Proceedings of the Globalex Workshop on Linked Lexicography, pages 84-91
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11-16 May 2020
(© European Language Resources Association (ELRA), licensed under CC-BY-NC

Implementation of Supervised Training Approaches for
Monolingual Word Sense Alignment:
ACDH-CH System Description for the MWSA Shared Task at GlobaLex 2020

Bajceti¢ Lenka, Yim Seung-Bin
Austrian Centre for Digital Humanities and Cultural Heritage
Vienna
{lenka.bajcetic, seung-bin.yim} @oeaw.ac.at

Abstract
This paper describes our system for monolingual sense alignment across dictionaries. The task of monolingual word sense alignment is
presented as a task of predicting the relationship between two senses. We will present two solutions, one based on supervised machine
learning, and the other based on pre-trained neural network language model, specifically BERT. Our models perform competitively for
binary classification, reporting high scores for almost all languages.
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1. Introduction

This paper presents our submission for the shared task
on monolingual word sense alignment across dictionaries
as part of the GLOBALEX 2020 — Linked Lexicography
workshop at the 12th Language Resources and Evaluation
Conference (LREC). Monolingual word sense alignment
(MWSA) is the task of aligning word senses across re-
sources in the same language.

Lexical-semantic resources (LSR) such as dictionaries form
valuable foundation of numerous natural language process-
ing (NLP) tasks. Since they are created manually by ex-
perts, dictionaries can be considered among the resources
of highest quality and importance. However, the existing
LSRs in machine readable form are small in scope or miss-
ing altogether. Thus, it would be extremely beneficial if
the existing lexical resources could be connected and ex-
panded.

Lexical resources display considerable variation in the
number of word senses that lexicographers assign to a given
entry in a dictionary. This is because the identification and
differentiation of word senses is one of the harder tasks that
lexicographers face. Hence, the task of combining dictio-
naries from different sources is difficult, especially for the
case of mapping the senses of entries, which often differ
significantly in granularity and coverage. (Ahmadi et al.,
2020)

There are three different angles from which the problem of
word sense alignment can be addressed: approaches based
on the similarity of textual descriptions of word senses, ap-
proaches based on structural properties of lexical-semantic
resources, and a combination of both. (Matuschek, 2014)
In this paper we focus on the similarity of textual de-
scriptions. This is a common approach as the majority
of previous work used some notion of similarity between
senses, mostly gloss overlap or semantic relatedness based
on glosses. This makes sense, as glosses are a prerequisite
for humans to recognize the meaning of an encoded sense,
and thus also an intuitive way of judging the similarity of
senses. (Matuschek, 2014)

The paper is structured as follows: we provide a brief
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overview of related work in Section 2, and a description of
the corpus in Section 3. In Section 4 we explain all impor-
tant aspects of our model implementation, while the results
are presented in Section 5. Finally, we end the paper with
the discussion in Section 6 and conclusion in Section 7.

2. Related Work

Similar work in monolingual word sense alignment has pre-
viously been done mostly for one language in mind, for
example (Henrich et al., 2014), (Sultan et al., 2015) and
(Caselli et al., 2014).

Researchers avoid modeling features according to a specific
resource pair, but aim to combine generic features which
are applicable to a variety of resources. One example is the
work of (Matuschek and Gurevych, 2014) on alignment be-
tween Wiktionary and Wikipedia using distances calculated
with Dijkstra-WSA, an algorithm which works on graph
representations of resources, as well as gloss similarity val-
ues.

Recent work in monolingual corpora linking includes (Mc-
Crae and Buitelaar, 2018) which utilizes state-of-the-art
methods from the NLP task of semantic textual similarity
and combines them with structural similarity of ontology
alignment.

Since our work is focusing on similarity of textual descrip-
tions, it is worth mentioning that there have been lots of ad-
vances in natural language processing with pre-trained con-
textualized language representations relying on large cor-
pora (Devlin et al., 2018), which have been delivering im-
provements in a variety of related downstream tasks, such
as word sense disambiguation (Scarlini et al., 2020) and
question answering (Yang et al., 2019). However, we could
not find any related work leveraging the newest advances
with neural network language models (NNLM) for mono-
lingual word sense alignment. For this reason we have cho-
sen to implement our classifiers based on two approaches:
one which is feature-based, and the other one using pre-
trained NNLMs.



3. Dataset

The dataset used to train and test our models was com-
piled specifically with this purpose in mind (Ahmadi et
al., 2020). The complete corpus for the shared task con-
sists of sixteen datasets from fifteen European languages
The gold standard was obtained by manually classifying the
level of semantic similarity between two definitions from
two resources for the same lemma.

The data was given in four columns: lemma, part-of-speech
(POS) tag and two definitions for the lemma. The fifth col-
umn which the system aims to predict contains the semantic
relationship between definitions. This falls in one of the five
following categories: EXACT, BROADER, NARROWER,
RELATED, NONE.

The data was collected as follows: a subset of entries with
the same lemma is chosen from the two dictionaries and a
spreadsheet is created containing all the possible combina-
tions of definitions from the entries. Experts are then asked
to go through the list and choose the level of semantic simi-
larity between each pair. This has created a huge number of
pairs which have no relation, and thus the dataset is heavily
imbalanced in favor of NONE class. Two challenges caused
by the skewness of data were identified. Firstly, the mod-
els should be able to deal with underrepresented semantic
relations. Secondly, evaluation metrics should consider the
imbalanced distribution.

Table [T] displays the distribution of relations between two
word definitions and the imbalance of the labels in the train-
ing data. We have implemented several ways to battle this,
such as undersampling and oversampling, as well as dou-
bling the broader, narrower, exact and related class by re-
lying on their property of symmetry, or applying ensemble
learning methods, such as random forest.

4. System Implementation

We aimed to explore the advantages of two different ap-
proaches, so we created two different versions of our sys-
tem. One is the more standard, feature-based approach,
and the other is a more novel approach with pre-trained
neural language models, specifically BERT (Devlin et al.,
2018)). The novel approach was used for English and Ger-
man dataset, in addition to the feature based approach.

4.1.

4.1.1. Preprocessing

Firstly, we loaded the datasets and mitigated imbalanced
distribution of relation labels by swapping the two defini-
tions and thus doubling the data samples for related labels,
i.e. BROADER, NARROWER, EXACT, RELATED. For
example, one English data sample for English head word
follow has the definition pair “keep to” and “fo copy af-
ter; to take as an example” and the relation “narrower”.
We swap the order of definition pair and change the rela-
tion to “broader”. An outcome of this swapping process is
the generalisation of the dataset. Since two definitions are
from different dictionaries, features derived by comparing
the two sets of definitions is dependent on the dictionaries.

Feature-based models

'The dataset is still growing, and the current version can be
found here: https://github.com/elexis-eu/MWSA
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By swapping the definitions, more general features can be
calculated, since the columns contain definitions of two dic-
tionaries, instead of one. This aspect could make the trained
feature-based models more robust against new dictionaries.
After doubling the data samples, we applied upsampling to
match the number of samples of NONE category.

For linguistic preprocessing, the definitions were tokenized
using Spacyﬂ for English and German, and NLTKE] for other
languages. For languages other than English and German,
stopwords were removed from the definitions, in order to
create word embedding models. Word vectors included in
Spacy language models were used for English and German.
We have compiled stopword lists for all languages using
several resources found on the Web[]

4.1.2. Feature Extraction

Since many of the languages in the dataset have very few
open-source resources and tools, and of uncertain quality,
the features used are mostly based on word embeddings.
The word embeddings were trained using the sets of def-
initions provided and the Word2Vec(Mikolov et al., 2013)
model from gensim(léehﬁfek and Sojka, 2010) Python li-
brary. To calculate the vector of a definition we used the
average of word embeddings of consisting tokens. Sen-
tence similarity was calculated with different similarity
measures, namely cosine distance, Jaccard similarity, and
word mover distance (WMD). For English and German,
we used Spacy’s built-in language models for word embed-
dings. The English language model used, en_core_web_lg
has 685k unique vectors over 300 dimensions, while the
German model, de_core_news_md has 20k unique vectors
over 300 dimensions. Additionally, similarity calculation
based on contextualized word representation ELMo (Peters
et al., 2018) was used for English to model semantic differ-
ences depending on the context.

We selected a different set of features for each classification
model from the features described below. Complete list of
features used by each classification model is shown in Table
4l

Overall, we used the following features:

o Statistical features: Difference in length of definitions
was added as a feature.

Similarity measures based features: In addition to the
word embedding comparisons between the word defi-
nition pair, we calculated similarity of the most similar
word to the headword by calculating cosine similarity
for list of word embeddings of tokens of definitions
excluding stopwords and headword word embedding.

Part-of-speech based features: We included one-hot
encoded POS of the headword, as well as difference
in POS count of two definitions as features. The POS
count was not done for most languages as we were not
certain in the quality of existing POS-taggers.

Zhttps://spacy.io/

*https://www.nltk.org/

“https://github.com/Xangis/extra-stopwords and
https://www.rdocumentation.org/packages/stopwords/versions/0.1.0



Language | Broader | Narrower | Exact | Related | None | Total | None %
Basque 82 124 359 170 2496 | 3231 77%
Bulgarian 153 151 522 275 2256 | 3357 67%
Danish 172 302 1007 32 14271 | 15784 90%
Dutch 51 29 444 40 18656 | 19220 97%
English 39 310 800 51 7137 | 8337 85%
Estonian 92 105 921 6 1077 | 2201 49%
German 381 281 321 106 3322 | 4411 75%
Irish 62 40 664 117 1729 | 2612 66%
Italian 33 109 281 77 1468 1968 75%
Portuguese 3 32 178 22 1176 1411 83%
Russian 107 11 265 61 2757 | 3201 86%
Serbian 101 56 413 173 5052 | 5795 87%
Slovene 176 433 408 105 5595 | 6717 83%

Table 1: Label distribution of training datasets

o Lexico-syntactic features: One feature exploiting the
structure of definitions was to compare the first token
of definitions for equality. We also counted matching
lemma in the pair of sentences and normalized by the
combined length of sentences. Normalization was ap-
plied, because we wanted how much overlap exists be-
tween two definitions with respect to the length. With-
out normalization, longer definitions might tend to
have higher number of matching lemma. Depth of de-
pendency tree was calculated to add information about
structural complexity of definitions. Occurrences of
semicolons were also added, since lots of definitions
were comprised of multiple short definitions concate-
nated by semicolon. Additionally, Root word of de-
pendency trees were compared for each definition pair.

e Word sense based features: WordNef’] was used to
count the number of synsets of headwords. Average
count of synsets were also added as feature. It was cal-
culated by simply counting synsets for each token of
definitions in wordnet and taking the average. These
features were used for English only, due to the avail-
ability of its primary resource, WordNet.

Standardization was applied for some features,length dif-
ference, pos count difference, and cosine simlarities prior
to training some machine learning models in order to bring
the features to similar scale to the other features. Standard-
ization was done by applying Scikit-learn Standard-scaler,
which calculates the standardized value of feature by tak-
ing the difference of the feature value to the mean value
and dividing it by standard deviation.

4.1.3. Classification Models

We tried several machine learning models, mostly from sci-
kit learrf] library for Python: logistic regression, support
vector machine, random forest classifier, and decision tree.
Classification models were trained by tuning hyperparame-
ters with grid search over 5-fold cross-validation. The hy-
perparameters used for the submitted models are listed in
Table[6] Due to imbalanced nature of the datasets, we have

Shttps://wordnet.princeton.edu/
®https://scikit-learn.org/stable/

used balanced accuracy and weighted f1-measure for model
evaluation. For languages other than English and German,
we have ultimately settled for the random forest classifier
as it has consistently given the best results.

4.2. Fine-tuning of Pre-trained Neural Network
Language Models

For English and German, we additionally fine-tuned
pre-trained neural network language models(NNLM),
BERT(Devlin et al., 2018) and RoBERTa(Li1u et al., 2019)
in particular, using simpletransformers [Z] on top of pre-
trained models provided by transformers pythorﬁ libraries
on Google Cloud Platform ﬂ

In general, applications of pre-trained language models to
downstream tasks can be categorized into feature-based and
fine-tuning based approaches. Recently, BERT (Devlin et
al., 2018), which stands for Bidirectional Encoder Rep-
resentations from Transformers, have been proven to be
beneficial for improving different downstream NLP tasks.
BERT is designed to pre-train deep bidirectional represen-
tations from unlabeled text by jointly conditioning on both
left and right context in all layers and is trained on masked
word prediction and next sentence prediction tasks. As a
result, the pre-trained BERT model can be fine-tuned with
just one additional output layer to create state-of-the-art
models for a wide range of tasks (Devlin et al., 2018).
Sun et al. (2020) present different approaches to fine-tune
BERT for downstream tasks, including pre-training on in-
domain data, multi-task fine-tuning and different layers and
learning rates.

MWSA task can be ultimately regarded as sentence pair
classification task and BERT can be easily fine-tuned for
it, since its use of self-attention mechanism(Vaswani et al.,
2017) to encode concatenated text pair effectively includes
bidirectional cross attention between two sentences. We
follow the fine-tuning approach presented in the original
paper (Devlin et al., 2018)), and adapt our definition pairs
as input sequence [CLS], z1, ..., 2y [SEPy1, ..., yn[FOS)]
and use [CLS] representation for classification layer.

"https://github.com/ThilinaRajapakse/simpletransformers
8https://huggingface.co/transformers/index.html
*https://cloud.google.com/
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Language 5-class Accuracy | 2-class Precision | 2-class Recall | 2-class F-Measure
Baseline 0.789 0.211 0.050 0.081
Basque 0.407 0.223 0.738 0.342
Baseline 0.728 0.250 0.011 0.020
Bulgarian 0.395 0.331 0.842 0.475
Baseline 0.817 0.300 0.023 0.043
Danish 0.522 0.253 0.756 0.379
Baseline 0.936 0.000 0.000 0.000
Dutch 0.940 0.636 0.241 0.350
Baseline 0.752 0.000 0.000 0.000
English 0.766 0.612 0.533 0.570
English BERT Large 0.654 0.467 0.850 0.602
English RoBERTa 0.763 0.619 0.782 0.691
Baseline 0.482 0.545 0.093 0.159
Estonian 0.565 0.707 0.806 0.754
Baseline 0.777 0.000 0.000 0.000
German 0.777 0.709 0.448 0.549
German BERT 0.798 0.738 0.608 0.667
Basline 0.583 0.680 0.185 0.291
Irish 0.549 0.631 0.891 0.739
Baseline 0.693 0.000 0.000 0.000
Italian 0.537 0.418 0.719 0.529
Baseline 0.921 0.083 0.024 0.037
Portuguese 0.870 0.311 0.762 0.441
Baseline 0.754 0.438 0.179 0.255
Russian 0.606 0.372 0.821 0.512
Baseline 0.853 0.000 0.000 0.000
Serbian 0.599 0.190 0.464 0.269
Baseline 0.834 0.100 0.009 0.017
Slovene 0.442 0.173 0.587 0.268
Average 0.615 0.413 0.694 0.414

Table 2: Comparison of evaluation Results of MWSA from the final evaluation

We have experimented with different pre-trained models,
such as BERT Base, BERT Large and RoBERTa for En-
glish, which claims to have improved original BERT mod-
els by tweaking different aspects of pre-training, such as
bigger data and batches, omitting of next sentence predic-
tion, training on longer sequences and changing the mask-
ing pattern (Liu et al., 2019). For German, we used the
models published by deepset.a and Bavarian State Li-
brary The training was done on NVIDIA Tesla P100
GPU, different parameter settings have been tried out to
find the best performing model for each NNLM. Due to the
size of the pre-trained language models and limitations in
computation powers, we were only able to explore hyper-
parameter combinations selectively. Different pre-trained
language models were used and were evaluated in the early
phase of the experiments, to limit the parameter exploration
space. Evaluation of the models were done by comparing
Matthews Correlation Coefficient, accuracy and cross en-
tropy. We monitored the three metrics also during train-
ing to determine when the model starts to overfit and ad-
justed hyperparameters for further tuning. It quickly turned

Ohttps://deepset.ai/german-bert
https://github.com/dbmdz/berts

87

out that bigger pre-trained models deliver better results.
The tendency that bigger pre-trained models perform better
on MWSA is in line with observations made by the orig-
inal BERT paper authors by comparing BERT Base and
Large for different downstream tasks(Devlin et al., 2018)),
or RoBERTa performing better than original BERT on se-
lected downstream tasks(Liu et al., 2019). For this rea-
son, we have conducted more hyperparameter test combi-
nations for those models(RoBERTa Large for English, and
DBMDZ for German). When using bigger models, such
as RoBERTa or BERT Large, smaller train-batch-size was
selected due to resource limitation. Original BERT mod-
els were trained with 512 sequence length, but since the
MWSA datasets mostly have short sentence pairs, we ex-
perimented with shorter sequence length of 128 and 256 to
save memory usage and be more flexible with respect to
batch size. Complete list of parameter values tested and the
values of the submitted models are shown in Table[3

B total # of samples
~ # labels x # datasamples of ¢

We ey
With appropriate hyperparameters, English and German
classifiers based on BERT (German) and RoBERTa (En-
glish) showed convergence with repsect to the Cross-



entropy loss function. Classes were weighted according to
the distribution for loss calculation. The weight for label
class C, w, is determined inversely proportional to label
frequencies shown in equation[I} The values used for train-
ing is listed in Table[5]

5. Results

Results of our MWSA models are presented in Table[2] in-
cluding baseline models for each language provided by the
organizers. In this section we explain the evaluation mea-
sures proposed by the organizers for model evaluation and
review the results of the two approaches we have explored,
feature-based MWSA and fine-tuning NNLM.

5.1.

The final submission was evaluated in terms of five class
prediction accuracy, as well as binary classification scored
with precision, recall, and F-measure. Binary evalua-
tion metrics are calculated by considering relation labels
BROADER, NARROWER, RELATED and EXACT as one
class of label and NONE classified pairs as the other class.
In addition, the organizers provide an average grade over
all languages participated in. Our system participated for
all languages excluding Hungarian and Spanish, and the re-
sults can be seen in Table 1. We argue that due to the imbal-
anced datasets, 5-class accuracy without balancing cannot
adequately represent the model qualities and should only
be interpreted holistically together with binary evaluation
measures. For example, English baseline model has 5-class
accuracy of 0.752, but 2-class F1-measure of 0.0 which in-
dicates that the model is classifying the most of the defini-
tion pairs as none-related. The ratio of none related pairs in
English training dataset(85%) supports this interpretation.
While our both English models show similar 5-class accu-
racy with respect to the base classifier, they have higher
2-class fl-score, thus higher 2-class precision and recall.
Table [3| additionally shows the result of our feature-based
English model and RoBERTa based model in comparison
with NONE classifier, which classifies all pairs as NONE.
It shows that all three models have similar (5-class) accu-
racy with 0.76, 0.77 and 0.76. Thus, the measure is not suf-
ficient to represent the difference in quality of the models,
which can be assumed to exist when looking into the preci-
sion and recall for each label. Macro averaged or weighted
averaged metrics show that our models perform better. We
argue that for future work of MWSA weighted fl1-measure
or balanced accuracy should be used for adequate evalua-
tion of imbalanced 5-class datasets.

Evaluation Measures

5.2. Result Interpretation and Model
Comparison

Our interpretation of the evaluation metrics indicates that
our monolingual word sense alignment models show best
overall performance for majority of languages. English and
German pre-trained NNLM based models perform particu-
larly well, while feature-based models delivered competi-
tive overall results.

Feature-based models showed good results especially in
terms of binary recall and fl-measure. However, they per-
form poorly when it comes to binary precision and the re-
sults vary for five-class accuracy. Aside from the peculiar
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aspect of 5-class accuracy for this task described above,
there are several reasons for this variety in results. All the
models are dependent on the quality and size of their cor-
responding datasets. Also our sampling strategies to deal
with imbalanced data may have caused the models to over-
fit certain patterns of definitions pairs having some kind of
relations(BROADER, NARROWER, EXACT, RELATED)
and classified some of NONE-related pairs as being related,
which could explain high recall and low precision. Another
important aspect is the availability and quality of tools for
semantic parsing and lexical resources for all the languages.
To investigate the results in more detail we present pre-
cision, recall, f1-measure for label predictions of English
model in Table[3l We can see that the model fails in detect-
ing BROADER, NARROWER, and RELATED class, while
performing moderately in detecting EXACT relations.

The BERT based models for English and German per-
formed well in all binary evaluation measures, with En-
glish RoBERTa model placing first out of five teams in all
three binary evaluation measures. There was no submis-
sion from other teams for German, thus no detailed analysis
was possible. Nevertheless the German BERT based model
outperformed the base model and achieved relatively high
scores in binary precision and f-measure. For both lan-
guages the neural language model based approaches out-
performed feature-based classifiers in all binary evaluation
metrics. The English RoBERTa model is on par with the
random forest classifier in terms of 5-class accuracy and
precision, but outperforms it when it comes to binary re-
call and binary 2-class f-measure by significant margins.
Different to the feature-based classifier, the NNLM based
model manages to classify some of the NARROWER re-
lations correctly(Table (3| but precision and recall are still
very low. Confusion matrix showed that the model tends to
classify NARROWER relations as EXACT. In contrast to
English random forest model, German feature-based clas-
sifier cannot compete with the neural language model in all
evaluation metrics, lack of more sophisticated features used
by English feature-based classifier, such as ELMo sentence
embedding or wordnet based features are possible reasons.
However, the pre-trained German language model is pre-
trained on smaller dataset ( 16GB of data) than English
(RoBERTa: 160GB), thus it is to assume there might be
room for improvement of both approaches.

For English models, which we have investigated more in
detail, we can clearly see the correlation between number
of data samples in each category and the performance of the
models on those categories. BROADER and RELATED re-
lations were only trained on 10 and 20 samples respectively,
which we believe is too little to model pattern variety of
complex natural language expressions.

6. Discussion

As previously mentioned, an important property of the pro-
vided datasets is the extreme imbalance in the favor of
NONE class. For future work, it would be useful to acquire
more examples of the classes less represented in the dataset.
Since classifiers are prone to overfitting, it would be useful
to expand the datasets with definitions extracted from more
dictionaries. This way it would be easier to get a more gen-



NONE classifier Features-based RoBERTa-based
Prec. | Rec. | Fl1 Prec. | Rec. | Fl1 Prec. | Rec. | Fl1 Support
BROADER 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 3
NARROWER | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.17 | 0.16 29
EXACT 0.00 | 0.00 | 0.00 | 044 | 0.60 | 0.51 | 047 | 0.74 | 0.58 85
RELATED 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 16
NONE 0.76 | 1.00 | 0.86 | 0.86 | 0.89 | 0.87 | 0.92 | 0.84 | 0.88 411
accuracy 0.76 0.77 0.76
macro avg. 0.15 | 020 | 0.17 | 0.26 | 0.30 | 0.28 | 0.31 | 0.35 | 0.32
weighted avg. | 0.57 | 0.76 | 0.65 | 0.71 | 0.77 | 0.74 | 0.78 | 0.76 | 0.76

Table 3: Evaluation results of test set prediction by English models. NONE classifier predicts all labels to NONE

eral and robust classifier. Our feature-based models showed
that differentiating exact semantic relation is a difficult task,
especially NARROWER and EXACT relations get mixed
up by the English model, more work on methodologies to
distinguish these relations will help to improve 5-class ac-
curacy. A different idea to consider would be to opt for spe-
cific classifiers for each pairing of two dictionaries, where
features used could be dictionary-dependant and possibly
more precise, e.g2. numbers of semicolons or other format-
ting aspects which are dictionary-specific.

Another possible issue we identified for this task is that dic-
tionary definitions have different or atypical language usage
in terms of structure of sentences, term occurrences, addi-
tional information expressed with symbols, such as semi-
colons, hyphens. For this reason, we think that building
language models based on multiple dictionaries might help
to further increase accuracy of the models.

For German and English we demonstrated that fine-tuning
neural network language models outperform the feature-
based approaches. Considering that the pre-trained mod-
els were trained on more general corpora, further stud-
ies involving pre-training on dictionary data and further
fine-tuning different aspects described in (Sun et al., 2020)
might lead to improvements of the models.

7. Conclusion

In this paper we describe our system submission for the
Monolingual Word Sense Alignment shared task at Glob-
alex 2020. Our solution consists of a separate random
forest classifier trained for each language, while a BERT-
based solution is implemented for English and German.
The feature-based classifiers perform competitively for bi-
nary classification and employing fine-tuning of pre-trained
BERT models for monolingual word sense alignment is
showing promising results and should be investigated fur-
ther.
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Feature EU | BG | DA | NL | EN | ET | DE | GA | IT | PT | RU | SR | SL
cosine sim o O o o (0] o o (0]
jaccard sim 0] 0 o o (0] o o (0]
tfidf similarity o o O 0) oO| O oOj]o0ojJO|O0O)]O0]|O
elmo similarity (0]
similarity diff to target (0]
first word same o o O o o (0] O |0]| O o O | O
root word same o o O o o (0] O ]O0]| O o O] O
length difference o o O o (0] o (0] O |0]| O o O | O
pos count difference o (0] (0]
target pos o o o (0] o (0] O |0]| O o O | O
lemma match count o o O o (0] o (0] O |0]| O o O] O
pos count o (0] (0]
dep. tree depth (0]
target word synset count (0]
average synset count (0]
semicolon count (0]
Table 4: Features used for each classifier, with language codes according to ISO 639-1
Parameter value set English German
used model German ngggi‘;ﬁgﬁggggﬁm cased) | ROBERTa(Large) | DBMDZ German BERT
NONE: 0.23 NONE: 0.27
EXACT: 2.08 EXACT: 2.74
label weights BROADER: 42.05 BROADER: 2.31

NARROWER:5.37
RELATED:32.69

NARROWER:3.13
RELATED:8.32

max-seq-length 64, 128, 256, 512 256 256
train-batch-size 8,16, 32 16 32
num-train-epochs 2,3,5,7,10,15 2 7
weight-decay 0.3,0.5 0.3 0.3

learning-rate le-6, 8¢e-6, 9e-6, 1e-5, 3e-5, 4e-5,5e-5 9e-6 3e-5

Table 5: Language model and Hyperparameters used for fine-tuning NNLM to MWSA

Parameter EU | BG | DA | NL | EN |ET | DE | GA | IT | PT | RU | SR | SL
max-features 3 3 3 |auto | log2 | 2 | auto | 3 3 3 3 3 3
max-depth 10 10 10 30 10 10 | 30 10 10 7 10 | 10 10
min-samples-leaf 3 3 5 5 2 3 3 4 3 3 3 3 3
min-samples-split | 10 2 10 8 5 2 8 2 8 5 2 5 8

n-estimators 100 | 100 | 100 | 500 | 300 | 50 | 500 | 100 | 200 | 50 | 50 | 100 | 100

Table 6: Hyperparameters used for Random Forest Classifier
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