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Abstract

This paper illustrates the details description
of technical text classification system and
its results that developed as a part of
participation in the shared task TechDofication
2020. The shared task consists of two
sub-tasks: (i) first task identify the coarse-
grained technical domain of given text in
a specified language and (ii) the second
task classify a text of computer science
domain into fine-grained sub-domains. A
classification system (called ’TechTexC’) is
developed to perform the classification task
using three techniques: convolution neural
network (CNN), bidirectional long short term
memory (BiLSTM) network, and combined
CNN with BiLSTM. Results show that CNN
with BiLSTM model outperforms the other
techniques concerning task-1 of sub-tasks (a,
b, c and g) and task-2a. This combined
model obtained f1 scores of 82.63 (sub-task
a), 81.95 (sub-task b), 82.39 (sub-task c),
84.37 (sub-task g), and 67.44 (task-2a) on the
development dataset. Moreover, in the case
of test set, the combined CNN with BiLSTM
approach achieved that higher accuracy for
the subtasks 1a (70.76%), 1b (79.97%), 1c
(65.45%), 1g (49.23%) and 2a (70.14%).

1 Introduction

Due to the substantial growth and effortless access
to the Internet in recent years, an enormous amount
of unstructured textual contents have generated. It
is a crucial task to organize or structure such a
voluminous unstructured text in manually. Thus,
automatic classification can be useful to manipulate
a huge amount of texts, and extract meaningful
insights which save a lot of time and money.
Text categorization is a classical NLP problem
which aims to categorize texts into organized
groups. It has a wide range of applications
like machine translation, question answering,

summarization, and sentiment analysis. There
are several approaches available to classify texts
according to their labels. However, deep learning
method outperforms the rule-based and machine
learning-based models because of their ability to
capture sequential and semantic information from
texts (Minaee et al., 2020). We propose a classifier
using CNN (Jacovi et al., 2018), and BiLSTM
(Zhou et al., 2016) to classify technical texts in
the computer science domain. Furthermore, by
sequentially adding these networks, remarkable
accuracy in several shared classification tasks can
be obtained. The rest of the paper is organized as
follows: related work given in section 2. Section 3
describes the dataset. The framework described in
section 4. The findings presented in section 5.

2 Related Work

CNN and LSTM have achieved great success in
various NLP tasks such as sentence classification,
document categorization, sentiment analysis, and
summarization. Kim (2014) used convolution
neural network to classify sentences. A method
used contents and citations to classify scientific
document (Cao and Gao). Zhou et al. (2016)
used 2-D max pooling and bidirectional LSTM
to classify texts. Zhou et al. (2015) combined
CNN and LSTM to classify sentiment and question
type. Their system achieved superior accuracy
than CNN and LSTM individually. Hossain et al.
(2020) used LSTM to classify sentiment of Bengali
text documents. Their system got maximum
accuracy with one layer of LSTM followed by
three dense layers. Ranjan et al. (2017) proposed
a document classification framework using LSTM
and feature selection algorithms. Ameur et al.
(2020) combined CNN and RNN methods to
categorize Arabic texts. They used dynamic, fine-
tuned words embedding to get effective result on
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open-source Arabic dataset.

3 Dataset

To develop the classifier model, we used the
dataset provided by the organizers of the shared
task1. This shared task consists of two subtasks:
subtask-1 and subtask-2. Subtask-1 aims to
the identification of coarse-grained domain for a
piece of text. Organizers provided data including
eight different languages (English, Bangla, Hindi,
Gujarati, Malayalam, Marathi, Tamil, Telugu)
each having a different number of classes for this
task. In subtask-2, the goal is to find the fine-
grained sub domain of a text from the computer
science domains. Seven classes such as artificial
intelligence, algorithm, computer architecture,
computer networks, database management systems,
programming, software engineering are available in
this subtask-2. The number of training, validation
and test texts for each of the task is different.
Summary of the dataset presents in table 1.

Task No. of
classes Train Dev Test

task-1a 5 23962 4850 2500
task-1b 5 58500 5842 1923
task-1c 5 36009 5724 2682
task-1d 7 148445 14338 4211
task-1e 3 40669 3390 1514
task-1f 4 41997 3780 1788
task-1g 6 72483 6190 2070
task-1h 6 68865 5920 2611
task-2a 7 13580 1360 1929

Table 1: Dataset description

4 System Overview

Figure 1 shows the schematic diagram of the
proposed system. The system has four major parts:
preprocessing, feature extraction, classifier model
and prediction. After processing the raw texts,
Word2Vec word embedding technique is applied
on the processed texts to extract features. After
exploiting inherent features of the texts, the model
trained with CNN, BiLSTM and combination of
CNN & BiLSTM.. Finally, the trained model will
use to predict the class on the development set.

1https://ssmt.iiit.ac.in/techdofication.html

4.1 Preprocessing

In this step, all the punctuation’s (,.;:”!) and
flawed characters (#,$, %,*,@) removed from the
input texts. Texts are having a length of fewer
than two words also discarded. Deep learning
algorithms could not possibly learn from the raw
texts. Thus, a numeric mapping of the input texts
is created. A vocabulary of K unique words is
developed and each input text encoded into numeric
sequences based on word index in vocabulary. By
applying the pad sequence method, each sequence
converted into fixed-length vector. We choose
optimal sequence length 100 as most of the length
of the text ranges between 30-70 words. In order to
maintain a fixed length of inputs, zero paddings are
used with the short text, and extra values discarded
from the long sequences.

4.2 Feature Extraction

To extract features from texts and capture semantic
property of a word Word2Vec (Mikolov et al.,
2013) embedding technique is used. Embedding
maps textual data into a dense vector by solving the
sparsity problem. We use the default embedding
layer of Keras to produce embedding matrix.
Embedding layer has three parameters: vocabulary
size, embedding dimension and length of texts.
Embedding dimension determine the size of the
dense word vector. The entire corpus is fitted into
the embedding layer for a specific subtask and
choose 100 as embedding dimension for all the
subtasks. Features extracted from the embedding
layer propagated the rest of the network.

4.3 Classifier Model

In this work, CNN and BiLSTM are used for
initial model building. However, after combining
these methods, we get superior results in several
subtasks (Zhou et al., 2015). A description of the
proposed architecture illustrates in the subsequent
paragraphs.

CNN: In CNN, convolution filters capture the
inherent syntactic and semantic features of the
texts. The proposed classifier considers two layers,
one dimensional CNN. In each layer, there are
128 filters with kernel size 5. To downsample the
features on CNN max-pooling technique is utilized
where pool size is 1×5. We have used a non-linear
activation function ‘relu’ with CNN.
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Figure 1: Schematic diagram of our system

BiLSTM: We use Bidirectional LSTM network
to capture the sequential features from the input
text and to avoid vanishing/exploding gradient
problems of simple RNN. We use two layers of
BiLSTM on top of each other, where each layer has
128 LSTM cells. In order to reduce the overfitting
on training data, the dropout technique is used with
a dropout rate of 0.2. After achieving the hidden
representation form, the LSTM layer output passed
to the softmax layer for classification.

CNN+BiLSTM: In this approach, we merge
CNN and BiLSTM models with marginal
modification in network architecture. Previously,
we used two layers of CNN and BiLSTM, whereas
in this technique, discard one layer from each
network and combine them sequentially. Word
embedding features is feed to the CNN, which has
128 filters. After max pooling with a window of
size 5, features of CNN propagated to the LSTM
layer. It has 128 bidirectional cells to capture
the sequential information. In order to mitigate
overfitting, a dropout layer is added with a dropout
rate of 0.2. Finally, the softmax layer gets input
from the LSTM and perform classification.

4.4 Prediction

The goal of the prediction module is to determine
the technical domain of an input text that it
has never seen before. For the prediction,
sample instances are processed and converted into
numerical sequences by the tokenizer. Trained
model use this sequence to predict the associated
class of the input text.

5 Experiments

Google co-laboratory platform is used to conduct
experiments. Deep learning model developed with
Keras=2.4.0 framework with tensorflow=2.3.0 in

the backend. For data preparation and evaluation,
we use python=3.6.9 and secikit-learn=0.22.2.

5.1 Hyperparameter Settings
Performance of deep learning models heavily
depends on the hyperparameters used in training.
To choose the optimal hyperparameters for
the proposed model, we played with different
combinations. We choose parameter values based
on its effect on the output. Table 2 exhibits the
values of different hyperparameters considered to
train the proposed model. Adam optimizer is used

Hyperparameters Optimum value
Embedding dimension 100
Padding length 100
Filters 128
Kernel size 5
Pooling type max
Window size 5
LSTM cell 128
Dropout rate 0.2
Optimizer ‘adam’
Learning rate 0.001
Batch size 128

Table 2: Hyperparameter Settings

with a learning rate of 0.001. The model trained
with a batch size of 128 until a training accuracy
of 98% reached. We use Keras callbacks to save
the intermediate model during training with best
validation accuracy. The trained model used to
predict on the instances of development set.

5.2 Results
We determine the superiority of the models based
on their weighted f1 score on the development set
of different tasks. Table 3 shows the evaluation
results of CNN, BiLSTM and CNN+BiLSTM.
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Task CNN Bi-LSTM CNN+Bi-LSTM
P R F P R F P R F

task-1a (English) 81.48 81.36 81.4 82.81 82.52 82.52 82.9 82.54 82.63
task-1b (Bangla) 81.96 81.94 81.91 81.49 81.38 81.39 82.04 81.97 81.95
task-1c ( Gujarati) 82.63 82.39 82.38 82.79 82.05 82.06 82.58 82.41 82.39
task-1d (Hindi) 79.46 79.0 79.07 79.86 79.54 79.52 79.65 79.44 79.48
task-1e (Malayalam) 91.51 91.53 91.52 91.87 91.89 91.86 91.38 91.36 91.32
task-1f (Marathi) 85.93 85.93 85.84 86.47 86.53 86.48 86.57 86.51 86.38
task-1g (Tamil) 84.26 84.07 84.02 84.36 84.34 84.3 84.56 84.63 84.37
task-1h (Telegu) 86.85 86.82 86.78 87.64 87.34 87.41 87.17 87.14 87.13
task-2a (English) 64.36 63.82 63.83 66.45 65.51 65.72 67.86 67.35 67.44

Table 3: Evaluation results of three models on different tasks where P, R, F denotes precision, recall and weighted
f1 score.

Task Method A P R F
task-1a (English) CNN+BiLSTM 70.76 71.50 70.76 70.63
task-1b (Bangla) CNN+BiLSTM 79.97 81.50 82.41 80.25
task-1c ( Gujarati) CNN+BiLSTM 65.45 1.95 1.81 1.86
task-1d (Hindi) BiLSTM 57.28 57.13 55.99 54.57
task-1e (Malayalam) BiLSTM 31.37 0.32 0.18 0.19
task-1f (Marathi) BiLSTM 63.09 65.98 61.38 59.81
task-1g (Tamil) CNN+BiLSTM 49.23 48.38 61.34 43.70
task-1h (Telegu) BiLSTM 52.82 0.76 0.64 0.68
task-2a (English) CNN+BiLSTM 70.14 71.51 70.19 70.40

Table 4: Evaluation results on the test set. Here A, P, R, F denotes accuracy, precision, recall and weighted f1
score respectively.

The results revealed that BiLSTM model achieved
the higher f1 score of 79.52%, 91.86%, 86.48%
and 87.41% for tasks 1d, 1e, 1f and 1h. It
outperforms CNN model for all tasks. The reason
behind the superior results of LSTM because of
its capability to capture long-range dependencies.
However, combined CNN and BiLSTM provide
interesting insights. It outdoes previous BiLSTM
model in tasks 1a, 1b, 1c, 1g and 2a by obtaining
82.63%, 81.95%, 82.39%, 84.37% and 67.4%4 f1
scores. The model achieved 2% rise in f1 score
concerning task-2a where the fine-grained domain
of a text is identified. In all the cases, there exists
a small difference (< 0.5%) between the result of
BiLSTM and CNN+BiLSTM. By analyzing the
results, it observed that for a task with less number
of classes, all models achieved quite similar
performance. However, when the number of
classes increased, the BiLSTM and CNN+BiLSTM
models performed better than CNN. It is because
the CNN model could not capture sequential
feature as well compare to LSTM.

Table 4 shows the output of the best run

on the test set for each tasks. Based
on the performance of the development set,
methods are selected to predict on the test
set. Therefore, we use CNN+BiLSTM model
to predict on the tasks 1a, 1b, 1c, 1g and 2a.
Model achieved 70.63%, 80.25%, 1.86%, 43.70%
and 70.4% weighted f1 scores on these tasks
respectively. Unlike other tasks, precision, recall,
and f1 score are much lower for task 1c compare
to the validation results. This lower score might
happen due to some mistake during evaluation.
Task 2a get better f1 score on the test set to
compare to the development set. For other cases,
the performance of the methods degraded on the
development set.

BiLSTM method used to get the outputs for tasks
1d, 1e, 1f and 1h. Model obtained 57.13%, 0.32%,
65.98% and 0.76% weighted f1 scores on these
tasks. It suspected that some errors might occur
during evaluation for tasks 1e and 1h. The model
achieved 91.86% and 87.41% f1 scores on these
tasks for the validation set but got an implausible
result on the test set. This error might occur due to
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Unicode issues of different languages. Our system
also encountered an error when data read from the
text file. The performance of BiLSTM method
decreased in the test set than the validation set for
all tasks.

Precision, recall and f1 score have fallen for
each task in the test set except task 2a. Weighted
f1 score has increased by 2.5% in the test set. For
all the tasks, we observed a substantial variation
between the development set and test set results.
There might be two possible reasons behind this
unpredictable nature of the models. First one,
model is overfitted on the training set. Thus, it
gets better results on training and validation set but
poor results on the test set. The second one, test
data are more diverse than training data. Suppose
significant overlap does not exist between the train
and test features. In that case, the model indeed
performs poor on the test data since the models
learn from the characteristics of training data.

6 Conclusion

This paper presents a detail description of the
proposed system and its evaluation for the technical
texts classification in different languages. As the
baseline method, we used CNN and BiLSTM, and
compare these methods with the proposed model
(combined CNN and BiLSTM). Each model is
trained, tuned and evaluated separately for subtasks
1 and 2. The proposed method showed better
performance in terms of accuracy for subtasks (a,
b, c, g) of task 1 and task 2a on development
set. However, in the case of test set, the system
performed better for the subtasks 1a, 1b, 1c, 1g
and 2a. More dataset can be included for improved
performance. In future, the attention mechanism
may be explored to observe its effects on text
classification tasks.
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