that take texts as input and return the result of some NLP
process as a result, as a starting point; however, we feel
that an acceptable minimal common protocol for services

"https://cloud.google.com/natural-language/
“https://aws.amazon.com/comprehend/
3https://weblicht.sfs.uni-tuebingen.de

(D REQUEST for NLP

Client Server

(@ RESPONSE with resul

Figure 1: General synchronous protocol

(D REQUEST for NLP

(@ REPONSE with confirm

Client Server

@ REQUEST for result

@ RESPONSE with result

Figure 2: General asynchronous protocol

ingesting textual data could be generally applicable across
web services performing a wider variety of tasks.

2. Synchronous and Asynchronous
Protocols

There are two basic protocols for exchange of information
among services and clients: synchronous protocols and asyn-
chronous protocols,

Figure 1 illustrates a synchronous protocol exchange be-
tween a client and a server. The exchange is initiated by
a request from the client to the server (typically, a GET or



(D REQUEST for NLP

- (@ REPONSE with confirm

(@ REQUEST for status

Client Server

g@ RESPONSE with status

(® REQUEST for result

() RESPONSE with result

<

Figure 3: General asynchronous protocol with status check-
ing

POST request) and completed by a response from the server
to the client. Synchronous protocols block activity on the
client as well as the server while the request is being pro-
cessed; therefore, to avoid resource starvation in unexpected
situations (network problems, errors, etc.), the request is
typically subjected to a conservative timeout.* Therefore,
when requests are expected to take an extended amount of
time, e.g. in order to process a large amount of text or to
execute a heavy task, the use of a synchronous protocol may
be inappropriate.

Asynchronous protocols, illustrated in Figure 2, solves the
timeout problem by separating the request from the delivery
of the result, which is then handled by a separate connec-
tion. Services using asynchronous protocols are commonly
coupled with an API that enables the client to check the
status of the requested task, i.e., whether it is completed,
still processing, or has encountered a problem. Figure 3
illustrates an asynchronous protocol with status checking.

3. Survey

This section presents our survey on the protocols used by
existing NLPaaS services. For the purposes of comparison
and to save space, only a selected subset of the services
surveyed are included here. Note that due to the focus on
NLP-related services, our survey is limited to services that
take plain or annotated text as input and return a processing
result as output. The result may be text or other forms of
data (e.g., key-value pairs) resulting from the analysis. The
subset of APIs we describe here is intended to include a
variety of NLPaaS services available from different types
of developers and serving a variety of audiences, includ-
ing freely available services developed by academic and
other non-commercial communities (CLARIN, CoreNLP,
PubDictionaries), national services (PubTator, ETRI), and
commercial services (Google).

Note that the focus of our survey is on the protocols used
for sending and receiving data and does not consider the
types of text analysis that the APIs provide (e.g., named
entity recognition, sentiment analysis). For a comprehensive
survey of the text analytic functions provided by different
commercial services, see (Dale, 2020).

“Many HTTP servers, e.g., Apache, NGINX, and Tomcat have
a default request timeout of 60 seconds.

60

3.1.

As described above, synchronous protocols involve a simple
client-server conversation consisting of a request followed
by the corresponding response. Differences among servers
using synchronous protocols appear primarily in their con-
ventions for specifying input and output.

Table 1 gives an overview of the synchronous protocol APIs
for several NLPaaS services, including the CLARIN-D (Hin-
richs et al., 2010) and CLARIN-PL (Piasecki, 2014) services
from the European CLARIN project; ETRI NLP API Ko-
rean NLP3, developed and maintained by the Electronics
and Telecommunications Research Institute (ETRI); Google
Natural Language API, a commercial service provided by
Google; and PubDictionaries (Kim et al., 2019), a service
provided by the Database Center for Life Science (DBCLS).
We also include Stanford CoreNLP (Manning et al., 2014),
which is one of the most widely used NLP toolsets that is
also implemented as a NLPaaS web service.

Synchronous Protocols

3.1.1. Methods and Content types

Most NLPaaS services receive requests using the POST
HTTP verb (Fielding et al., 1999) in order to accommodate
the need to send a (relatively) large body of text for pro-
cessing. Certain services, such as PubDictionaries, support
requests using the GET method, in this case because the
service processes primarily short, natural language queries.
With the POST method, some services require the content
type to be explicitly specified, while others assume that the
content type is always text (CoreNLP) or JSON (ETRI).
Again, PubDictionaries is somewhat more flexible, accept-
ing data in various formats: the content type of a POST
request may be either multipart/form-data (for key-value
pairs), application/json (for a hash or an array), or text/plain
(for plain text).

3.1.2. Parameters

NLPaaS services take several parameters, including a block
of text, the NLP task(s) to be run, and user information(e.g.,
for access control)

Text Services utilize two different methods to pass text to
the server: through a parameter on the GET request and as
the payload of a POST request. In a GET request, the (short)
text to be processed is given as the value of a parameter,
whose name may differ among servers; text is commonly
used, but more abstract names such as content may be used
for services that can process multiple content types (e.g.,
HTML, XML). When using a POST request, the payload is
typically either key-value pairs (multipart/form-data), ISON
object (application/json), or the text itself (text/plain). In
either of the first two cases, the key name fext is commonly
used to send a block of text to a service.

Process The protocols used by some services include spec-
ification of the NLP process or processes to be invoked.
This is accomplished in various ways: Google provides a
different URL for each different NLP service, and ETRI
receives the specification through a parameter. CLARIN-
D, CLARIN-PL, and CoreNLP allow specification of a se-
quence of NLP processes through a parameter; however,

Shttp://aiopen.etri.re kr/ (written in Korean)



Content type Parameters

Service Method Request [ Response Text [ Process Identity
CLA-D POST multipart/form-data | n/s content chain (XML) apikey
CLA-PL | POST application/json n/s text Ipmn user (email)
CoreNLP | POST text (implicit) multi (payload) properties:annotators -
ETRI POST JSON (implicit) application/json | argument:text argument:analysis_code | access_key
Google POST application/json application/json | document:content | (encoded in URL) OAuth2
PubDict GET|POST | multiple application/json | text (encoded in URL) -

Table 1: APIs of synchronous protocols of several NLPaaS services. Note that “CLA” denotes CLARIN and “PubDict”
denotes PubDictionaries. Items in italics are parameter names.

as indicated in Table 1, they use different parameter for-
mats (XML for CLARIN-D, pipe (‘|’)-separated names of
NLP processes for CLARIN-PL, and comma (*,”)-separated
names of NLP processes for CoreNLP).

User Information Some services require information con-
cerning the user who is calling the service, e.g., for access
control or billing. Services may obtain this information via
a parameter of the request (e.g., apikey for CLARIN-D, user
for CLARIN-PL, and access_key for ETRI), while others use
standard authentication schemes (e.g., OAuth2 for Google).

3.2. Asynchronous Protocols

Asynchronous protocols are typically used when it is neces-
sary to transmit large amounts of data—in the context of NL-
PaaS services, a large body of text—in order to avoid the time-
out problem outlined in Section 2.. Therefore, asynchronous
requests typically use the HTTP POST method, which al-
lows for sending texts of unlimited size using the naming
and content specification conventions outlined above. The
relevant differences among asynchronous protocols concern
the methods used to pass information about a request and
requests for metadata, e.g., status of the job. To illustrate
these differences, three services are surveyed: CLARIN-PL
(Piasecki, 2014), PubDictionaries (Kim et al., 2019) and
PubTator Central (Wei et al., 2019).

The asynchronous protocols of PubTator Central and Pub-
Dictionaries follow the overall request-response flow illus-
trated in Figure 2. However, they use different methods
to pass necessary information in order for the client to fol-
low the flow of execution. For example, when accepting a
request such as

POST /annotate/submit/Gene ... (parameters)

PubTator Central responds with the status code 200 (“OK”)
together with a session number in the body of the response.
The client is then supposed to compose the URL for retriev-
ing the result using the session number and send a second
request to the server, e.g.,

GET /annotate/retrieve/{SessionNumber}

In contrast, PubDictionaries returns the status code 303
(“See other”) for a successfully received request, together
with a Location HTTP header that specifies the URL for
retrieving the result.

When a request for a result is submitted, PubTator responds
with the status code 404 (“Not found”) if the result is not
ready, together with the warning message “[Warning : The

61

Result is not ready” in the body of the response. PubAn-
notation responds instead with status code 503 (“Service
unavailable”), along with a Retry-After HTTP header to pro-
vide a hint to the client as to when to try to retrieve the result
again. In the case where the result is ready when requested,
both services respond with 200 (“OK”) together with the
result in the body.

CLARIN-PL uses an asynchronous protocol following the
request-response flow illustrated in Figure 3. Like PubTa-
tor Central, CLARIN-PL uses the body of the response to
inform the client of the task ID, with which the client can
compose the URL for checking the status of the task. Below
is the synopsis of the initial request:

POST /nlprest2/base/startTask ... (parameters)

The response is a task ID in the body of the response, from
which a request to check the status of the task can be com-
posed:

GET /nlprest2/base/getStatus/{taskID}

The response to this request is a JSON object:

{
"status":"DONE" | "ERROR" | "QUEUING",
"value":"..."

}

The client will keep checking the status until the value of
the status key is DONE. When completed, the value key
will be filled with the result ID, from which the client can
compose the URL and make a request for the result, e.g.,

GET /nlprest2/base/download/{resultsID}

3.3. Summary

The differences outlined above for both synchronous and
asynchronous protocols demonstrate the implementation
options among services providing NLP processing. These
differences complicate client development by requiring dif-
ferent means to handle sending requests and processing
responses to different services. However, these variations
are generally not due to systemic differences among ser-
vices, but rather are in most cases simply a matter of ar-
bitrary choice. It therefore seems possible to identify a
set of conventions for client-server communication for NL-
PaaS, thereby simplifying client development for both syn-
chronous and asynchronous processes.



@ GET | POST initial_URL

(@ RESPONSE

<

200 (OK)

Result in body

Figure 4: Synchronous protocol, proposal

4. A (Modest) Proposal

This section presents a preliminary proposal for protocols
for NLPaaS services, based on the practices outlined in the
previous sections. The aim is to provide a basis for continued
discussion and development by members of the community
at large.®

4.1. Criteria and Scope

The survey of differences among protocols used by NLPaaS
services provides a basis for establishing the design criteria
for protocol standardization.

The scope of this proposal includes:

e Request-response flow

e Request methods and headers
o The text parameter

e Response codes and headers

Note that the proposal does not cover input/output formats
for the input text and the NLP processing results. There
exist several standards for text and annotation formatting,
and formatting can be dealt with in a separate layer from the
protocols. Furthermore, input/output formats typically con-
form to the requirements of specific tools; a standard format
would unnecessarily burden service developers with conver-
sion to and from internal formats in order to be compliant.
For the same reasons, we do not address user identifica-
tion/authorization methods, nor do we consider parameters
other than text since they are often tightly coupled with the
functionality of a given service.

To illustrate how the proposed protocol might be used,
we consider both a client-server communication environ-
ment and a server-server communication environment using
PUSH notifications.

4.2. Synchronous protocol

Figure 4 illustrates the request and response flow of the pro-
posed synchronous protocol. The initial request must be sent
using the POST method. An NLPaaS service must receive a
block of text through the request parameter fext, which must
be delivered either via the payload of multipart/form-data
or as encoded in the URL. The following cURL command®
illustrates this:

curl -F text="A_sample_text"
URL_for_annotation

To conform to the formal specifications in RFC 21 197, in our
discussion we use the verb must when a given practice is required
and may when a given practice is recommended.

81n the example cURL commands, parameters other than fext
are omitted.

62

@ POST initial_URL

P (@ RESPONSE
201 (Created) | Location: job_URL

@ GET job_URL

C < @ RESPONSE S
200 (OK) job description in body
® GET result_URL
P ® RESPONSE
200 (OK) Result in body

Figure 5: Asynchronous protocol

Note that specifying the request parameter fext as a common
channel for delivery of text does not prevent the service
from receiving input through other channels, such as the
content key’. When a request includes many parameters,
and especially when it includes a structured parameter, it
is common practice to include all the parameter settings
in a single JSON object and send it through the payload
of application/json; therefore, we recommend that services
receive a payload of type application/json. Upon receiving
a request, the service must execute its NLP process over the
text, and, when successful, it must respond with status code
200 (OK) together with the result in the body. '°.

4.3. Asynchronous protocol with polling

Figure 5 illustrates our proposal for an asynchronous proto-
col for NLPaaS services, consisting of the following:

1. The initial request

1-1. Must be sent using the POST method
1-2. When successful, the response must include

1-2-1. Status code 201 (“Created”)
1-2-2. the Location header to specify the job_URL
1-2-3. the description of the job, in the body

2. Second request

2-1. Must be sent using the GET method
2-2. The response must include

2-2-1. Status code 200 (“OK”)
2-2-2. the description of the job, in the body

3. Third request
3-1. Must be sent using the GET method

°For example, Google uses the content key to receive docu-
ments as may plain-text or HTML. For Google to conform the
standard, it may use fext key to receive text, while retaining content
to receive html.

10As discussed in Section 4.1., the format of the output is out of
scope of this specification.



’ Attribute \ Description \ Format ‘
submitted_at Timestamp of submission ISO 8601
started_at Timestamp of execution ISO 8601
finished_at Timestamp of completion ISO 8601
elapsed Elapsed time ISO 8601
ETR Estimated time remaining ISO 8601
result_location | Location of the result URL
error_message | Error message String
status IN_QUEUE or IN_.PROGRESS | String

or DONE or ERROR

Table 2: Attributes for a job description.

3-2. The response must include

3-2-1. Status code 200 (“OK”)
3-2-2. the result, in the body

Initially, the client sends a request to a server to apply a
certain NLP process to a block(s) of texts using the POST
method (1-1). POST is used because the text may be very
long, and, more importantly, POST is not a “safe” request'!
and therefore the response should not be cached. As for the
synchronous protocol, the request parameter fext must be
used to send a block of text.

When the request is successfully accepted, the server must
create a job to execute the desired NLP task and respond
to the client with the status code 207 (1-2-1) together with
a Location HTTP header (1-2-2), to indicate that the job is
created and accessible via the URL specified by the header.
The body of the response must contain the initial description
of the job (1-2-3).

To describe a job, we propose the attributes listed in Table 2.
At the time the NLP task terminates execution, the value of
finished_at and either of result_location or message must be
set. Among the attributes, elapsed and status are redundant,
i.e., they can be calculated from other attributes as follows:

elapsed = {

current_time — started_at
finished_at — started_at

if finished_at = ¢
otherwise

IN_QUEUE if started_at = ¢

DONE result_ URL # ¢
status =

ERROR message # ¢

IN_PROGRESS otherwise

However, because these attributes are frequently referenced
they are included for convenience. The job description must
be serialized into a response body of type application/json.
This allows for structuring values, e.g., for status replies,
it would be easier to define the ability to return multiple
messages, possibly even with different "log levels” and with
timestamps.

Once the job is created, it must be accessed using the GET
method (2-1). Next, the service must respond with the sta-
tus code 200 (“OK”) and with the job description in the

" An HTTP method is “safe” if it does not alter the state of the
server.

63

(@ POST initial_URL, with callback_URL

P (@ RESPONSE
201 (Created) | Location: job_URL

@ GET job_URL

@ RESPONSE

<

200 (OK)

job description in body

® POST with result

® RESPONSE

Y

200 (OK)

Figure 6: Asynchronous protocol with push notifications

body (2-2). Note that responding with the status code 200
to a GET request may results in caching the request some-
where between the client and the server, and it is therefore
recommend to include the Cache-Control: no-store header.
The client is expected to repeatedly access the job until it
finds that the status is either DONE or ERROR (polling).
During the loop, the value of ETR (Estimated Time Remain-
ing) must provide the client with enough information to
enable efficient scheduling of future requests. When the
status is DONE, the job description includes the URL for
result as the value of the result_location attribute. The client
then accesses the result using the specified URL (3-1), after
which the service must respond with status code 200 and
include the result in the body (3-2).

After the result is retrieved the server may want to delete
the job and the result, either immediately or after a specified
period of time (e.g., 24 hours). While not required, it is
generally recommended that the service explicitly state in
the protocol and API documentation exactly when the job
and the result will be deleted.

4.4. Asynchronous protocol with callback

The protocol with polling proposed in Section 4.3. is neces-
sary when a service has no way to talk to a client except by
responding to the client’s requests. However, if the server
can talk to the client at any time, the server can instead
push messages to the client to report when new informa-
tion becomes available rather than responding to periodic
client requests, thus avoiding the crush of a potentially large
number of clients polling continuously. To enable this sce-
nario, the client registers a callback URL as a part of the
job submission. When the server has new information avail-
able, it sends this information in the same format the client
would use when issuing a polling GET request (with the
obvious difference that the server is issuing a POST to the
client). Figure 6 illustrates our proposal for an asynchronous
protocol with push notifications.

The differences from the polling model are:

e The initial request includes the callback URL,
for which we propose the parameter name



callback_location;

e When the task is completed, the server immediately
sends the result to the callback URL, using the POST
method;

e When the client has successfully received the result, it
responds with status code 200.

Because the server will send a notification when the task
is completed (successful or not), the client does not need
to repeatedly check the status of the job in order to know
the timing required to retrieve the result. However, the
API of the service from which a client may request the job
description is still useful when it is necessary to estimate
when the result will be received, and, even after the client
receives the result, to see the metadata associated with the
job, e.g., length of execution time.

5. Discussion

As stated in Section 1., the proposal presented in Section 4. is
a first draft intended to serve a basis for further development.
Here we explain the rationale for various design choices
over possible alternatives.

5.1.

HTTP is not designed with explicit consideration of asyn-
chronous protocols, and therefore no existing response sta-
tus code exactly fits the asynchronous scenario. The draft
proposal specifies that the server must issue status code
201 (“Created”) in response to an initial request for asyn-
chronous communication. However, among existing sys-
tems and in relevant articles, some advocate for using 202
(“Accepted”) or 303 (“See other”). The rationale behind
our choice of 201 is that the initial request can be defined
as a request for the creation of an “NLP job”, which can
be immediately created upon submission of the request. A
drawback of this choice is that it is not user friendly, i.e., it
reflects an engineering perspective rather than the perspec-
tive of end users, who simply want the result of the job. If
we view the initial request from the user’s perspective, it
may be more reasonable for the server to respond with 202
or 303. In the case of 202, the value of the accompanying
Location header would be interpreted as the location of the
result. In the case of 303, the value of the Location header
would be interpreted as a location for a relevant resource
(e.g., the job), not the requested resource itself (e.g., the
result). Although we have suggested one code over other
possibilities, this topic remains open for further discussion.

Response code for the initial request

5.2. Response Code for Polling

For polling, the server needs to continuously inform the
client of the status and the estimated time remaining (ETR)
to complete the job. Some services follow the overall
request-response flow illustrated in Figure 2 and use the
the status code 404 (“Not found”) or 503 (“Service unavail-
able”). Code 503, which is an indication of a transient prob-
lem, is typically accompanied with the Retry-After header,
an HTTP-native way to tell the client to try again within an
estimated wait time. We have avoided these two codes be-
cause they are broadly understood as error codes indicating

a problem with the request and/or the server. Ideally, there
would exist a status code such as 309, standing for “Redirect
to itself”, that could be used together with Retry-After, but
not with Location. With such a code the server could tell
the client to make another request after a specified length of
time because the request cannot be currently fulfilled.

5.3. Delivery of the result location

When the NLP task is complete and the result is ready to
be served, the server responds to the request for polling
with the status code 200 and the URL for the result in the
result_location field of the response body. Some services
use 303 with a Location, which is an HTTP-native means
to inform the client of the location for the request; however,
303 was not chosen because it prevents the metadata of the
job from being accessed after the job is completed.

5.4. Parameter passing

When a block of text is the single parameter of a POST
request, a straightforward means to pass the parameter is
to send it as payload of type “text/plain”, possibly coupled
with a specification of the character encoding (e.g., “text/-
plain; encoding=UTF-8"). However, NLPaaS services often
require additional parameters, such as the specification of
the NLP process to be applied. When the payload is used
to pass a block of text, the only means to pass additional
parameters is to encode them in the URL, which is often
unwieldy. In this case, the standard practice is to send all the
parameters as key-value pairs with the content-type header
“multipart/form-data”.

When a value of a key is a structured value (e.g., an array of
NLP processes to make up a pipeline), it may be difficult or
impossible to send them as key-value pairs. For this reason,
we recommend sending all parameters as a JSON object,
which is a common practice.

6. Conclusion

In this paper we survey a number of NLPaaS services in
order to identify current common practice and, in so doing,
establish a basis for development of a standard for NLPaaS
protocols. We outline a draft proposal for such a standard
drawing on our observations, and offer it to the community
for future consideration.

We recognize that standardization is a major endeavor that
necessarily involves gathering input from the community
of users in order to reach a broad consensus. We have
therefore set up a GitHub repository'? containing the draft
specification so that the community can be actively involved
in furthering this effort.

7. Acknowledgements

Thanks to Richard Eckart de Castilho and Jan-Christoph
Klie for their insightful comments. This work was supported
in part by the Database Integration Coordination Program
funded by National Bioscience Database Center (NBDC)
of Japan Science and Technology Agency (JST) and U.S.
National Science Foundation (NSF) grant 1811123.

Phttps://github.com/jdkim/NLPaaS-Protocol

64



8. Bibliographical References

Dale, R. (2020). Text Analytics APIs: A Consumer Guide.
Language Technology Group, 3 edition.

Fielding, R. T. and Taylor, R. N. (2000). Architectural
Styles and the Design of Network-Based Software Archi-
tectures. Ph.D. thesis, University of California, Irvine.
AAI9980887.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P, and Berners-Lee, T. (1999). Hypertext
Transfer Protocol - HTTP/1.1.

Hinrichs, E., Hinrichs, M., and Zastrow, T. (2010). We-
bLicht: Web-based LRT services for German. In Pro-
ceedings of the ACL 2010 System Demonstrations, pages
25-29, Uppsala, Sweden, July. Association for Computa-
tional Linguistics.

Kim, J.-D., Wang, Y., Fujiwara, T., Okuda, S., Callahan,
T. J., and Cohen, K. B. (2019). Open Agile text mining
for bioinformatics: the PubAnnotation ecosystem. Bioin-
formatics, 35(21):4372-4380, 04.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.,
and McClosky, D. (2014). The Stanford CoreNLP natu-
ral language processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 55-60, Bal-
timore, Maryland, June. Association for Computational
Linguistics.

Piasecki, M. (2014). User-driven Language Technol-
ogy Infrastructure -the Case of CLARIN-. In Jerneja
Zganec Gros Tomaz Erjavec, editor, Proceedings of the
17th International Multiconference Information Society -
1S 2014, volume G of Language technologies, pages 7—13.
Institut JoZef Stefan.

Wei, C.-H., Allot, A., Leaman, R., and Lu, Z. (2019).
PubTator central: automated concept annotation for
biomedical full text articles. Nucleic Acids Research,
47(W1):W587-W593, 05.

65



