
Proceedings of the 17th International Conference on Natural Language Processing: Adap-MT 2020 Shared Task, pages 1–5
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

1

JUNLP@ICON2020: Low Resourced Machine Translation for Indic
Languages

Sainik Kumar Mahata, Dipankar Das, Sivaji Bandyopadhyay
Computer Science and Engineering

Jadavpur University
sainik.mahata@gmail.com, dipankar.dipnil2005@gmail.com

sivaji.cse.ju@gmail.com

Abstract

In the current work, we present the descrip-
tion of the systems submitted to a machine
translation shared task organized by ICON
2020: 17th International Conference on Nat-
ural Language Processing. The systems were
developed to show the capability of general
domain machine translation when translating
into Indic languages, English-Hindi, in our
case. The paper shows the training process
and quantifies the performance of two state-of-
the-art translation systems, viz., Statistical Ma-
chine Translation and Neural Machine Trans-
lation. While Statistical Machine Translation
systems work better in a low-resource setting,
Neural Machine Translation systems are able
to generate sentences that are fluent in na-
ture. Since both these systems have contrast-
ing advantages, a hybrid system, incorporating
both, was also developed to leverage all the
strong points. The submitted systems garnered
BLEU scores of 8.701943312, 0.6361336198,
and 11.78873307 respectively and the scores
of the hybrid system helped us to the fourth
spot in the competition leaderboard.

1 Introduction

Machine Translation (MT) is the translation of one
natural language to another using software. Gen-
erally, training a good translation system requires
the availability of a large and good quality par-
allel corpus. These corpora are easily available
for languages that are spoken globally and have
a large digital footprint. But finding the same for
less-resourced languages, that are not universally
recognized and do not have a large digital presence,
is a challenge. This leads to the development of
translation systems that do not produce quality re-
sults. The present work aims to solve a similar
issue and focuses on showing the capability of gen-
eral domain machine translation when translating
into Indic languages, English-Hindi, in our case.

The literature includes the description and training
process of state-of-the-art translation systems and
finally quantifies their performance with respect to
the data provided as part of a shared task organized
by ICON 2020: 17th International Conference on
Natural Language Processing1.

The shared task was divided into two sub-tasks,

• SubTask 1 : To show sentence level Machine
translation capability for on General domain.

• SubTask 2 : To show sentence level Ma-
chine translation capability for on specified
domains.

We took part in the first sub-task and proceeded
with developing translation systems with the help
of the provided English-Hindi parallel corpus.

Using the provided parallel corpus, we devel-
oped three systems. The first two systems was
based on Statistical Machine Translation (SMT)
and Neural Machine Translation (NMT). For train-
ing the SMT system, Moses Toolkit (Koehn et al.,
2007) was used. The NMT system was a charac-
ter based seq-to-seq model, that was trained using
Bi-Directional Long Short-Term Memory (LSTM)
cells (Hochreiter and Schmidhuber, 1997). The
third system was a hybrid system, that works on
the principles of Automated Post Editing (APE).
In this model, a transformer (Vaswani et al., 2017)
based NMT model was used to post edit the outputs,
generated by an SMT based translation system.

The rest of the paper is organized as follows.
Section 2 describes the parallel corpus that was
used to train the above-mentioned translation sys-
tems. Section 3 contains the description and the
training processes of all the developed translation
systems. This will be followed by the evaluation
results and discussion in Section 4 and 5. Finally,

1https://ssmt.iiit.ac.in/machinetranslation.html



2

concluding remarks and future scopes have been
discussed in Section 6.

2 Parallel Corpus

Multiple English-Hindi parallel corpora were pro-
vided by the organizers for training the translation
systems. Among these, we decided on using the
parallel corpus from CVIT-PIB2 and CVIT-MKB3.
Another high-quality corpus from TDIL4was also
used to train our developed systems. The number
of parallel sentences in the CVIT-MKB dataset was
5,272, in the CVIT-PIB dataset were 1,95,208, and
in the TDIL dataset were 50,000. In total, we were
able to arrange for parallel English-Hindi corpora
of 2,50,480 sentences. The data was then tokenized
to be used for our further experiments. For tokeniz-
ing the English data, NLTK5 (Bird, 2006) was used
and for tokenizing the Hindi data, Indic NLP Li-
brary6 (Kunchukuttan, 2020) was used.

3 Machine Translation

After the English-Hindi parallel corpora were com-
piled, we proceeded to develop our MT systems.
As discussed earlier, the first two MT systems were
based on SMT and NMT. The third MT system was
a hybrid system, using both SMT and NMT, based
on the transformer architecture, and worked on the
principle of APE. The description of the all the
three systems and the training process for the same
is given in Sections 3.1, 3.2 and 3.3 respectively.

3.1 Statistical Machine Translation

For designing the model we followed some stan-
dard preprocessing steps on 2,50,480 sentence
pairs, which are discussed below.

3.1.1 Preprocessing
The following steps were applied to preprocess
and clean the data before using it for training our
Statistical machine translation model. We used the
NLTK toolkit7 for performing the steps.

• Tokenization: Given a character sequence
and a defined document unit, tokenization is
the task of chopping it up into pieces, called
tokens. In our case, these tokens were words,

2http://preon.iiit.ac.in/ jerin/resources/datasets/pib v0.2.tar
3http://preon.iiit.ac.in/ jerin/resources/datasets/mkb-v0.tar
4https://tdil.meity.gov.in/
5https://www.nltk.org/
6https://github.com/anoopkunchukuttan/indic nlp library
7https://www.nltk.org/

punctuation marks, numbers. NLTK supports
tokenization of Lithuanian as well as English
texts.

• Truecasing: This refers to the process of
restoring case information to badly-cased or
non-cased text (Lita et al., 2003). Truecasing
helps in reducing data sparsity.

• Cleaning: Long sentences (No. of tokens
> 80) were removed.

3.1.2 Moses
Moses is a statistical machine translation system
that allows you to automatically train translation
models for any language pair when trained with
a large collection of translated texts (parallel cor-
pus). Once the model has been trained, an efficient
search algorithm quickly finds the highest proba-
bility translation among the exponential number of
choices.

We trained Moses using 2,50,480 sentence pairs
provided by the organizers, with English as the
source language and Hindi as the target language.
For building the Language Model we used KenLM8

(Heafield, 2011) with 3-grams from the target cor-
pus.

Training the Moses statistical MT system re-
sulted in the generation of the Phrase Model and
Translation Model that helps in translating be-
tween source-target language pairs. Moses scores
the phrase in the phrase table with respect to a
given source sentence and produces the best-scored
phrases as output.

3.2 Neural Machine Translation

In order to develop the NMT framework, we de-
cided to employ a character-level neural machine
translation system.

The Character based NMT (CNMT) is based
on the architecture as described in Lee et al.
(2017) and it relies on the sequence-to-sequence
(Sutskever et al., 2014) model. We opted for char-
acter embedding based NMT for this task because
of the benefits it provides over word embedding
based NMT. The benefits, as stated in Chung et al.
(2016), are

• capability to model morphological variants

• overcomes out-of-vocabulary issue

8https://kheafield.com/code/kenlm/



3

• do not require segmentation

The seq2seq model takes a sequence X =
x1, x2, ..., xn as input and tries to generate the tar-
get sequence Y = y1, y2, ..., ym as output, where
xi and yi are the input and target symbols, respec-
tively. The architecture of seq2seq model com-
prises of two parts, the encoder and decoder.

In order to build the encoder, we used four bidi-
rectional layers of LSTM cells. The input of the
cell was one hot tensor of English sentences (en-
coding at the character level). The internal states
of each cell were preserved and the outputs were
discarded. The purpose of this is to preserve the
information at the context level. These states were
then passed on to the decoder cell as initial states.

For building the decoder, again two layers of
LSTM cell were used with hidden states from the
encoder as initial states. It was designed to return
both sequences and states. The input to the de-
coder was one hot tensor (embedding at character
level) of Hindi sentences while the target data was
identical, but with an offset of one time-step ahead.
The information for generation is gathered from
the initial states passed on by the encoder. Thus,
the decoder learns to generate target data [t+1,...]
given targets [..., t] conditioned on the input se-
quence. It essentially predicts the output sequence,
one character per time step.

For training the model, batch size was set to
64, number of epochs was set to 100, activation
function was softmax, optimizer chosen was nadam
and loss function used was sparse categorical cross-
entropy. Learning rate was set to 0.001. The overall
architecture is shown in Figure 1.

English Characters
(One-Hot Encoded)

Embedding Layer

Bidirectional LSTM

Hindi Characters
(One-Hot Encoded)

Embedding Layer

Bidirectional LSTM

Hindi Characters
(One-Hot Encoded,
Offset by 1 Time-

Stamp)

4 layers,
128 cells

each

2 layers having 
256 cells and 64
cells respectively

Encoder Decoder

Internal
States, set as
initial state of

decoder
LSTM layer

Output Discarded

Figure 1: Character based Neural Machine Translation
Architecture.

3.3 Hybrid Translation System

The NMT system used for the hybrid translation
system is based on the transformer architecture.
RNNs typically read one word at a time and per-
form multiple operations before generating output.
But it has been illustrated that the more the number
of steps, the harder it is for the network to learn
how to make decisions (Bahdanau et al., 2014).
Parallelly, RNNs are sequential, and hence taking
advantage of parallel computing offered by state-
of-the-art computing devices is very difficult.

On the contrary, Transformer models rely heav-
ily on self-attention, thus eliminating the concept
of recurrence found in RNN based architectures. In
its absence, a positional encoding is added to the
input and outputs to mimic the idea of time-steps
in a recurrent network. A Transformer model com-
prises two parts, an encoder, and a decoder, where
the encoder is composed of uniform layers, each
built of two sublayers; a multi-head self-attention
layer, and a position-wise feed-forward network
layer. Instead of computing single attention, this
stage computes multiple attention blocks over the
source, concatenates them, and projects them onto
space with the initial dimensionality. On the other
side, the feed-forward network sub-layer is a fully
connected network used to process the attention
sublayers, by applying two linear transformations
on each position and a ReLU activation (Vaswani
et al., 2017).

The decoder operates similarly, but generates
one word at a time, from left to right. The first two
steps are similar to the encoder and attend only to
past words. The third stage is multi-head attention
that attends to these past words, in addition to the
final representations generated by the encoder. The
fourth stage constitutes another position-wise feed-
forward network. Finally, a softmax layer allows
the mapping of target word scores into target words.
Figure 2 shows the architecture of NMT based on
transformer architecture.

For the hybrid model, we intended to merge the
SMT and NMT architectures as both these mod-
els have their own advantages. So, to incorporate
the advantages of both these models into a sin-
gle system, we decided to merge them in a way
that is similar to the APE architecture. For this,
we divided the compiled parallel corpus into two
parts, one containing 1,50,480 sentences and the
other containing 1,00,000 parallel sentences. The
first parallel corpus was used to train an SMT sys-



4

Source Language
Embedding

Positional
Embedding

Multi-Head Attention

Add & Norm

Feed-Forward

Add & Norm

Target Language
Embedding

Positional
Embedding

Masked Multi-Head
Attention

Add & Norm

Multi-Head Attention

Add & Norm

Feed-Forward

Add & Norm

Linear

Softmax

Target
Language

Probablities

Figure 2: NMT based on Transformer Architecture.

tem, built using Moses Toolkit. This was done
because SMT architectures tend to work well in a
low-resource setting. After training the SMT sys-
tem, the second parallel corpus was used to tune
the model. For this, we fed the SMT system with
the English part of the second parallel corpus. In
turn, the SMT model gave us the translation of
these sentences as output. These outputs were then
considered as source sentences to an NMT model
and the Hindi part of the second parallel corpus
was considered as the target. The architecture of
the hybrid model is shown in Figure 3.

4 Evaluation

For evaluation purposes, the organizers provided us
with a test data of 507 sentences. Upon evaluation,
the performance of our systems was calculated us-
ing BLEU (Papineni et al., 2002) metric and they
are shown in Table 1.

5 Discussion

From Table 1, we can see that SMT performs very
well when participating languages belong to a low-
resourced setting (Banerjee et al., 2018; Koehn and

Parallel Corpus

1st Parallel Corpus
(1,50,480 sentences)

2nd Parallel Corpus
(1,00,000 sentences)

English Part

Hindi Part

SMT 
(Moses Toolkit)

Train

Test

NMT
(Transformer
Architecture)

Hybrid Model

Figure 3: Architecture of the Hybrid System.

System BLEU
SMT 8.701943312
NMT 0.6361336198

Hybrid System 11.78873307

Table 1: Evaluation of the submitted systems.

Knowles, 2017). This is due to the fact that the
training data provided by the organizers was small
and hence, belonged to similar domains. In general,
SMT systems have a higher output quality when
trained using domain specific training data since
the texts belonging to same domain follow same
pattern or usage of words. Also we can see that,
during the usage of character based NMT systems,
the quality of the output drops drastically. This
happens as NMT systems tend to work better when
there is a significant overlap between the charac-
ter set of the participating source and the target
languages. Due to the same reason, we see a sig-
nificant increase in the performance of the hybrid
system. This happens, as the second NMT system,
that was based on the transformer architecture, is
fed with Hindi sentences and learns to map it to
Hindi sentences again, during the training process.
Hence, there is a significant overlap between the
vocabulary sets and hence the increase in perfor-
mance.

6 Conclusion

The present paper describes the systems submit-
ted to the translation shared task organized by
ICON 2020: 17th International Conference on Nat-
ural Language Processing. We participated in the
English-Hindi translation task and the training data
belonged to the general domain. Three systems,



5

SMT, NMT, and a hybrid model was trained us-
ing these data. The models were pretty straight-
forward and did not contain any recent research
advancements in the field of Machine Translation.
As a future prospect, we would like to experiment
with Transfer Learning methods, that learn from
large data, and incorporate the knowledge onto
models, trained using fewer data. This would be
a good option as all the language options of the
shared task were Indic languages and good quality
and robust multi-lingual translation system can be
built out of it.

Acknowledgement

This work is supported by Digital India Corpora-
tion, MeitY, Government of India, under the Visves-
varaya PhD for Electronics & IT

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Tamali Banerjee, Anoop Kunchukuttan, and Pushpak
Bhattacharya. 2018. Multilingual indian language
translation system at wat 2018: Many-to-one phrase-
based smt. In WAT@ PACLIC.

Steven Bird. 2006. NLTK: The Natural Language
Toolkit. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions, pages 69–72, Syd-
ney, Australia. Association for Computational Lin-
guistics.

Junyoung Chung, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. A character-level decoder without ex-
plicit segmentation for neural machine translation.
arXiv preprint arXiv:1603.06147.

Kenneth Heafield. 2011. KenLM: faster and smaller
language model queries. In Proceedings of the
EMNLP 2011 Sixth Workshop on Statistical Ma-
chine Translation, pages 187–197, Edinburgh, Scot-
land, United Kingdom.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion

Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six
challenges for neural machine translation. arXiv
preprint arXiv:1706.03872.

Anoop Kunchukuttan. 2020. The IndicNLP Library.
https://github.com/anoopkunchukuttan/
indic_nlp_library/blob/master/docs/
indicnlp.pdf.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2017. Fully character-level neural machine trans-
lation without explicit segmentation. Transactions
of the Association for Computational Linguistics,
5:365–378.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. Truecasing. In Proceed-
ings of the 41st Annual Meeting on Association
for Computational Linguistics-Volume 1, pages 152–
159. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

https://doi.org/10.3115/1225403.1225421
https://doi.org/10.3115/1225403.1225421
https://kheafield.com/papers/avenue/kenlm.pdf
https://kheafield.com/papers/avenue/kenlm.pdf
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

