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Abstract

While certain types of instructions can be com-

pactly expressed via images, there are situa-

tions where one might want to verbalise them,

for example when directing someone. We in-

vestigate the task of Instruction Generation

from Before/After Image Pairs which is to de-

rive from images an instruction for effecting

the implied change. For this, we make use of

prior work on instruction following in a visual

environment. We take an existing dataset, the

BLOCKS data collected by Bisk et al. (2016)

and investigate whether it is suitable for train-

ing an instruction generator as well. We find

that it is, and investigate several simple base-

lines, taking these from the related task of im-

age captioning. Through a series of experi-

ments that simplify the task (by making image

processing easier or completely side-stepping

it; and by creating template-based targeted in-

structions), we investigate areas for improve-

ment. We find that captioning models get

some way towards solving the task, but have

some difficulty with it, and future improve-

ments must lie in the way the change is de-

tected in the instruction.

1 Introduction

“A picture is worth a thousand words” – nowhere

does that old adage seem to be more true than in the

domain of assembly instruction giving. As Figure 1

illustrates, quite complex sequences of actions can

be expressed compactly using pictorial instruction

formats. 1 And yet, sometimes words are neces-

sary; for example, when directing someone who

has their eyes and hands on the object that is to

be assembled. As a first step towards a vision of

a collaborative, situated construction system, we

present the task of Instruction Generation from Be-

fore/After Images (IG-BA).2

1From https://bit.ly/34pmKCt, (C) IKEA.
2Related settings have been explored in human/computer

interaction, e.g. by Kontogiorgos et al. (2018), but not from

Figure 1: A Visual Instruction (Step 2 of Assembling

IKEA’s “Godmorgon” Case)

We leverage a related task that has become pop-

ular in recent years, that of Instruction Following

(IF). In recent approaches to IF, a model is trained

that is given an image and a (verbal) instruction,

and predicts, within the context provided by the

image, the action denoted by the instruction. (See,

inter alia (Mei et al., 2016; Bisk et al., 2016; An-

derson et al., 2018; Misra et al., 2018).) Here, we

investigate whether this setup—and, more specif-

ically, the BLOCKS dataset of Bisk et al. (2016)—

can be used to derive data for IG-BA.

For IG-BA, we need pairs of images (depicting

the before and the after state) as shown in Figure 2,

and as output examples of instructions that when

executed turn the former into the latter state. Mak-

ing use of techniques developed for the task of

Image Captioning (that is, the description of sin-

gle images), we explore to what extent this setup

allows us to sidestep the explicit planning steps

Figure 2: An image pair from BLOCKS annotated with

the natural language instruction ”Bring block 6 down

and place it above block 7”. The associated action is

indicated with an arrow and boxes for visual aid.

the perspective of NLP / natural language generation.



that were used in earlier Natural Language Gen-

eration work on instructions, for example in the

context of the GIVE challenge (Byron et al., 2007).

The contributions of this paper are:

• Specification of the task of Instruction Genera-

tion from Before/After Images (IG-BA).

• BLOCKSgen, a preparation of the BLOCKS dataset

(Bisk et al., 2016) specifically for IG-BA.

• A set of baseline models for IG-BA, together with

ablation studies pointing towards areas of future

model adaptations.

2 Related Work

Generating descriptions of single images is by now

a well-studied task (Bernardi et al., 2016; Mogadala

et al., 2019), where the best-performing models typ-

ically make use of image encodings computed by

Convolutional Neural Networks (CNNs) and cap-

tion generation (decoding) based on auto-regressive

recurrent networks (Hossain et al., 2019). We will

directly build on these approaches and discuss the

ones we utilise in more detail below.

There is also some recent work that looks at

a task which, similar to ours, takes image pairs

as input. In change captioning (Oluwasanmi et al.,

2019; Park et al., 2019), the task is to verbalise what

is different between two otherwise very similar im-

ages. Our task contains this, but goes beyond it in

that it also has to be verbalised how that difference

can be effected. In that work, specialised archi-

tectures are presented that can more easily extract

differences. Here, we wanted to start by exploring

more standard captioning approaches as a baseline

in order to fully understand the requirements of

our task, leaving further architectural adaptations

to future work.

After early work in the context of the GIVE chal-

lenge (Gargett et al. (2010), Byron et al. (2007)),

there is some renewed interest in instruction giving.

Köhn et al. (2020) presented an instruction giv-

ing platform called MC-Saar-Instruct where play-

ers can interact with a bot in the Minecraft world

which instructs them to build something. This is

very related to our interest in this project; for now,

however, that work still assumes a symbolic repre-

sentation as input.

In the field of natural language generation,

the production of referring expressions is a well-

established task (Krahmer and van Deemter, 2012),

increasingly also tackled with neural methods

(Zarrieß and Schlangen, 2018; Castro Ferreira et al.,

2018). IG-BA includes this; but as will become

clear in the next section, the data that we use here

allows us to factor it out, as references to objects

can simply be done via unique names. The com-

plexity in our task comes from the spatial language

required to denote locations, which is something

not found to that degree neither in image caption-

ing nor referring expression generation. Genera-

tion of spatial expressions has seen some attention

in recent years, e.g. by Ghanimifard and Dobnik

(2019a), who investigate the spatial language that

neural language models can learn and express.

3 Data: BLOCKS and BLOCKSgen

We will now describe how we can make use of data

collected for instruction following for our task of

instruction giving.

3.1 BLOCKS: Instruction Following

Bisk et al. (2016) collected the BLOCKS dataset

in order to study instruction following in a sim-

ple visual environment. The environment consists

of up to 20 blocks of the same size, which are

placed on a board. The blocks are uniquely la-

belled either with a number between 1 and 20,

or with the logo of a major company; this makes

reference to blocks unambiguous and straightfor-

ward. To collect instructions, the authors created

pairs of states st, st+1, represented as images it
and it+1 (computer-generated using a 3D-Engine),

that differ in the placement of only a single block,

and presented these to crowd workers who were

tasked with producing a natural language instruc-

tion whose execution would turn st into st+1.

To create a sequence of such pairs, the authors

started with a final configuration sT which they suc-

cessively distorted by moving a randomly selected

single block to a random free location. This results

in an initial state s1 in which all blocks appear to

be placed randomly. In the part of the dataset that

we use, the final configuration constituted an in-

terpretable pattern (numbers as sampled from the

MNIST dataset (LeCun and Cortes, 2010)), with

the assumption that this makes high-level instruc-

tions possible (“build a number 5”), and makes

instructions towards the end of the sequence more

easy to interpret. In the final configuration, the

blocks are near-sorted (in that block 1 is likely to

be placed near block 2, etc.). We discuss below con-

sequences of this for use in our task. In the part of

the dataset that we use here, only movements in the



Train Development Test
logo digit logo digit logo digit

Number of image pairs 667 652 95 96 181 172
Number of instructions 6003 5868 855 864 1629 1548
Number of sequences 35 35 5 5 10 10
Avg. number of blocks per sequence 19.23 18.91 19.08 19.33 18.76 18.0
Avg. number of image pairs per sequence 19.06 18.63 19.0 19.2 18.1 17.2
Avg. instruction length (num. of tokens) 14.60 13.60 16.35 17.23 15.30 13.30
Standard deviation of instruction length 7.09 8.15 8.39 9.34 7.10 7.36
Number of tokens 87,650 79,777 13,979 14,883 24,923 20,592
Number of types 715 650 405 391 470 388

Table 1: Statistics of the MNIST subset of the BLOCKS dataset.

plane were allowed (i.e., no stacking of blocks oc-

curs). The pairs of images were presented to crowd

workers, who were asked to formulate instructions

that lead from the Before to the After state. Each

pair was presented to three workers, who each pro-

duced three different instructions for it. Figure 2

shows an example of a state (image) pair and col-

lected instructions. Table 1 gives an overview of

the dataset through some statistics. Notable is the

small size of the vocabulary, which is quite in con-

trast to typical image captioning, indicating that the

crucial information is not in the lexical choice, but

in the composition of the utterances.

To summarise, what the BLOCKS dataset gives

us is a collection of state pairs (symbolically rep-

resented as well as rendered into images), ordered

into sequences leading to a final state, where each

transition is encoded linguistically in an instruc-

tion. Formally, each data point is of the form

(sjt , i
j
t , s

j
t+1, i

j
t+1, E

j
t→t+1), where j is the index

of the sequence, 1 ≤ t ≤ T , and E is the set of

instructions for a given state pair.

3.2 Requirements for a Dataset for IG-BA

As described above, the task of Instruction Gener-

ation from Before/After Images (IG-BA) consists

in the generation of a natural language instruction

given a pair of images, with the understanding that

applying the instruction to the Before state would

result in the state shown in the After image. Instruc-

tions can be given at different levels of specificity.

As we are starting out with the IG-BA task here, we

target what we call simple instructions, which map

to actions that can naturally be seen as being atomic

in their domain. At the same time, the task should

be challenging enough to be interesting, both on

the level of image understanding, and the level of

language generation.

Prima facie, it seems that the BLOCKS data gives

us what we want. By design of the dataset, the in-

structions that come with pairs of successive states

are simple instructions, as the change they describe

involves only a single block and can be effected

with an atomic action. To specify this action, it

is necessary to identify the block that has moved

(we will call this block the target block). This has

to be done by comparing the images in the pair,

which is a visual task that goes beyond those found

in image captioning. As all blocks are uniquely

labelled, referring to blocks is straightforward in

this domain. Denoting the target location, however,

is challenging, as it requires the identification of a

landmark block and its spatial relation to the target

location. These are visual and linguistic tasks that

are partially present in image captioning as well.

However, in naturalistic scenes, spatial relations are

to a large extent predictable (e.g., a rider will likely

not be under the horse; (Ghanimifard and Dobnik,

2019b)), whereas here no systematic preference

should be expected.

We will investigate in more detail in the next sec-

tion whether these assumptions about the dataset

do indeed hold and to which degree it is composi-

tional.

3.3 Analysis of BLOCKS

3.3.1 Preprocessing

To support the analysis of the corpus (and later, for

evaluation), we automatically process both the in-

structions and the symbolically represented scenes.

(The results presented here are for the training split

of the corpus; the preprocessing methods of course

can also be applied to the other splits.)

The goal of the instruction parser is to extract

from the instruction the reference to the target

block, and if present, the reference to the landmark

and the spatial relation, as in example (1) below.

(1) Input: move the BMW block below the Adidas block
Output: bmw, adidas, below



Pattern & Example Logo Digit Total Instr. Instr.
Logo Digit

$BLOCK? (number)? $DECORATION 5782 8931 14713 0.47 0.71
move block 11 to the right of block 6
ups should be south of twitter and northwest of bmw

(the)? (number)? $DECORATION $BLOCK? 7344 4620 11964 0.60 0.36
move the 14 to sit on top of the number 15,
move ups so it is below twitter, 11 should be east of 6
move the bmw block below the adidas block

Total 13126 13551 26777

Table 2: A Simple Grammar For Block References; Examples and match counts; Proportion of Instructions

containing a match (instruction can contain several patterns).

To do this, the candidate instruction is first run

through the spellchecker hunspell and then depen-

dency parsed, using spaCy’s medium-sized pre-

trained model for English.3 We identify block refer-

ences by applying a small set of regular expressions

(Table 2). We distinguish between target block ref-

erence (the one that moved) and landmarks using

the rules shown in Appendix A. We extract string

spans denoting the spatial relation by extracting

phrases that function as modifier, such as preposi-

tional modifiers, shown in the same appendix.

Evaluating whether the instruction parser cor-

rectly extracted the target reference is easy (as-

suming that the instruction is correct), as we can

identify it from the symbolic representation. For

the instructions in the test set, we obtain an accu-

racy of 89%. In 5% of the instructions, the parser

does not identify any target block. When it comes

to the landmark blocks, a fully objective evalua-

tion is not possible, as here the instruction givers

had some choice. We can identify from the state

representation which blocks are close to the target

location; 86% of the blocks that the parser identi-

fied as landmarks overlapped with this set in their

respective scenes. We also manually checked 100

randomly selected parsed instructions against the

images, and found an even slightly higher accuracy

(88%). These numbers lead us to assume that we

can put some trust in the output of the parser; which

is important as it has a role to play in the evaluation

of our models discussed below.

The scene parser extracts information from the

symbolic state representations. Target block and po-

tential landmarks are extracted as described above

in the evaluation of the instruction parser. The

objective spatial relation between target location

and landmark candidate can be determined pro-

3http://hunspell.github.io; https:

//spacy.io/models/en#en_core_web_md

grammatically from the angle between the two

coordinates. We segment the circle around the

landmark candidate into equal-sized segments and

classify the relation using compass directions N,

NE, E, SE, S, SW, W, NW. We also simi-

larly categorise the direction in which the target

block was moved.

With this in hand, we can investigate the com-

plexity of the language in the corpus (and hence

that of the generation task), and whether there are

any biases in the data that would give a learning

algorithm opportunities to find shortcuts.

3.3.2 Complexity

As mentioned above, the main driver of linguistic

complexity in this dataset is the specification of the

intended target location. In a substantial subset of

the training split our instruction parser identifies

the mention of more than one landmark (14.4%;

vs. 83.3% with only one, and 2.3% where none

was identified). Table 3 shows some examples of

spatial expressions, for the relative configuration

north of and southeast of. For the cardinal direction

north, there is more re-use of the same expression

(“above”), indicating that this direction is some-

what easier to express. This is confirmed by the

analysis in Table 4, which shows a tendency for

verbalisations of diagonal directions to be longer

and more unique. This is in line with previous find-

ings on the complexity of expressions for different

spatial configurations. Mast et al. (2014) found that

segmentations of space that are finer-grained than

the basic concepts of left, right, front, back require

more complex spatial expressions.

3.3.3 Bias

First, we investigate whether the dataset contains

biases for particular actions. As Figure 3 (left)

shows, most movements of blocks were towards

the right of the board. However, as the direction



N (N=2889) SE (N=637)

above BLOCK (0.14) to the right of BLOCK (0.08)
north of BLOCK (0.08) southeast of BLOCK (0.06)
in the first open space above BLOCK (0.05) below (0.06)
north of (0.04) then (0.05)
so it is above BLOCK (0.04) southeast of (0.04)
so its bottom edge touches BLOCK ’s top edge (0.03) up (0.03)
on top of BLOCK (0.03) down (0.03)

Table 3: The most frequent spatial expressions for two of the 8 target-landmark configurations (*includes only

instructions that mentioned exactly one landmark)

Relation Instructions* Tokens Phrases Unique Example phrase
/ phrase / instr. phrases

N 2225 6.05 1.30 0.23 above BLOCK

S 1777 6.20 1.35 0.26 under BLOCK

E 1368 7.41 1.43 0.25 to the right of BLOCK

W 2121 7.40 1.41 0.21 left of BLOCK

NE 763 9.18 1.68 0.26 in the first open space northeast of BLOCK

NW 420 9.82 1.68 0.37 above and to the left of BLOCK

SE 358 10.34 1.78 0.44 so it is below and to the right of BLOCK

SW 766 9.23 1.60 0.31 in the first open space southwest of BLOCK

Table 4: Where in relation to the mentioned landmark the target block was put and how long (number of tokens)

corresponding spatial extractions are as extracted by the instruction parser. Unique phrases is the proportion of

unique phrases wrt. total number of phrases (*includes only instructions that mentioned exactly one landmark)

Figure 3: Left: Block movement on the board: relative

count that the target block was moved in a direction

(training data). Right: Target location relative to land-

mark.

of movement (as opposed to the relation between

landmark and target location) is rarely mentioned

in the data, this bias is harmless for the generation

task.

Figure 3 (right) shows that among the landmarks

mentioned by the instructors, cardinal directions

dominate. In other words, in the data, the blocks

that are to be placed more often form straight lines

along the major axes.

We also investigated other potential influences

of block configuration on the structure of the in-

structions. In the training data, 78.44% of the in-

structions contain a reference to the block that is

positioned closest to the moved block’s target po-

sition, leading us to assume that landmarks in this

setting are typically chosen from the objects close

to the target. However, this cannot be considered

a (negative) bias in the data, but rather indicates a

task-specific strategy.

We have already mentioned above that due to

the design of the task in the original dataset, there

is a bias for the landmark to be an “alphabetically

close” block. (That is, in the final configuration,

block 3 will be next to blocks 2 and 4, and so on;

the same with a canonical ordering of the logo

blocks.) This is a bias that a learner could indeed

pick up on and use to simplify the task of naming

a landmark; if the visual task of identifying the

target block succeeded, a likely landmark can be

named without verifying visually. However, cor-

rectly identifying the spatial relation still requires

input from the scene.

3.4 BLOCKSgen

We release BLOCKSgen, an augmentation of

BLOCKS for the tasks of IG-BA. Besides the in-

struction and scene parsers described above, the

augmentation also contains a rule-based genera-

tor that creates simple and correct instructions

out of the symbolic state representations. The

templates we use are shown in the Appendix.

The original dataset is available from https://

groundedlanguage.github.io/. By the time of

the conference, we will make our additions publicly

available as well.



4 Baselines for IG-BA

4.1 Task Variants

The main task of IG-BA is as defined above: Given

a pair (it, it+1) of Before and After images, gener-

ate a verbal instruction e that would tell an imag-

ined instruction follower how to turn the former

state into the latter; the generator is to be trained

on the respective instructions Et→t+1 found in the

corpus.

To analyse where the difficulties in this task lie

for the various model types that we apply, we also

define variants of this task at the image understand-

ing and at the language generation phase. For im-

age understanding, we support the model by per-

forming simple pixel-wise operations, resulting in

modified versions of the image pair: subtracted

(it+1 − it), in which only the moved block remains

visible; added (it+1 + it), in which all blocks re-

main visible, with the target block differing visually.

Figure 4 provides an example respectively. In both,

we put subtract and add side-by-side.

Figure 4: Snippets of samples for the add (left side)

and subtract (right side) operation on an image pair.

Arrows and boxes only for visual aid. The right side

is inverted in colors for better printing.

We also side-step image processing completely,

by turning the symbolic state representations into

a 112-dimensional input vector: 20 dimensions for

a one-hot encoding of the target block identity, 8

dimensions for the movement direction; and for

up to 3 possible landmarks, their identity (20 di-

mensions) and spatial relation to the target location

(8 dimensions), parsed from the states using the

instruction parser (see 3.3). This variant will be

called symbolic-state below.

On the language generation side, we simplify

the task by using output of the template generator

from section 3.4 as training material, hence mas-

sively reducing the variability on the output side.

(Below, synthetic-out.)

These modifications give us a range of com-

binations that allow us to quantify the difficulty

of the component tasks, with the expectation that

symbolic-state/synthetic-out should be the easiest

variant, and full (no preprocessing) the hardest.

4.2 Model Types

We also test different types of generation models.

NN-retrieve As a baseline, we use a retrieval ap-

proach (as done for example by Devlin et al. (2015)

for image captioning). We put the images of the

pair side-by-side and encode the resulting image

using a pretrained ResNet101 (He et al., 2016) up

to the final pre-classification layer (d = 2048). The

width of the concatenated image is 240 pixel, the

height 180 as we resize it after concatenation to

half the size. At test time, we retrieve the nearest

neighbour of the test image in the training data and

sample an instruction from its instruction set.

CNN+LSTM A simple, but efficient approach

to Image Captioning is to use an encoder-decoder

architecture with a pretrained image model as en-

coder and a language model as decoder (Vinyals

et al., 2014). We study to what degree this approach

can also work for our task. We again encode images

using a pretrained ResNet101(He et al., 2016), re-

sulting in a 2048-dimensional representation. The

language model is implemented using a standard

LSTM with hidden size 512. We initialize the hid-

den state of the LSTM by feeding in the feature

vector produced by the image encoder at time step

ti−1. Initial experiments showed that also adding

the image vector at each successive step did not

improve quality (supporting similar findings by

Vinyals et al. (2014)).

CNN+LSTM+Attention This model type ex-

tends the previous one in two aspects: first, it

initializes hidden and cell state of the LSTM di-

rectly, meaning the initial encoded image features

are transformed with a linear layer and passed to

the network. In the simple version, the hidden state

is initialized by feeding the feature vector as input

before the first time step. Second, an Attention

mechanism is used to produce a weighted image

feature vector on each time step conditioned by the

current hidden state of the LSTM. For prediction,

this feature vector is concatenated with the pre-

viously generated word and fed into the network,

following Xu et al. (2015). We set the hidden size



of the LSTM to 512 and the Attention dimension to

128 dimensions. The images are encoded as above.

Figure 5: Architecture of the Show, Attend and Tell

model applied to Blocks Dataset. The input image

looks distorted, because we halve the original image

widths for horizontal concatenation while keeping the

heights.

Template Generator Given symbolically repre-

sented states, we can also use the template genera-

tor described above to generate instructions for the

test set. The generated instructions are guaranteed

to express correct information, at the cost of nat-

uralness, and so can serve as an upper bound on

semantic metrics.

4.3 Evaluation Metrics

In the test set, we have available both the symbolic

representation of the states (and hence objectively

know what the required change is) and the set of

reference instructions E. We define metrics making

use of either.

We use common metrics from caption genera-

tion: BLEU-4, measuring token overlap up to 4-

grams (Papineni et al., 2002); CIDEr, measuring

overlap based on the consensus of reference instruc-

tions (Vedantam et al., 2015), METEOR (Baner-

jee and Lavie, 2005), measuring unigram overlap

with advanced normalization like stemming and

synonym comparison, and ROUGE-L (Lin, 2004)

which measures similarity based on longest com-

mon subsequences. We apply each individual met-

ric by comparing the generated instruction against

all available reference instructions for the respec-

tive image pair using the pycocoevalcap library.4

To better analyse task performance, where it mat-

ters that the blocks are correctly referred to, we also

parse the generated instructions using our instruc-

tion parser, to extract what was mentioned as target

block and as landmark. We can then compare these

4https://github.com/salaniz/pycocoevalcap

to either the objectively determined action param-

eters (we will call this variant Ground Truth (GT)

below) or to those mentioned in the reference set

(Ref ). The target block will be identical in both,

but as discussed above, there is some variance in

which blocks were considered landmarks. For GT,

we compare the landmarks against the three blocks

closest to the target position (cf. 3.3.1).

Starget =
Correct Targets

All Generated Targets
(1)

Slandmarks =

∑N

i

|Gi∩Pi|
|Pi|

N
(2)

where N is the total number of predicted instruc-

tions. Gi is the set of all correct landmarks and Pi

the set of all predicted landmarks.

4.4 Experiments

We train all of our models on the BLOCKS dataset

using the original splits. Depending on task vari-

ant, we either provide a single template-generated

instruction as training example, or the 9 human-

generated ones from the original corpus. We train

and evaluate separately for the logo and digits vari-

ants.

We train the models for a maximum of 50 epochs

and early stopping with patience of 15 epochs. The

parameters are optimized using the Adam Opti-

mization Algorithm (Kingma and Ba, 2015). The

CNN+LSTM is configured with hidden size and

embedding size of 512 dimensions (except for the

task variant using manually extracted feature vec-

tors where the input size is 116 dimensions). The

extended version using an attended image input at

each time step t is configured with the same embed-

ding and hidden size. Additionally, the attention

dimensions are set to 128 and dropout with p = 0.5
is applied to the output of the LSTM before it is

fed into the linear prediction layer.

5 Results and Discussion

All models reach a performance plateau within the

maximum number of epochs. The results of the

baselines are reported in Table 6 for experiments

with the logo data. For the digit data, the perfor-

mance in general is worse but supports the same

conclusions (see Appendix C and D). This might

be due to the image encoder working better with

logos than numbers.

First, we present some samples of the generated

instruction from the various models in table 5. They

are randomly picked from the set of all generated



Image Reference Template CNN+LSTM CNN+LSTM+Att.

move the burger
king block directly
south of the bmw
block.

take block burger
king and move it be-
low block bmw

move the burger
king block to the
left of the coca cola
block .

move the burger
king block below
the nvidia block.

move the burger
king cube directly
next to the coca -
cola cube touching
it ’s left side

take block burger
king and move it
to the left of block
coca cola

move the adidas
block to the left of
the bmw block .

put the burger king
block in the first
open space to the
left of the esso
block.

take the pepsi block
from the bottom and
move it to the right
of and in contact
with the mcdonald
’s block in the cen-
ter .

pick up block pepsi
and move it to the
right of block mc-
donalds

move the shell
block to the right
of the mcdonalds
block .

put the pepsi block
in the first open
space to the right
of the mcdonalds
block.

Table 5: Generated instructions by neural and template-based models for image pairs Ib (add and subtract modifi-

cation combined) on logo data. The sample images provided here are not the ones used for prediction, because it

would be much harder to see the individual blocks on those. Arrows and boxes only for visual aid.

instructions. Some of the generated instructions are

not fully correct, e.g. the one in the first row of table

5 uses an incorrect reference block. This indicates

the model’s weakness in correctly understanding

spatial relations. In the second and third sample,

models use the correct relative position (left/right),

so they were able to learn at least some of the

spatial information. Next, we discuss the results in

terms of the metrics presented in section 4.3.

NN-retrieve is the lower bound baseline and per-

forms poorly. This indicates that the image encod-

ings are not enough to retrieve appropriate instruc-

tions for an unseen image pair. The CNN+LSTM

based models can improve on this lower bound.

BLEU score jumps up by over 0.2 so the model

is able to produce instructions that are more simi-

lar to the references than those NN-retrieve selects

from the most similar pair. Target and landmark

match improve as well, however only landmark by

a bigger margin.

This model type improves further when pre-

sented with the pre-processed image (here, only

both is shown; a more detailed discussion will be

given below). It improves on all metrics, which

suggests that the image component cannot on its

own extract the information that the pre-processing

makes available.

Adding an attention mechanism improves

(CNN+LSTM+Att vs CNN+LSTM), but the gain

of pre-processing the image (CNN+LSTM+Att+Ib)

remains. Overall, that model achieves the best re-

sults (among the trained models). Interestingly, the

improvement on the task-specific metrics Target

and Landmark is not directly reflected by improve-

ments on the string-based metrics. For example,

on BLEU, the full model is substantially worse

than the variant without attention, even though it is

substantially better at naming the target block.

Generally, all generation models conditioned on

images in Table 6 achieve a target accuracy that

is rather unsatisfactory or even dramatically low

(e.g. the CNN-LSTM model). Since instructions

that do not mention the right target block have an

extremely low chance of being communicatively

successful when interacting with a user, none of

the models can be considered ready to be tested in

a dialogue set-up.

5.1 Model study

To investigate the contribution of the various

component-tasks , we zoom into one of the mod-



Model BLEU METEOR CIDEr ROUGE-L GTT GTLM RefT RefLM

NN-retrieve 0.1057 0.0853 0.2567 0.0658 0.0559 0.0890 0.0726 0.1027
CNN+LSTM 0.3565 0.2764 0.2659 0.7114 0.0809 0.193 0.1098 0.2398
CNN+LSTM+Ib 0.4238 0.3055 0.6245 0.7241 0.3136 0.2857 0.3136 0.3071
CNN+LSTM+Att 0.3879 0.2812 0.2686 0.6505 0.1017 0.3176 0.113 0.2824
CNN+LSTM+Att+Ib 0.2766 0.1713 0.6350 0.3384 0.5575 0.2738 0.5747 0.3214

Template 0.3394 0.7528 0.4730 0.2632 1.0 1.0 1.0 0.9945

Table 6: Model performance on the BLOCKS data with logos with natural instructions. Ib denotes the both variant

of the image. For the Template model, we compare each template instruction with the human references. In each

column, the highest score (except those from template model) is marked in bold.

els, CNN+LSTM, and show its performance on the

variant tasks defined above. (The attention model

is not suited to work with the symbolic input repre-

sentation and hence is not used here.)

Modification ∆ BLEU ∆ GTT ∆ GTLM

none (0.3565) (0.0809) (0.193)

add -0.026 0.0497 -0.0055
sub -0.0583 0.0939 -0.0055
both 0.0673 0.2155 0.0387
state 0.2058 0.8287 0.6133
state + synthetic 0.5047 0.8950 0.7182

Table 7: Delta of CNN+LSTM performance with mod-

ified image inputs on logo data and natural instructions.

(For none: actual value.)

As Table 7 shows, all image modifications pro-

vide useful additional information to the model,

which improves its performance on naming the tar-

get block correctly. Interestingly, only the both

variant (which was already listed in Table 6 above)

leads to an improvement on the landmarks as

well. Side-stepping the image processing (state)

improves the output substantially, suggesting that

the very simple image encoding that we use here,

which served the image captioning task well in the

original papers by Vinyals et al. (2014) and Xu et al.

(2015), is not enough for this task. Finally, giving

the model an easier generation target (synthetic)

improves the performance to a degree that comes

near that of the template generator. (This is perhaps

not too surprising, but still good to see.)

As a final check, we report the performance of

the template generation model (see Table 6). Com-

pared to the CNN+LSTM model that is conditioned

on state representations, it performs quite poorly

on BLEU, as it captures very little of the variance

of the natural data. However, on the task-specific

metrics, it performs near optimal. (The difference

to 1 on the landmark selection is due to the fact that

the instruction givers sometimes picked differently

from the scene parser, which is to be expected.)

6 Conclusion

We have introduced the task of Instruction Giving

from Before/After Images (IG-BA), and shown that

an existing dataset for instruction following can be

used to train a model for this task. For the model,

we used established architectures that have served

the task of image captioning well. Through var-

ious analyses of the model, we have shown that

their image processing capabilities seem to form a

bottleneck; when provided with a pre-parsed scene

representation, the quality of the generated instruc-

tions improves considerably. This suggests a clear

route for future work, namely to improve the image

processing capabilities, possibly along the lines of

the recent, related work on change captioning (Park

et al., 2019). The results that we have achieved are

nevertheless encouraging that a performance can be

achieved that can support our ultimate goal, which

is to construct a system for interactive and collabo-

rative instruction following in an assembly domain

like shown in figure 1.

In comparison to the blocks data set, figures of

assembly instructions are much more complex as

they include changes of point of view, rotations on

different axis and special informative pictograms

(e.g. the cordless drill driver in figure 1). Addition-

ally, the instructions may refer to previous steps or

have more variability because of the less defined

naming. For example, the figure above may re-

quires the model to describe ”the screw with the

long, smaller head must be screwed without a drill

driver until its middle par hits the wood surface”.

For future work, the language generation compo-

nent of such system must be able to generate the

instruction incrementally and describe the actions

including advice of execution in the instruction.
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