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Abstract

This paper presents a novel fusion method
for integrating an external language model
(LM) into the Transformer based sequence-
to-sequence (seq2seq) model. While paired
data are basically required to train the seq2seq
model, the external LM can be trained with
only unpaired data. Thus, it is important to
leverage memorized knowledge in the external
LM for building the seq2seq model, since it is
hard to prepare a large amount of paired data.
However, the existing fusion methods assume
that the LM is integrated with recurrent neural
network-based seq2seq models instead of the
Transformer. Therefore, this paper proposes a
fusion method that can explicitly utilize net-
work structures in the Transformer. The pro-
posed method, called memory attentive fu-
sion, leverages the Transformer-style attention
mechanism that repeats source-target attention
in a multi-hop manner for reading the mem-
orized knowledge in the LM. Our experiments
on two text-style conversion tasks demonstrate
that the proposed method performs better than
conventional fusion methods.

1 Introduction

In recent studies, the Transformer sequence-to-
sequence (seq2seq) model (Vaswani et al., 2017)
has successfully performed in various natural lan-
guage generation tasks, such as machine transla-
tion (Wang et al., 2019; Barrault et al., 2019), im-
age captioning (Li et al., 2019b; Yu et al., 2019;
Li et al., 2019a), and automatic speech recogni-
tion (Dong et al., 2018; Karita et al., 2019; Salazar
et al., 2019). Although the Transformer training
needs paired data, a large amount of paired data
cannot often be prepared. Moreover, unpaired data
cannot be used for training the Transformer even
though such data can be collected on a large scale.

To utilize a large amount of unpaired data,
methods of integrating an external language model
(LM) trained with these data into seq2seq mod-

els have been proposed (Kannan et al., 2018; Gul-
cehre et al., 2015; Sriram et al., 2018). These
methods can improve the fluency of sentences
that are generated by seq2seq models; however,
they integrate the LM into recurrent neural net-
work (RNN) based seq2seq models rather than the
Transformer. In other words, LM fusion methods
specific to the Transformer have not been consid-
ered yet.

Here, the Transformer employs the multi-hop
attention mechanism (Sukhbaatar et al., 2015) that
repeats the source-target attention mechanism in
each Transformer decoder block. Thus, it is sup-
posed that the source-target attention mechanism
promotes to extract effective source information
for target tasks more exactly than RNN based
seq2seq models. Therefore, we assume that the
Transformer can utilize memorized knowledge in
the external LM more effectively by using the
multi-hop attention mechanism for the LM fusion.

In this paper, we propose a novel fusion method,
called memory attentive fusion, to integrate an
external LM into the Transformer. This fu-
sion method utilizes a multi-hop source-target
attention mechanism for combining the Trans-
former decoder with the external LM. We per-
formed experiments with two text-style conver-
sion tasks: spoken-to-written style conversion and
dialect conversion. Our experiments demonstrate
that the proposed method performs better than
conventional fusion methods.

2 Related work

The simplest fusion method is to train the seq2seq
model and the LM independently and then com-
bine their outputs (Kannan et al., 2018; Chorowski
and Jaitly, 2017; Sutskever et al., 2014). These
methods are called shallow fusion. More-
over, methods that integrate an external LM into
seq2seq models during training have been pro-
posed: deep fusion (Gulcehre et al., 2015) and
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cold fusion (Sriram et al., 2018). These methods
utilize the information of not only paired data but
also unpaired data in training. Figure 1 shows a
Transformer with cold fusion. These methods as-
sume that the LM is integrated into RNN-based
seq2seq models instead of the Transformer.

3 Memory attentive fusion

This section details memory attentive fusion for
the Transformer seq2seq model. In fact, memory
attentive fusion is an extended method of the cold
fusion (Sriram et al., 2018). While the cold fu-
sion uses memorized knowledge in the LM at an
output layer only once, the memory attentive fu-
sion repeatedly uses the knowledge at Transformer
decoder blocks based on a source-target attention
mechanism.

We define an input sequence as X =
{x1, · · · , xM} and an output sequence as Y =
{y1, · · · , yN}, where xm and yn are tokens in the
input and output sequence. In text-style conver-
sion, the model predicts the generation probabil-
ities of the output sequence given the input se-
quence. The generation probability of Y is de-
fined as

P (Y |X;Θ) =
N∏

n=1

P (yn|y1:n−1,X;Θ), (1)

where Θ = {θenc, θdec, θlm} represents model pa-
rameter sets. θenc and θdec are trainable parameter
sets with encoder and decoder, respectively. θlm is
parameter set for the external LM. P (yn|y1:n−1,
X;Θ) can be computed using an encoder and
a decoder with memory attentive fusion in the
Transformer. Figure 2 shows the Transformer with
memory attentive fusion.

Encoder: The encoder converts an input se-
quence X into the hidden representations S(K)

using K Transformer encoder blocks. First, the
input hidden representation of the Transformer en-
coder block S(0) = {s(0)1:M} is produced by

s(0)m = Embedding(xm; θenc), (2)

where Embedding(·) consists of positional encod-
ing and a linear layer. Next, the k-th Transformer
encoder block composes the k-th hidden represen-
tations S(k) from the lower inputs S(k−1) as

S(k) = TransformerEncBlock(S(k−1); θenc),
(3)
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Figure 1: Transformer with cold fusion.
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Figure 2: Transformer with memory attentive fusion.

where TransformeEncBlock(·) is the Trans-
former encoder block that consists of a scaled
dot product multi-head self-attention layer and
a position-wise feed-forward network (Vaswani
et al., 2017).

Decoder with memory attentive fusion: The
decoder with memory attentive fusion computes
the generation probability of a token from the pre-
ceding tokens and hidden representations of the
input sequence and the LM information. The pre-
dicted probabilities of the n-th token yn are calcu-
lated as

P (yn|y1:n−1,X) = softmax(u(J)
n ; θdec), (4)

where softmax(·) is a softmax layer with a lin-
ear transformation. The input hidden vector u(J)

n

is computed from S(K) and y1:n−1 using J Trans-
former decoder blocks with an external LM. First,
the input hidden representation of the Transformer
decoder block u

(0)
n−1 and hLM

n−1 are produced by

u
(0)
n−1 = Embedding(yn−1; θdec), (5)

lLMn−1 = LanguageModel(y1:n−1; θlm), (6)

hLM
n−1 = linear(lLMn−1; θdec), (7)
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where LanguageModel(·) is the trained external
LM, and lLMn−1 is the logit output. Next, we convert

hidden representations in the lower layer u
(j−1)
1:n−1

and the encoder output S(k) into a hidden vector
c
(j)
n . The hidden vector is computed as

v̄(j)
n = SourceTarget(u

(j−1)
1:n−1,u

(j−1)
n−1 ; θdec),

(8)

v(j)
n = LayerNorm(u

(j−1)
n−1 + v̄(j)

n ), (9)

c̄(j)n = SourceTarget(S(K),v(j)
n ; θdec), (10)

c(j)n = LayerNorm(v(j)
n + c̄(j)n ), (11)

where SourceTarget(·) is a scaled dot prod-
uct multi-head source target attention layer and
LayerNorm(·) is layer normalization (Ba et al.,
2016). In memory attentive fusion, we also con-
vert the LM output hLM

1:n−1 and the hidden vector

v
(j)
n into a hidden vector b(j)n with attention mech-

anism. The hidden vector is computed as

b̄(j)n = SourceTarget(hLM
1:n−1,v

(j)
n ; θdec), (12)

b(j)n = LayerNorm(v(j)
n + b̄(j)n ). (13)

This attention mechanism is repeated with Trans-
former decoder block in the multi-hop manner.
Therefore, we expect to read the memorized mem-
ory in the LM effectively. Next, we concatenate
the hidden vector that have target and source in-
formation, and that have target and the LM infor-
mation with gating mechanism by

g(j)
n = sigmoid([c(j)n

T
, b(j)n

T
]T; θdec), (14)

q(j)n = [c(j)n

T
, g(j)

n ⊙ b(j)n

T
]T, (15)

where sigmoid(·) is a sigmoid layer with a lin-
ear transformation. Next, the hidden vector q(j)n is
converted into the j-th hidden representation u

(j)
n .

The hidden representation is computed as

ū(j)
n = FeedForward(q(j)n ; θdec), (16)

u(j)
n = LayerNorm(q(j)n + ū(j)

n ), (17)

where FeedForwrd(·) is a position-wise feed-
forward network.

Training: In the Transformer, the model param-
eter set can be optimized from training dataset
D = {(X1,Y 1), · · · , (X |D|,Y |D|)}. The objec-
tive function for optimizing the model parameter

is defined as

L = − 1

|D|

|D|∑
d=1

logP (Y d|Xd;Θ). (18)

Note that the external LM uses the freezing param-
eter θlm.

4 Experiments

We evaluated our method on text-style conversion
tasks. In particular, we chose spoken-to-written
style conversion task and dialect conversion task
in Japanese. In the spoken-to-written style conver-
sion task, spoken-style text produced by an auto-
matic speech recognition system is converted into
written-style text that has correct punctuation and
no disfluency (Ihori et al., 2020). In the dialect
conversion task, Japanese dialects are converted
into standard Japanese.

4.1 Datasets

Spoken-to-written style conversion: We used
the Corpus of Spontaneous Japanese (CSJ)
(Maekawa et al., 2000) and the parallel corpus
for Japanese spoken-to-written style conversion
(CJSW) (Ihori et al., 2020). We divided the CSJ
into a training set, validation set, and test set.
The training set, validation set, and test set have
46,847, 13,510, and 3,949 sentences, respectively.
The CJSW has four domains, and we divided it up
following (Ihori et al., 2020). We used all of the
training and validation sets for training and each
test set (CJSW-1, 2, 3, 4) for the evaluation. All
of these datasets are paired data of spoken-style
text (manual transcriptions of speech) and written-
style text (created with crowd-sourcing).

Dialect conversion: We prepared three paired
data of dialects (Tohoku-ben, Osaka-ben, Kyushu-
ben) and standard Japanese with crowd-sourcing.
We divided these data into a training set, valida-
tion set, and test set for each dialect. We used all
of the training and validation sets for training and
three test sets for the evaluation. The training set,
validation set and test set have 15,506, 3,924 and
2,160 sentences, respectively. Moreover, the test
set consists of 700 Tohoku-ben, 862 Osaka-ben,
and 598 Kyushu-ben sentences, respectively.

External text: We prepared a large-scale
Japanese web text as the unpaired written-style
text data. The Web text was downloaded from
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various topic Web pages using our home-made
crawler. The downloaded pages were filtered in
such a way that HTML tags, Javascript codes and
other parts that were not useful for these tasks
were excluded. Finally, we prepare one million
sentences for training the external LM. Moreover,
we divided this data into a training set, validation
set. The training set and validation set have
800,000 and 200,000 sentences, respectively.

4.2 Setups

Transformer: We constructed the Transformer
with shallow fusion (Kannan et al., 2018), cold fu-
sion (Sriram et al., 2018) and memory attentive
fusion methods. In addition, we constructed the
Transformer without fusion methods as a baseline.
We used the following configurations. The dimen-
sions of the output continuous representations and
the inner outputs in the position-wise feed-forward
network were set to 256, and the number of heads
in the multi-head attentions was set to 8. ReLU
activation was used in nonlinear transformation
function. We stacked 4-layer Transformer encoder
blocks, and 2-layer Transformer decoder blocks.
We set the output unit size (witch corresponded to
the amount of tokens in the training set for lan-
guage model) to 5,640. To train these models, we
used the adam optimizer and label smoothing with
a smoothing parameter of 0.1. The training steps
were stopped based on early stopping using the
part of the training data. We set the mini-batch size
to 64 sentences and the dropout rate in the Trans-
former blocks to 0.2. For the mini-batch training,
we truncated each sentence to 200 tokens. We
used characters as tokens. All trainable parameters
were randomly initialized. For the decoding, we
used a beam search algorithm in which the beam
size was set to 4.

External LM: We utilized Open AI GPT (Rad-
ford et al., 2019) for the LM fusion, although any
LM can potentially be used. We used the follow-
ing configurations. The number of heads in the
multi-head attentions was set to 4. We stacked 8-
layer Transformer blocks. The training steps were
stopped based on early stopping using the part of
the training data. We set the dropout rate in the
Transformer blocks to 0.1. The other settings were
the same as the Transformer settings. After train-
ing, perplexity of this LM was 11.8. Note that
this LM was used in both two tasks and the Trans-
former and the external LM were not pre-trained.

4.3 Results

Table 1 shows the experimental results in the
spoken-to-written style conversion task. Also, Ta-
ble 2 shows the experimental results in the dialect
conversion task. We calculated automatic evalua-
tion scores in three metrics: BLEU-3 (B-3) (Pa-
pineni et al., 2002), ROUGE-L (R-L) (Lin and
Och, 2004), and METEOR (Banerjee and Lavie,
2005). Baseline in the tables mean the results of
the Transformer without the external LM.

Table 1 shows that shallow fusion and cold fu-
sion performed worse than the baseline on the CSJ
dataset. On the other hand, memory attentive fu-
sion outperformed the baseline. Moreover, mem-
ory attentive fusion outperformed the baseline and
shallow fusion on the CJSW dataset. In addition,
cold fusion outperformed the baseline on CJSW-1,
-3 and -4. As in the spoken-to-written style con-
version task, Table 2 shows that memory attentive
fusion outperformed the other methods.

The above results show that shallow fusion is
not suitable for the Transformer because it de-
graded performance in all cases. Moreover, when
the LM was integrated with cold fusion, the per-
formance was better than baseline in some do-
mains. Thus, we consider that cold fusion can be
used with the Transformer in limited cases.

Test set B-3 R-L METEOR

CSJ

a). 0.667 0.855 0.853
b). 0.667 0.850 0.853
c). 0.657 0.852 0.847
d). 0.669 0.860 0.856

CJSW-1

a). 0.723 0.785 0.881
b). 0.705 0.775 0.870
c). 0.734 0.791 0.889
d). 0.735 0.792 0.887

CJSW-2

a). 0.657 0.718 0.847
b). 0.630 0.702 0.830
c). 0.655 0.714 0.840
d). 0.671 0.726 0.859

CJSW-3

a). 0.671 0.732 0.839
b). 0.663 0.726 0.836
c). 0.672 0.73 0.842
d). 0.686 0.737 0.85

CJSW-4

a). 0.772 0.818 0.898
b). 0.752 0.806 0.884
c). 0.775 0.819 0.897
d). 0.779 0.821 0.900

a). Baseline b). Shallow fusion
c). Cold fusion d). Memory attentive fusion

Table 1: Results on spoken-to-written style conversion
tasks.
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Test set B-3 R-L METEOR

Osaka-ben

a). 0.649 0.784 0.790
b). 0.638 0.774 0.780
c). 0.648 0.784 0.787
d). 0.663 0.795 0.802

Kyushu-ben

a). 0.741 0.857 0.872
b). 0.729 0.849 0.859
c). 0.738 0.855 0.867
d). 0.752 0.864 0.880

Tohoku-ben

a). 0.619 0.767 0.742
b). 0.603 0.755 0.721
c). 0.610 0.761 0.730
d). 0.630 0.772 0.752

a). Baseline b). Shallow fusion
c). Cold fusion d). Memory attentive fusion

Table 2: Results on dialect conversion tasks.

Figure 3: Example of spoken-to-written style conver-
sion in CSJ dataset with each fusion method.

On the other hand, memory attentive fusion out-
performed the other fusion methods in almost all
of the domains and tasks. Therefore, we consider
that memory attentive fusion is suitable for inte-
gration of the external LM into the Transformer.
In addition, memory attentive fusion worked well
especially in the dialect conversion task. Thus,
we can infer that the fusion method for the Trans-
former is more effective when there is small train-
ing data.

We show the converted example of spoken-to-
written style conversion in CSJ dataset with each
fusion method in Figure 3. Figure 3 shows that
the word “新鮮” (flesh) was output correctly with
memory attentive fusion, but other methods were
not output the word correctly. The word “新鮮”
was not included in training data for the Trans-
former, but it was included in training data for the
external LM. This indicate that only memory at-
tentive fusion was successful in extracting knowl-
edge of the external LM.

5 Conclusion

We proposed memory attentive fusion, a novel
method to integrate an external LM into the Trans-
former. Conventional fusion methods assume
that the LM is integrated into the RNN-based
seq2seq. On the other hand, the proposed method

employs a Transformer-specific fusion method
which repeats the attention mechanism for the LM
many times. Experiments demonstrated that the
proposed method outperformed the conventional
methods in two tasks. We conclude that the pro-
posed method is suitable for integrating the LM
into the Transformer. In the future work, we will
try using the proposed method in other natural lan-
guage generation tasks such as automatic speech
recognition.
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