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Abstract

In this paper, we present an approach for sentence-level gender reinflection using linguistically
enhanced sequence-to-sequence models. Our system takes an Arabic sentence and a given target
gender as input and generates a gender-reinflected sentence based on the target gender. We
formulate the problem as a user-aware grammatical error correction task and build an encoder-
decoder architecture to jointly model reinflection for both masculine and feminine grammatical
genders. We also show that adding linguistic features to our model leads to better reinflection
results. The results on a blind test set using our best system show improvements over previous
work, with a 3.6% absolute increase in M2 F0.5.

Bias Statement

Most NLP systems are unaware of their users’ preferred grammatical gender. Such systems typically
generate a single output for a specific input without considering any user information. Beyond being
simply incorrect in many cases, such output patterns create representational harm by propagating social
biases and inequalities of the world we live in. While such biases can be traced back to the NLP systems’
training data, balancing and cleaning the training data will not guarantee the correctness of a single output
that is arrived at without accounting for user preferences. Our view is that NLP systems should utilize
grammatical gender preference information to provide the correct user-aware output, particularly for
gender-marking morphologically rich languages. When the grammatical gender preference information
is unavailable to the systems, all gender-specific outputs should be generated and properly marked.

We acknowledge that by limiting the choice of gender expression to the grammatical gender choices
in Arabic, we exclude other alternatives such as non-binary gender or no-gender expressions. We are
not aware of any sociolinguistics published research that discusses such alternatives for Arabic, although
there are growing grassroots efforts, e.g., the Ebdal Project.1

1 Introduction

The recent advances in machine learning have propelled the field of Natural Language Processing (NLP)
forward at a great pace and raised expectation about the quality of results and especially their impact in
a social context, including not only race (Merullo et al., 2019) and politics (Fan et al., 2019), but also
gender identities (Font and Costa-jussà, 2019; Dinan et al., 2019; Dinan et al., 2020). Human-generated
data, reflective of the gender discrimination and sexist stereotypes perpetrated through language and
speaker’s lexical choices, is considered the primary source of these biases (Maass and Arcuri, 1996;
Menegatti and Rubini, 2017). However, Habash et al. (2019) pointed out that NLP gender biases do not
just exist in human-generated training data, and models built from it; but also stem from gender-blind
(i.e., gender-unaware) systems designed to generate a single text output without considering any target
gender information. Such systems propagate the biases of the models they use. One example is the I-am-
a-doctor/I-am-a-nurse problem in machine translation (MT) systems targeting many morphologically

1https://www.facebook.com/EbdalProject/
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Input Gender Target Masculine Target Feminine
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Because I am a blonde woman Because I am a blonde man Because I am a blonde woman
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I am happy [masc.] to meet you I am happy [masc.] to meet you I am happy [fem.] to meet you

Table 1: Examples covering all possible combinations of input and output grammatical genders. Changed
output words are underlined in the transliterations.

rich languages. While English uses gender-neutral terms that hide the ambiguity of the first-person
gender reference, morphologically rich languages need to use grammatically different gender-specific
terms for these two expressions. In Arabic, as in other languages with grammatical gender, gender-
unaware single-output MT from English often results in I. �
J.£ A

	
K


@ ÂnA Tbyb2 ‘I am a [male] doctor’/

�
é

	
�QÜØ A

	
K


@ ÂnA mmrD~ ‘I am a [female] nurse’, which is inappropriate for female doctors and male

nurses, respectively.
In contrast, gender-aware systems should be designed to produce outputs that are as gender-specific

as the input information they have access to. Gender information may be contextualized (e.g., the input
‘she is a doctor’), or linguistically provided (e.g., the gender feature provided in the user profile in social
media). But, there may be contexts where the gender information is unavailable to the system (e.g., ‘the
student is a nurse’). In such cases, generating both gender-specific forms is more appropriate.

In this paper, we present an approach for sentence-level gender reinflection using linguistically en-
hanced sequence-to-sequence models. Our system takes an Arabic sentence and a given target gender
as input and generates a gender-reinflected sentence based on the provided target gender. Table 1 shows
some input and output examples. Our work is closely related to the one by Habash et al. (2019), as
we use the same corpus that is made available and focus on first-person-singular constructions in Ara-
bic. However, the main contributions of this work are the following: (1) we introduce an approach that
jointly models the reinflection for both masculine and feminine grammatical genders, unlike Habash
et al. (2019)’s segregated systems; (2) we show that adding linguistic features to our encoder-decoder
model leads to better reinflection results. Our code, data, and trained models are publicly available.3

This paper is organized as follows. In Section 2, we discuss some related work. In Section 3, we
present some Arabic linguistic facts related to grammatical gender. Section 4 introduces our model for
joint gender reinflection and describes the encoder-decoder architecture. Then, we present the experi-
mental setup in Section 5 and discuss the results in Section 6. An error analysis is given in Section 7. We
conclude and present future work in Section 8.

2 Related Work

Many NLP systems have the ability to embed and amplify societal (gender, racial, religious, etc.) biases
across a variety of core tasks such as coreference resolution (Rudinger et al., 2018; Zhao et al., 2018a),
machine translation (Rabinovich et al., 2017; Vanmassenhove et al., 2018; Font and Costa-jussà, 2019;
Moryossef et al., 2019; Stanovsky et al., 2019; Stafanovičs et al., 2020; Gonen and Webster, 2020),
named entity recognition (Mehrabi et al., 2019), dialogue systems (Dinan et al., 2019), and language
modeling (Lu et al., 2018; Bordia and Bowman, 2019).

For the case of gender bias, various research efforts have shown that this could be caused by either
human-generated training datasets (Font and Costa-jussà, 2019; Habash et al., 2019), pre-trained word
embeddings (Bolukbasi et al., 2016; Zhao et al., 2017; Caliskan et al., 2017; Manzini et al., 2019), or
language models (Kurita et al., 2019; Zhao et al., 2019). To mitigate this problem, several researchers

2Arabic transliteration is in the HSB scheme (Habash et al., 2007).
3https://github.com/CAMeL-Lab/gender-reinflection

https://github.com/CAMeL-Lab/gender-reinflection
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proposed approaches in which they focus mainly on debiasing word embeddings (Bolukbasi et al., 2016;
Zhao et al., 2018b; Gonen and Goldberg, 2019) or using counterfactual data augmentation techniques
(Lu et al., 2018; Zhao et al., 2018a; Zmigrod et al., 2019; Hall Maudslay et al., 2019).

Most of the solutions were mainly proposed to reduce gender bias in English and may not work as
well when it comes to morphologically rich languages. Nevertheless, there have been recent studies that
explored the gender bias problem in languages other than English. Zhao et al. (2020) studied gender
bias which is exhibited by multilingual embeddings in four languages (English, German, French, and
Spanish) and demonstrated that such bias can impact cross-lingual transfer learning tasks. Zmigrod et al.
(2019) used a counterfactual data augmentation approach and developed a generative model to convert
between masculine and feminine sentences in four languages (French, Hebrew, Italian, and Spanish).

For Arabic, Habash et al. (2019) introduced a two-step approach to gender-identify and reinflect first-
person-singular constructions. The identification was done through a feature-based classifier, whereas
they used a character-level sequence-to-sequence model for the reinflection. They also compared their
two-step approach to a single-step joint identification and reinflection model, which under-performed in
the case of the Arabic source (not the machine translation source) task. All of their systems modeled
grammatical masculine and feminine genders separately. In this paper, we compare to their results using
the publicly available Arabic parallel gender corpus they built – a parallel corpus of first-person-singular
Arabic sentences that are gender-annotated and reinflected. However, our work is different from theirs
in that we jointly learn reinflection for both masculine and feminine genders together. We also model
identification implicitly with reinflection in a single architecture. Furthermore, we formulate the prob-
lem as a user-aware grammatical error correction task (UGEC). As such, we use as our primary metric
the MaxMatch (M2) scorer (Dahlmeier and Ng, 2012), which is far more meaningful than the BLEU
(Papineni et al., 2002) metric used by Habash et al. (2019) for this task.

3 Arabic Linguistic Background

Modern Standard Arabic (MSA) NLP systems and more specifically those using deep learning, face
several challenges when it comes to gender expression including morphological richness, orthographic
ambiguity and noise.

Morphological Richness and Complexity Arabic has a rich morphological system that inflects for
gender, number, person, case, state, aspect, mood and voice, in addition to numerous attachable cli-
tics (prepositions, particles, pronouns) (Habash, 2010). This results in a large number of forms for any
particular word, with different morpho-syntactic restrictions. For instance, the adjective �

ÑêÓ mhmũ ‘im-

portant [masculine singular indefinite nominative]’, has a related form
�
AÒêÓ mhmAã that only differs in

being accusative in case. In addition to its richness, Arabic morphology has a lot of idiosyncratic inflec-
tional affixes that are not consistent in indicating specific genders or numbers (Alkuhlani and Habash,
2011). For instance, the Ta-Marbuta suffix �

è ~, often called the ‘feminine singular ending’, appears
with many words where it does not indicate a feminine-singular feature, and cannot be attached to all
masculine singular words to turn them feminine. So, in contrast to the good example of �

éÒêÓ mhm~ ‘im-

portant [feminine singular]’, we find words like �
é

	
®J
Ê

	
g xlyf~ ‘Caliph [masculine singular]’, and �

èQm�� sHr~
‘wizards [masculine plural]’. Furthermore, adding the Ta-Marbuta to some masculine nouns produces
nonsensical forms such as �

éÊg. P* *rjl~ ‘man-ess (female man)’ from Ég. P rjl ‘man’. Similarly, removing
the Ta-Marbuta is no guarantee that we map from feminine to masculine in every context. For example,
the noun word �

éÒêÓ mhm~ ‘mission/assignment’ is only feminine and has no meaningful masculine form,

as opposed to the adjective �
éÒêÓ mhm~ ‘important [feminine singular]’ discussed above.

These facts pose major challenges to deep learning models attempting to learn from limited supervised
or even large unsupervised data. In this work, we make use of morphological analyzers that indicate all
the possible gender information of the words in terms of their functional (grammatical) and form-based
(affixational) values (Alkuhlani and Habash, 2011).
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Orthographic Ambiguity and Noise Arabic uses diacritics to specify short vowels and consonantal
doubling. These diacritics are optional and generally unwritten, leaving readers to decipher words using
contextual and templatic morphology clues. For example, the verb �

I
	
J» knt can be diacritized as kuntu ‘I

was’, kunta ‘You [masculine] were’, or kunti ‘You [feminine] were’. This is a challenge for identifying
the words that need to change for a first-person target gender. In addition to the issue of orthographic
ambiguity, unedited MSA text is reported to be quite noisy with spelling errors reaching ∼23% of all
words (Zaghouani et al., 2014). The most important errors involve Alif-Hamza (Glottal Stop) spelling
( @ ,

�
@ , @



,


@ A, Ā, Ǎ, Â), Ya spelling (ø



, ø y, ý), and the feminine suffix Ta-Marbuta ( è ,

�
è h, ~). In Arabic

NLP, Alif/Ya normalization is almost standard preprocessing (Habash, 2010). Generally, the high degree
of ambiguity and noise result in a high degree of morphological confusability and model sparsity. For
instance, a common spelling error of writing the Ta-Marbuta ( �

è ~) as Ha ( è h) results in interpreting the

( è h) as a possessive pronoun clitic attached to a masculine noun: éJ.
�
KA¿ kAtbh ‘his writer [masculine]’, vs

�
éJ.

�
KA¿ kAtb~ ‘writer [feminine]’.

Normalizing the text may solve some issues related to noise and ambiguity. In this paper, we follow
Habash et al. (2019)’s decision to evaluate within an orthographically normalized space for Alif, Ya, and
Ta-Marbuta, since the OpenSubtitles 2018 corpus (Lison and Tiedemann, 2016) they use to build the
Arabic parallel gender corpus has many of such spelling confusions.

4 Joint Gender Reinflection Model

In this section, we discuss the motivation behind our model architecture as well as the integration of the
linguistic features. We also describe the training settings and the model’s hyperparameters for repro-
ducibility.

4.1 Motivation

Sequence-to-sequence models have achieved significant results in grammatical error correction
(GEC) (Chollampatt and Ng, 2018; Junczys-Dowmunt et al., 2018; Grundkiewicz et al., 2019) and
morphological reinflection tasks (Faruqui et al., 2016; Kann and Schütze, 2016; Aharoni and Goldberg,
2017). Many of these problems are modeled on the word-level, however, such models usually require
large amounts of training data to achieve good results. Character-level sequence-to-sequence models can
be superior in mitigating the lack of training data and in dealing with subtle morphological reinflection.
Further, pre-trained distributed word representations have also shown to be helpful if integrated properly
within character-level sequence-to-sequence models (Watson et al., 2018). We formulate the gender re-
inflection problem as a user-aware grammatical error correction (UGEC) task at the character-level. We
also explore leveraging linguistic knowledge on the word-level as well as pre-trained word embeddings
to enhance the performance of the model.

4.2 Model Architecture

Given an input sequence x1:n ∈ Vx containing k words w1:k ∈ Vw, a gender-reinflected output sequence
y1:m ∈ Vy, and a target gender g ∈ {F,M}, the goal is to model an auto-regressive distribution which is
defined over the target vocabulary:4

PVy(y1:m|x1:n, g) =
m∏
t=1

P (yt|y1:t−1, x1:n, g; θ);

where θ represents the model’s parameters.
We implement this model using a character-level encoder-decoder neural network with an attention

mechanism.

4F stands for Feminine and M stands for Masculine.
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س ع ϱ د

س ع ϱ د ة

+

ds \

s \ d

Figure 1: The encoder-decoder architecture for gender reinflection. The input and predicted characters
are shown both in Arabic and in the HSB scheme. <s> and </s> indicate the start-of-sequence and end-
of-sequence tokens respectively. +© refers to the attention mechanism and the filled dot (·) indicates a
concatenation operation.

Encoder First, each character in the input sequence xi is mapped to an embedding exi
∈ RE . The

character embeddings are parameters of the model which are learned during training. We then feed these
embeddings to a two-layer bidirectional GRU (Cho et al., 2014) to obtain a sequence of hidden states
h
(e)
1:n. Each hidden state h

(e)
i ∈ R2H is the concatenation of the forward and backward GRU outputs

when we feed it exi
.

Decoder For the decoder, we use a two-layer GRU with additive attention (Bahdanau et al., 2015;
Luong et al., 2015) over the last layer encoder hidden states h(e)

1:n. The initial hidden states of the decoder
h
(d)
0 ∈ RH are learned by passing the encoder hidden states at the last time step h

(e)
n of the corresponding

layers through a fully-connected tanh layer, h(d)
0 = tanh(Wah

(e)
n + ba). Given the last layer encoder

hidden states h
(e)
1:n and the last layer decoder hidden state at the tth time step h

(d)
t , we learn a context

vector ct ∈ R2H that is used to summarize the source attentional context when we predict target symbol
ŷt; we initialize c0 = 0. At each time step, we feed two inputs to the decoder: the context vector
ct−1 ∈ R2H and the embedding of the predicted decoder output symbol eŷt−1 ∈ RE from the previous
time step. However, it is important to note that we use scheduled sampling (teacher forcing) (Bengio et
al., 2015) with a constant sampling probability during training.

The two inputs are then concatenated to create a single vector vt = [eŷt−1 ; ct−1] ∈ RE+2H , which

is then fed to the GRU to obtain a decoder hidden state h
(d)
t ∈ RH . The target gender g is mapped to

an embedding eg ∈ RJ which is learned during training and concatenated together with the decoder
hidden state h

(d)
t , the context vector ct, and the embedding of the predicted symbol from the previous

time step eŷt−1 to create vector zt = [h
(d)
t ; ct; eŷt−1 ; eg] ∈ RH+2H+E+J . We finally project zt to

a vector of size |Vy| followed by a softmax layer to model the distribution over the target vocabulary
PVy(ŷt) = softmax (Wbzt + bb).
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Linguistic Features and Word Embeddings We explore adding word-level morphological features
as well as pre-trained distributed word representations to the character embeddings. We use the
CALIMAStar Arabic morphological analyzer (Taji et al., 2018) to obtain word-level functional gen-
der features (Alkuhlani and Habash, 2011).5 We represent the morphological features for word wj as a
four-dimension one-hot vector µwj

∈ R4. Each element of this one-hot vector represents whether the
word wj is masculine or feminine as well as if the analysis was obtained with or without spelling back-
off. We use FastText (Bojanowski et al., 2017) to learn distributed word representations and we denote
the FastText word embedding for word wj as ρwj

∈ RF .
Similarly to Watson et al. (2018), we added the word-level features to the character embeddings only

on the encoder side. Each character embedding exi
is then enriched with ρwj

and µwj
to create a sin-

gle vector [exi
;µwj

; ρwj
] ∈ RE+4+F which we feed to the encoder, where wj is the word containing

character xi.

Inference At inference time, we use greedy decoding to find the most likely sequence:6

ŷ1:m = argmax
ŷ∈Vy

P (ŷ|x1:n, g) = argmax
ŷ∈Vy

∏
ŷt∈ŷ

P (ŷt|ŷ1:t−1, x1:n, g)

The architecture of our gender reinflection linguistically enhanced sequence-to-sequence model is
shown in Figure 1.

4.3 Training Settings
For all the experiments described in this paper, we use a batch size of 32, a character embedding size
of E = 128, a gender embedding size of J = 10, a hidden size of H = 256, a scheduled sampling
probability of 0.3, a dropout probability of 0.2, and gradient clipping with a maximum norm of 1. The
FastText embeddings have a dimension of F = 100 and were trained for 10 epochs using the OpenSub-
titles 2018 corpus in a skip-gram manner with context windows of 2 and 3 respectively. We train the
model for 50 epochs by minimizing the average cross-entropy loss defined as follows:

L(y1:m, ŷ1:m; θ) =
1

m

m∑
t=1

L(yt, ŷt; θ);L(yt, ŷt; θ) = − logPVy(ŷt)

We use the Adam optimizer (Kingma and Ba, 2014) with an initial learning rate of 0.0005, decaying
by a factor of 0.5 if the loss on the development set does not decrease after 2 epochs.

5 Experiments and Evaluation

In this section, we discuss the data we use to train and evaluate our models. We also discuss the evaluation
metrics and the various systems we implemented including the baselines.

5.1 Data
For our experiments, we use the publicly available Arabic parallel gender corpus (Habash et al., 2019),
containing 12,238 parallel gender-annotated sentences: F (feminine), M (masculine) or B (gender-
ambiguous). The corpus is divided into three parallel balanced corpora: (1) Corpusinput containing F,
M and B sentences, (2) CorpusM containing M and B sentences only, and (3) CorpusF containing F and
B sentences only.7 Table 1 shows examples of what Corpusinput (Input), CorpusM (Target Masculine),
and CorpusF (Target Feminine) would look like.

We build our target corpus by concatenating CorpusM and CorpusF, while our source corpus is a
duplication of Corpusinput. Since our goal is to build a single user-aware joint gender reinflection model

5We experimented with both form-based and functional gender features, and found the functional features to be superior in
performance; so we only report on them in this paper.

6It important to note that we also explored beam search for decoding, however, greedy decoding yield better results.
7In this work, we consider the B cases to be masculine in CorpusM and feminine in CorpusF.
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for both grammatical genders, we introduce the notion of target gender g having two possible values: F
or M. All of the target sentences from CorpusM will have an M target gender, whereas all of the target
sentences from CorpusF will have an F target gender. We follow the same data split as Habash et al.
(2019). After merging the corpora we ended up with 17,132 sentence pairs for training (TRAIN), 2,448
for development (DEV), and 4,896 for testing (TEST). All of our systems are trained to take a source
sentence and a target gender as input to produce a gender-reinflected target sentence as described in
section 4.2.

5.2 Metrics
Gender Reinflection We follow Habash et al. (2019) and use BLEU as an evaluation metric (Papineni
et al., 2002), however, we believe that BLEU is not a suitable metric for our task due to the high similarity
between the input and output sentences. We use SacreBLEU (Post, 2018) to compute the BLEU scores.
Additionally, we use the MaxMatch (M2) scorer (Dahlmeier and Ng, 2012) to compute the word-level
edits between the input and reinflected output. We report the precision, recall, and F0.5 scores calculated
against the gold edits, which were also created by the M2 scorer. We are aware that there are other tools
to consider for word-level edit calculation such as ERRANT (Bryant et al., 2017), but we did not use
them as they require additional dependencies to work for Arabic.

Input Gender Identification Our sequence-to-sequence model does not explicitly identify the gender
of the input sentence; however, we consider any attempted change (or lack thereof) to the input as a signal
for the implicit gender identification: if our model reinflects the source sentence, then we consider the
gender of this sentence to be the opposite of the given target gender. But if the model does not reinflect
the source sentence, then we consider the gender of this sentence to be the same as the target gender. We
report the average F1 score for M and F gender identification over the source sentences.

We report the results for gender identification and reinflection in a normalized space for Alif, Ya, and
Ta-Marbuta as discussed in section 3.

5.3 Baselines
In addition to comparing with the results from Habash et al. (2019), we include two baselines. The
first one is a DO NOTHING baseline which simply passes the input to the output as is. This baseline is
intended to show how similar the inputs and the outputs are. The second is a baseline in which we define
a bigram maximum likelihood estimation (MLE) model: given an input sequence of words xw1:n ∈ Vxw ,
a target sequence of words yw1:n ∈ Vyw , and a target gender g ∈ {F,M}, the MLE model is built as
follows:8

P (ywi |xwi , xwi−1 , g) =
count(ywi , xwi , xwi−1 , g)

count(xwi , xwi−1 , g)

At inference time, we pick the target word ŷwi which maximizes the probability defined above. If ŷwi

was not observed in the training data along with xwi and xwi−1 , we back-off to a lower-order distribution
(unigram) P (ŷwi |xwi , g). In the worst case scenario, where ŷwi was not observed in the training data
along with xwi , we pass xwi to the output.

The MLE baseline is suitable for our case because the input and output sentences are perfectly aligned
on the word-level.

5.4 Systems
We explore four variants of the model described in section 4.2. In the first, we provide the encoder with
the character embeddings without any morphological features or FastText embeddings and we refer to it
as JOINT. The second variant is where we add the morphological features to the character embeddings but
without the FastText embeddings and we refer to it as JOINT+MORPH. For the third variant, we explore
adding both the morphological features and the FastText embeddings to the character embeddings, we
refer to it as JOINT+MORPH+FT. To build the fourth one, we selected the best variant and trained it in
a similar fashion to Habash et al. (2019). We trained two systems disjointly; one using CorpusM and the

8We experimented with different n-gram sizes for the MLE model, the bigram yielded the best results.
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Reinflection Identification
Precision Recall F0.5 BLEU F1

DO NOTHING 100.0 0.0 0.0 97.1 91.8
MLE (bigram) 65.5 41.5 58.7 97.8 95.0
Habash et al. (2019) 74.0 48.2 66.8 98.0 96.3
JOINT 70.6 51.3 65.6 98.2 96.2
JOINT+MORPH 75.3 58.5 71.2 98.4 96.8
JOINT+MORPH+FT 64.8 50.9 61.4 97.9 95.9
DISJOINT+MORPH 63.6 49.1 60.0 98.0 96.0

Table 2: Results of a number of systems on the DEV set.

Reinflection Identification
Precision Recall F0.5 BLEU F1

DO NOTHING 100.0 0.0 0.0 97.1 91.8
MLE (bigram) 70.8 48.9 64.9 98.0 95.6
Habash et al. (2019) 77.7 52.0 70.8 98.3 96.6
JOINT+MORPH 79.0 60.3 74.4 98.5 97.0

Table 3: Results of baseline systems and the best system on the TEST set.

other using CorpusF and reported the average performance of both systems. We refer to this last variant
as DISJOINT+MORPH.

6 Results

The results of our evaluation on the DEV set are presented in Table 2. The best performing system is
JOINT+MORPH. It improves over the previous SOTA on this task, Habash et al. (2019), in every com-
pared metric, including a 4.4% absolute increase in M2 F0.5. The biggest contribution to the performance
increase is from recall (10.3% absolute). In fact, all of the neural models we introduced in this paper
improve over the Habash et al. (2019) results in terms of recall (at varying degrees); however, only
JOINT+MORPH improves in terms of recall and precision. The MLE results are surprisingly competi-
tive in terms of precision, scoring higher than some of the weaker neural models; while being the worst
(barring DO NOTHING) across all other metrics.

The two aspects of our best system (being joint and using morphological features) are important to its
performance. When we compare JOINT+MORPH to its JOINT counterpart, we observe an 5.6% absolute
increase in the M2 F0.5 score and a corresponding 0.6% increase in identification F1 score. This confirms
that morphological features are helpful for both gender identification and reinflection.

An ablation experiment comparing the best system JOINT+MORPH to the disjoint variant of it (DIS-
JOINT+MORPH) demonstrates the large added value of using a joint model: an 11.2% absolute increase
in M2 F0.5 score, 0.45 BLEU points , and 0.8% absolute improvement in identification F1 score. The
use of word embeddings was not helpful to our best system. One possible explanation is that the use of
semantically oriented embeddings may not be optimal for fine-targeted rewriting tasks.

The results on the TEST set using the baselines and the best system from the DEV experiments are
given in Table 3. These results show consistent conclusions with the DEV results. Our best system
improves over the previous SOTA in every compared metric, including a 3.6% absolute increase in terms
of M2 F0.5.
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M Target F Target M+F Target
No Change 35 64% 52 71% 87 68%
Wrong Change 17 31% 14 19% 31 24%

Case form 9 16% 0 0% 9 7%
Uninflectable word 4 7% 5 7% 9 7%
Odd characters 2 4% 6 8% 8 6%
Other 2 4% 3 4% 5 4%

Gold Error 3 5% 7 10% 10 8%
Total 55 100% 73 100% 128 100%

Table 4: Summary of the errors found in the Dev set organized by target gender (M or F) and in combi-
nation (M+F).

7 Error Analysis

We conducted a manual error analysis examining all of the errors in the output of our best system on
the DEV set. In total, there were 106 sentences with errors (or 4.3% out of 2,448). In those erroneous
sentences, there were 128 words with problems. Table 4 presents the detailed scores, which we discuss
next.

Around two thirds of the word errors were false negatives, i.e., where a change should have happened
but did not (Table 4 No Change). In a quarter of the No Change cases, a clear copular construction
context for first person gendered expression is seen. For example, the word 	

àA
	
J
	
¯ fnAn ‘artist [masc]’ in

ø



YJ
� AK

	
àA

	
J
	
¯ A

	
K


@ ÂnA fnAn yA sydy ‘I’m an artist, sir’ is not correctly reinflected to its F target form �

é
	
K A

	
J
	
¯

fnAn~ ‘artist [fem]’. The No Change errors with target gender F are 50% higher than the target gender
M; this suggests that the system is more adept at identifying feminine source text than the other way
around. This is plausible given that the Arabic feminine form is the marked variety.

Returning to the rest of the errors, an additional quarter of them involved a false positive (Ta-
ble 4 Wrong Change). Three types of incorrect changes are noteworthy. First is imperfectly reinflecting
the masculine form by failing to indicate case (Table 4 Case form), e.g., generating Èñ

	
ª

�
�Ó

�
I

	
J» knt

mšγl instead of Bñ
	
ª

�
�Ó

�
I

	
J» knt mšγlA ‘I was busy [masc]’. It should be noted that such cases are

commonly used and are ‘accepted’ since most modern dialects of Arabic lost the productive generation
of case. Second is reinflecting words that are not inflectable for gender (Table 4 Uninflectable word).
One example is adding the feminine nominal suffix �

è ~ to the first person imperfective verb É
�
JÓ



@ Âmθl

in �
HA¿Qå

�
�Ë @ ©

�
�k. É

�
JÓ



@ ú




	
æ

	
K @


Ǎnny Âmθl jšς AlšrkAt ‘I represent corporate greed’. This results in creating

a nonsensical verbal form �
éÊ

�
JÓ



@ Âmθl~ which is a homograph with the word ‘examples’. The third type

of change errors involves random generation of odd repetitive character sequences (Table 4 Odd char-
acters), a side effect of using character sequence-to-sequence models. One example in our data is the
generation of the nonsensical form �

�
�
®

�
¯ qqq from the word �

�Ê
�
¯ qlq ‘worried [masc]’ instead of �

é
�
®Ê

�
¯ qlq~

‘worried [fem]’. Finally, about 1/12th of all counted errors are miscounts due to Gold annotation fails,
where our system actually generated the correct output (Table 4 Gold Error).

Considering the detailed scores for the whole DEV set and for M target and F target cases, we note the
following. As expected, the F target setting has more errors than the M target setting. No Change errors
and Gold errors are more common for the F target setting. The Case form errors are only seen in the M
target setting. Errors with uninflectable words are almost equally present. These errors suggest that more
work needs to be done on identifying when a reinflection should take place. Furthermore, to address
the errors of uninflectable forms and case-marked forms, we may have to incorporate more linguistic
knowledge or more powerful language models.
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8 Conclusion and Future Work

In this paper, we proposed a solution to single-output NLP systems that allows users to specify their
grammatical gender preference in Arabic. Our intention is to enable users to reduce the harm that may be
produced by NLP systems propagation of biased representations. Our joint approach for sentence-level
gender reinflection uses linguistically enhanced sequence-to-sequence models and frames the problem
as a user-aware grammatical error correction task. Our system takes an Arabic sentence and a given
target gender as input and generates a gender-reinflected sentence based on the provided target gender.
We showed that linguistic knowledge helps in learning gender identification implicitly which improves
reinflection results. In future work, we would like to explore different architectures such as Transformer-
based models (Vaswani et al., 2017). Furthermore, we are interested in exploring the added value of
combining syntactic and morphological features. We would also like to apply our approach to different
languages and dialectal varieties. Lastly, we plan to extend the Arabic parallel gender corpus beyond
first-person-singular constructions and adapt our models accordingly.
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