Daniel at the FinSBD-2 task :
Extracting Lists and Sentences from PDF Documents:
a model-driven end-to-end approach to PDF document analysis

Emmanuel Giguet'* and Gaél Lejeune?
'Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC
14000 Caen, France

2STIH, Sorbonne University
75005 Paris, France

emmanuel.giguet @unicaen.fr, gael.lejeune @sorbonne-universite.fr

Abstract

In this paper, we present the method we have de-
signed and implemented for identifying lists and
sentences in PDF documents while participating
to FinSBD-2 Financial Document Analysis Shared
Task. We propose a model-driven approach for the
French and English datasets. It relies on a top-down
process from the PDF itself in order to keep control
of the workflow. Our objective is to use PDF struc-
ture extraction to improve text segment boundaries
detection in an end-to-end fashion.

1 Introduction

Our team participated to the FinSBD-2 Shared Task dedi-
cated to Sentence Boundary Detection in Financial Prospec-
tuses. The task aims at identifying sentences, ordered lists,
unordered lists, and list items in PDF Documents. It also aims
at recovering the hierarchical structure of embedded lists. It
was our first participation to this shared task. Our motiva-
tion is to improve our model-driven approach to multilingual
document analysis.

Our approach was illustrated in FinTOC’2019 Shared Task
[Rémi Juge, 2019]. It was dedicated to Table Of Content
structure extraction from PDF Financial Documents. The
task aimed at identifying and organizing the headers of the
document according to its hierarchical structure. Since our
approach gave good results on this task [Giguet and Lejeune,
2019], we took advantage of the second edition of FinTOC,
called FinTOC-2020, to improve the implementation of our
model driven approach. We seized the opportunity of the sec-
ond edition of FinSBD [Ait Azzi et al., 2019], to promote our
overall model-driven approach and to enrich our document
model with smaller units, i.e paragraphs, sentences and lists.

The paper is organized as follows. Section 2 discusses the
rationale behind the interest for sentences in NLP. Section 3
provides the state of the art approaches to tackle the prob-
lem. Section 4 presents the preprocessing applied to the PDF
documents. The next sections are dedicated to our document
model-based approach: section 5 presents how to handle page

*Contact Author

67

layout at document scope; section 6 describes the detection
and Structure Induction of various Document Objects includ-
ing headers and footers, tables, lists, paragraphs. Section 7
presents the results we obtained on the task. Section 8 con-
cludes and gives some perspectives about this work.

2 The importance of sentences in NLP
Architectures

One way to present NLP tasks is to describe them as a se-
ries of transformation from an input format (e.g., a PDF file,
a HTML file, a set of character strings) to an output format
suitable for downstream components (e.g., an XML or JSON
enriched file) or for end-users (e.g., a HTML file). NLP Com-
ponents piped together form an NLP pipeline.

The rationale behind the NLP pipeline is to favor factor-
ization and reuse of existing NLP components. In that way,
tackling a new task may consist in preprocessing a new input
format in order to feed an existing NLP pipeline (e.g., con-
verting PDF binary file to machine-readable text) or to com-
pose a pipeline by choosing the appropriate components for
a given task. In NLP, the two main input and output formats
are inherited from traditional grammar: words and sentences.
The text representation is usually reconstructed from these
units (see for instance DOC2VEC [Le and Mikolov, 2014]).

For many NLP components, the word (approximated by
the concept of “token”) is the core analysis grain and the
sentence is the parsing frame. In that perspective, solving
the tokenization task is considered to be a prerequisite to the
proper application of NLP techniques. In some languages
the task will be considered to be solved, in particular for En-
glish [Smith, 2020], while in under resourced languages like
dialects [Bernhard et al., 2017] or ancient language variants
[Gabay er al., 2019] the task requires intensive care from the
research community. Tokens and sentences can be produced
from any character string but it is common to tokenize from
small text blocks (e.g., paragraphs, headers) rather than com-
plete documents. Text blocks are search spaces in which to-
ken boundaries and sentence boundaries are computed. To
this end, text blocks are expected to be large enough to con-
tain at least one sentence. It should not be too large to limit
memory consumption and computational costs.

Proceedings of the Second Workshop on Financial Technology and Natural Language Processing

While many algorithms can handle long text blocks the
same way they process short blocks, some NLP approaches
are very sensitive to the input length. Some tasks can be per-
formed by linear time algorithms, other ones involve a higher
computational cost, with a time complexity sometimes higher
than quadratic in some cases [Corro, 2020]. Another exam-
ple is word embeddings models where the input length is a
key feature. For instance, the CAMEMBERT model (BERT
for French) can not process inputs longer than five hundred
twelve tokens [Martin et al., 2020]. Obviously, whatever the
time complexity, the space complexity also has to be con-
trolled in order to limit the amount of space and memory
taken by the underlying algorithms.

Processing long documents such as financial prospectuses
with an NLP pipeline requires the proper definition of text
blocks and sentences. While small text blocks such as para-
graphs or headers are expected to be easily computed, the
NLP architect has to guarantee that the computed blocks and
sentences always fit the requirement of the different NLP
components, in terms of time and space complexity. The task
is not trivial when the pipeline is made of NLP components
designed by various contributors.

Assuming that paragraphs and headers are always relevant
text blocks leads to failure. It does not guarantee that para-
graphs will never exceed the expected maximum length. Sim-
ilarly, assuming that sentence tokenization guarantees a cer-
tain maximum length fails when confronted to text without
any punctuation.

3 Sentence Segmentation in Practice

3.1 State of the art on Sentence Boundary
Detection

Sentence boundary detection plays a crucial role in Natural
Language Processing. For a long time, sentences have been
considered as given input. Things changed with the rise of ro-
bust parsing in the 90’s. What is a sentence and how to detect
them automatically in raw texts becomes crucial. The concept
of sentence is questioned by [Grefenstette and Tapanainen,
1994]. [Giguet, 1995] adresses the problem in the context of
multilingual sentence tokenization in raw texts.

[Ait Azzi et al., 2019] retraces the milestones and achieve-
ments in Sentence Boundary Detection, from the first rule-
based approaches to the recent deep-learning approaches.
They open a new challenge related to the identification of sen-
tences in noisy unstructured PDF documents from the finance
sector. Obviously the issue is much broader and impacts all
the works concerning PDF document analysis.

[Dale et al., 2000] highlights the fact that there are four
challenges for sentence segmentation: (I) Language Depen-
dence, (II) Character-Set Dependence, (III) Application De-
pendence and (IV) Corpus Dependence. Except for “Applica-
tion Dependence”, all of these challenges are linked to vari-
ations in the input data. Therefore, the techniques that have
been developed by the community tend to focus on handling
the variability of the data to be processed. One of the main
questions regarding SBD is whether the sentence boundaries
are explicitly marked or not. It relies to both language de-
pendence and corpus dependence since all languages will not

68

mark explicitly depending on the text genre for instance. In
an experiment on multilingual SBD [Kiss and Strunk, 2006] it
has been shown that the main issue is that the period can serve
multiple purposes and that handling this “polysemy” allows
to get rid of most of boundary errors. In other application
domains there has been more focus on the detection of sen-
tence starters, obviously the best example would be speech
processing [Bachenko et al., 1995].

3.2 State of the art on Lists and Enumerations

Research on lists and enumerations as text objects playing
an important role in the text architecture has been conducted
by [Virbel, 1999; Pascual and Virbel, 1996] in Toulouse,
France. [Luc, 2001] studied the representation of the inter-
nal structure of enumerations with two text structure mod-
els: the Rhetorical Structure Theory (RST) and the model
of text architecture, dedicated to the study and represen-
tation of visuo-spatial structures of texts. [Maurel, 2004;
Maurel et al., 2006] studied visuo-spatial structures of texts,
in particular enumerations. This work, related to Natural Lan-
guage Processing, concerns the oral transposition of these
structures by Text-To-Speech systems. Regarding list detec-
tion, [Déjean, 2010] introduced a method for detecting num-
bered sequence in documents.

4 Preprocessing PDF Documents

In previous INEX Book Structure Extraction Competitions,
we used to consider the whole document to extract the struc-
ture [Giguet and Lucas, 2010a; Giguet and Lucas, 2010b;
Giguet ef al., 2009]. In our participation to this FinSBD
shared task; we wanted to start over from this approach in
order to get an end-to-end pipeline from the PDF file itself to
sentence segmentation'. The experiment is conducted from
PDF documents to ensure the control of the entire process.
The document content is extracted using the pdf2xml com-
mand [Déjean, 2007]. It allow us to extract text content with
its structural information via vectorial shapes.

4.1 Dealing with Text Content : tokens, lines and
blocks

There is no concept of “word” or “number” or “token” in a
PDF file. Therefore, these units have to be inferred. In or-
der to ease the processing, pdf2xml defines a “token” as a
computational unit based on character spacing. In practice,
most output tokens correspond to words or numbers but they
can also correspond to a composition of several interpretable
unit (e.g., “Introduction 5” or a breakdown of an inter-
pretable unit (e.g., “C” “O” “N” “T” “E” “N” “T”).

We assume that the PDF financial prospectuses are auto-
matically generated by the PDF converter of a word proces-
sor. Thus, we do not check if the document is a scanned doc-
ument or if it is the output of an OCR application.

Consequently, we do not consider possible trapezoid or
parallelogram distortion, page rotation or curved lines. This
assumption simplifies the initial stages: baselines and line-
spacing are inferred from the coordinates on the y-axis; left,

'Code
FINSBD2/

https://github.com/rundimeco/daniel_fintoc2019/

https://github.com/rundimeco/daniel_fintoc2019/FINSBD2/
https://github.com/rundimeco/daniel_fintoc2019/FINSBD2/

right and centered alignments are inferred from the coordi-
nates on the x-axis.

For pdf2xml, tokens are linked to two other units that we
do not use in our experimentation:

line : a sequence of tokens which may correspond to a co-
herent visual text line (relatively to token-spacing)

block : a sequence of lines which may correspond to a co-
herent visual text block (relatively to line-spacing).

We only rely on the pdf2xml “token” unit. We redefine
our own “line” unit in order to better control the coherence of
our hierarchy of graphical units.

4.2 Dealing with Vectorial Shapes

One of the main advantages of using pdf2xml is to enable our
approach to rely on vectorial information during document
analysis. Text background, framed content, underline text,
table grid are crucial information that contributes to sense
making: we have no reason to ignore them. They simplify
the reader’s task of sense-making [Sorin, 2015], so that they
may contribute in a positive way to automatic document anal-
ysis.

Most vectorial shapes are basic closed path, mostly rectan-
gles. Graphical lines or graphical points do not exist: lines
as well as points are rectangles interpreted by the cognitive
skills of the reader as lines or points.

In order to use vectorial information in document analysis,
we implemented a preprocessing stage that enables to build
composite vectorial shapes and to interpret them as text back-
grounds, cell borders, underlines. This preprocessing compo-
nent returns results that are used to detect framed content and
table grids.

As an example of vectorial preprocessing, more than thir-
teen rectangles may have to be processed to identify a single
table cell with background and borders:

e cight adjacent rectangles for the borders : two horizontal
borders, two vertical borders and four square corners;

e at least five rectangles for paving the cell background:
four rectangles for cell paddings, and at least one rect-
angle for text background.

In the context of FinSBD, dealing with vectorial informa-
tion allows to detect tables and ignore them. Since no sen-
tence boundaries has to be searched in tables, table exclusion
contributes to avoid the generation of potentially numerous
false positive since tables are long and frequent in financial
prospectuses.

S Handling Page Layout at Document Scope
5.1 Dealing with Content Areas

We assume that PDF converters serialize the content of a page
area by area, depending on the page layout. A content area
corresponds to a page subdivision such as a column, a header,
a footer, or a floating table or figure. However, content ar-
eas are represented neither in the PDF structure nor in the
pdf2xml output. Content areas are implicitly inferred and
interpreted by the cognitive skills of the reader.

69

As an example, the repetition of a content located at the
bottom of contiguous pages (i.e., positional information),
with identical style properties (i.e., morphological informa-
tion), visually detached from the above content and smaller
than the above content (i.e., contrastive information), leads
the reader to perceive a content area and to interpret it as a
footer. In the PDF document, it is only a series of characters
with style properties in the 2D coordinate system of sequen-
tial pages.

When a content area is processed by the PDF converter, we
assume that characters and lines are serialized in reading or-
der, so that there is no ordering problem to consider inside a
content area. However, when parsing a page, we cannot al-
ways expect to find the content serialized in reading order:
PDF converters can serialize content areas in several ways.
For instance, the header and footer areas can be serialized
before the page’s main content. Indeed, the boundary de-
limitation of content areas inside a page is one of the main
challenges.

Bounding the content areas over pages is not immediate
due to the absence of marks that separate them from other ad-
jacent areas. In our process, positional information, morpho-
logical information and contrastive information are inferred
from the document structure in order to help the boundary
delimitation of content areas.

5.2 From Page Layout to Page Layout Models

Page Layout Analysis (PLA) aims at recognizing and label-
ing content areas in a page (e.g., text regions, tables, fig-
ures, lists). It is the subject of abundant research and articles.
ICDAR challenges show the efforts of a large international
community interested in Document Analysis and Recognition
[Antonacopoulos et al., 2009].

While PLA is often achieved at page scope and aims at
bounding content regions, we have taken a model-driven ap-
proach at document scope. We try to directly infer Page Lay-
out Models from the whole document and we then try to in-
stantiate them on pages. This strategy has been used earlier,
in the Resurgence Project [Giguet, 2008; Giguet, 2011].

Our Page Layout Model (PLM) is hierarchical and contains
2 positions at top-level: the margin area and the main content
area.

The margin area contains two particular position, the
header area located at the top, and the footer area located at
the bottom. Aside areas may receive particular content such
as vertically-oriented text.

The main content area contains column areas containing
text, figures or tables. Floating areas are defined to receive
content external to column area, such as large figures, tables
or framed texts.

The positions that we try to fill at document scope are
header, footer and main columns. First, pages are grouped
depending on their size and orientation (i.e., portrait or land-
scape). Then header area and footer area are detected. Col-
umn areas are in the model but due to time constraints, the
detection module is not fully implemented in this prototype
yet.

5.3 Detecting Header and Footer Areas

Header area boundaries and footer area boundaries are com-
puted from the repetition of similar tokens located at similar
positions at the top and at the bottom of contiguous pages
[Déjean and Meunier, 2006]. We take into account possible
odd and even page layouts. The detection is done on the first
twenty pages of the document. While this number is arbitrary,
we consider it is enough to make reliable decisions in case of
odd and even layouts.

A special process detects page numbering and computes
the shift between the PDF page numbering and the document
page numbering. Page numbering is computed from the repe-
tition of tokens containing decimals and located at similar po-
sitions at the top or at the bottom of contiguous pages. These
tokens are taken into account when computing header and
footer boundaries.

Considering FinSBD Task, identifying header and footer
allows to build the main content flow over pages. Hence, it
avoids to get paragraphs, sentences or list items merged with
header and footer content when they overlap two pages.

6 Parsing with a Document Model

In INEX Book Structure Extraction Competition, we intro-
duced a relevant strategy to divide a document in main parts
and chapters [Giguet er al., 2009].

As we participated at FinTOC Shared Task [Giguet and
Lejeune, 2019], we used a fallback strategy to divide the doc-
ument in parts: the Table of Content (TOC) if detected is used
to separate preliminaries from the main content of the docu-
ment. The underlying idea is to rely on the main part’s in-
ternal regularities when making decisions. This is useful for
inferring paragraph models or list item models.

Contrary to our model-based approach, this fallback does
not allow to separate the document body from its appendices
or annexes. That is unfortunate since appendices and annexes
may have their own regularities that should not be mixed with
the document body regularities in the inference engine.

6.1 Detecting the Table of Contents

The TOC is located in the first pages of the document. It
can spread over a limited number of contiguous pages. One
formal property is common to all TOCs: the page numbers
are right-aligned and form an increasing sequence of integers.

These characteristics are fully exploited in the core of our
TOC identification process: we consider the pages of the first
third of the document as a search space. Then, we select the
first right-aligned sequence of lines ending by an integer and
that may spread over contiguous pages.

Linking TOC Entries and Headers
Linking Table of Content Entries to main content is one of the
most important process when structuring a document [Déjean
and Meunier, 2010]. Computing successfully such relations
demonstrates the reliability of header detection and permits
to set hyperlinks from toc entries to document headers.

Once TOC is detected, each TOC Entry is linked to its cor-
responding page number in the document. This page number
is converted to the PDF page number thanks to the page shift

70

(see section 5.3). Then header is searched in the related PDF
page. When found, the corresponding line is categorized as
header.

6.2 Detection and Structure Induction of
Document Objects in PDF Documents

In the main content area of our model, column areas and float-
ing areas are both planned to contain information. While col-
umn areas are planned to contain the main text stream, float-
ing areas are planned to contain spotlight contents that are
relatively independent from the main content. Floating areas
contains information that are not part of the main stream of
text. Figures, tables, framed text may be such autonomous
document components.

6.3 Table Detection and Table Structure Induction
in PDF Documents

Table detection and table structure induction are beyond the
scope of this article. However table detection is important for
FinSBD in order to exclude table content from the main text
stream. This way, we are able to exclude table rows when
searching for list items or sentences. Table structure induc-
tion does not affect list or sentence boundary detection mod-
ules.

The table detection module analyzes the PDF vectorial
shapes. Our algorithm builds table grids from adjacent
framed table cells. The framed table cells are built from vec-
torial shapes that may represent cell borders. The table grid
is defined by the graph of adjacent framed table cells.

The table structure is inferred from the vectorial grid, the
vectorial cell backgrounds, and the inner text spacing. This
way we handle table cells that span over multiple columns.
Due to lack of time, table cells that span over multiple rows
is not implemented yet.

Table detection and table structure induction have been de-
signed and implemented outside FinSBD and reused as is for
convenience.

6.4 Unordered List Structure Induction in PDF
Documents

Unordered lists are also called bulleted lists since the list
items are supposed to be marked with bullets. Unordered list
may spread over multiple pages.

Unordered list items are searched at page scope. The ty-
pographical symbols (i.e., glyph) used to introduce items are
not predefined. We infer the symbol by identifying multiple
left-aligned lines introduced by the same single-character to-
ken. This strategy allows the algorithm to capture various
bullet symbols such as squares, white bullets. . . Alphabetical
or decimal characters are rejected as possible bullet style type.

The aim of the algorithm is to identify PDF lines which
corresponds to new bulleted list item (i.e., list item leading
lines). The objective is not to bound list items which cover
multiple lines. Indeed, the end of list items are computed
while computing paragraph structures: a list item ends when
the next list item starts (i.e., same bullet symbol, same inden-
tation) or when less indented text objects starts.

Class MUS D1 Man

sSacuriies | Securky Accumutstie or | Denomination gegy | M Adahional M paragement | sakes Inital Iss02
FTHET =JE3 Number | denincation | income Currengy e vestg | SUOSTEON o eoripmon | TSR oo cammisskn | Price
(Teteurs) | Numoer | Amount |
255 576 Accumutzne actne ves re 150% et zsset

o 5% of
Convertibies Far Esst — ||LU0051927850 | [o51.117 Euma (EUR) Evrrom |[eur1om |[1ew EuR 100
EUR sharss =

Cizss MUS HES Man P
Convertibiss Far East - |[LU0SETITI Acoumutztie |[Ewro (EUR) |[Domznt (|nm EUR 10700 ||EUR1000 [[1smare a7 metzzest |[EUR 100
EUR Sharss o

Class MUS D157 Man P
Convertibles Far Esst — | |LUOT 1735655 accumutze |[Euro(EUR) ||Comat || Evmtoron |[EuRto00 | [1shwre 075% metzet [EURID
EUR sharss =

Cizss MUS D2 Man - EEETd
Convertibies Far Esst- ||Lugi2essares 10103362 ||aoRwss |[Accumuime |[PHR TR aoe No o= 1om crE1om |1 150% metzzest ||cHF 100
CHF $hares b =

Class MUS 1163 Man = P
Convertinies Far Esst — ||LU0S3752812 pocmuzne ([e e No crrtoron |[cHEroo0 | [1snmre L =
CHF sharss E

Cizss MUS 0135 Man A P
Convertiniss Far East — |[U0STITEETER acsemuze ([P pome | |ne CHE DTN ||CHF 1000 |[1smare LE metzzest ||cHF 100
CHF s$harss : e

Figure 1: Illustration of a PDF table rendered as a HTML/CSS table thanks to vectorial shape analysis

6.5 Ordered List Structure Induction in PDF
Documents

Ordered list items are searched at document scope. We first
select numbered lines thanks to a set of regular expressions
and we analyze each numbering prefix as a tuple (P, S, I, C)
where :

P refers to the numbering pattern (string);
S : numbering style type (single character, see below);

I : numbering count written in numbering style type (single
character);

C : decimal value of the numbering count (integer).
The numbering style types are defined as follows :

e Unambiguous style types:

— D: Decimal

L: Lower-Latin
M: Upper-Latin
G: Lower-Greek
H: Upper-Greek
R: Lower-Roman
S: Upper-Roman

e Ambiguous style types:
— ?: Lower-Latin OR Lower-Roman
— !: Upper-Latin OR Upper-Roman
To illustrate, the line “A.2.c) My Header” is analyzed as (
A2L),L,c3).
Then, lines are grouped in clusters sharing the same num-
bering pattern, for instance:

e 2.aand 2.b — cluster 2. (Lower-Latin)
e A.2.c)and A.2.f) — cluster A.2.L (Lower-latin)

e A.2.i) and A.2.v) — cluster A.2.? (ambiguous, Lower-
Latin or Lower-Roman)

The disambiguation process separates ambiguous line clus-
ters from unambiguous line clusters. Ambiguous patterns are
mapped to their corresponding unambiguous patterns. For

71

instance, A.2.7) is mapped to A.2.L) and A.2.R) if patterns
exist.

The disambiguation process assigns an unambiguous style
type to ambiguous lines. The process relies on compatible
unambiguous clusters as disambiguation contexts.

Two cases are considered:

1. Ambiguous lines that are mapped to a single unambigu-
ous patterns are directly disambiguated. For instance,
A.2.7) is directly mapped to A.2.L) if no cluster A.2.R)
exists.

2. Ambiguous lines that can be mapped to multiple unam-
biguous patterns are analyzed to identify a compatible
unambiguous cluster. For instance, line A.2.v) is com-
patible with the cluster A.2.R) if A.2.v) is missing in the
cluster and if line numbering A.2.iv) exists and both line
numbers and/or left-alignments are compatibles.

Once the disambiguation stage is achieved, we split every
cluster in order to build ordered series. For instance, the clus-
ter containing lines 2.a, 2.b, 2.c, 2.a, 2.b is split in two ordered
series 2.a, 2.b, 2.c and 2.a, 2.b.

Finally, we detect and resolve missing or unexpected items.
For instance, first item of a numbered list may be missing
when the numbering item is located on the same line of its
parent item (the missing item is the second token): list item
(a) is not detected when line starts with (2) (a). For instance,
(X) is an unexpected item which must be removed from the
cluster: (A), (B), (O), (X), (D), (E).

The aim of the algorithm is to identify PDF lines which
corresponds to new ordered list item (i.e., list item leading
lines). The objective is not to bound list items which cover
multiple lines. The end of list items are computed in a sec-
ond stage, while computing paragraph structures: a list item
ends when the next list item starts (i.e., same numbering pat-
tern and same indentation) or when less indented text objects
starts.

6.6 Paragraph Structure Induction in PDF
Documents

The aim of paragraph structure induction is to infer paragraph
models that are later used to detect paragraph instances. A

paragraph model can be seen as a paragraph style defined in
any word processor (see figure 2).

Highlighting | Outline & Numbering | Tabs | DropCaps | Ares |
Indents & Spscing | Alignment | TextFlow | Font |

Transparency | Borders |
Organizer Font Effects | Position |
Indent

Before text: b.70em

After text: 0.00 cm

Alr] (4] [4]p

First line: -0.70 cm
Automatic
Spacing

Abgue paragraph: 2.00 cm

4y [4]p

Below paragraph 1.00 em

Don't add space between paragraphs of the same style
Line Spacing

1.5 lines - £

Register-true
Activate

Help oK Apply Cancel Reset Standard

Figure 2: Settings in paragraph style of LibreOffice word processor

In other words, the aim of the process is to automatically
infer the settings of paragraph styles.

Paragraphs are complex objects: a canonical paragraph is
made of a leading line, multiple body lines and a trailing line.
The leading line can have no positive or negative indentation.
In context, paragraphs may be visually separated from other
objects thanks to above spacing and below spacing.

In order to build paragraph models, we first identify re-
liable paragraph bodies. Paragraph bodies are sequences of
three or more lines with same line spacing and compatible left
and right coordinates. Then, leading lines and trailing lines
are identified considering same line spacing, compatible left
and/or right coordinates (to detect left and right alignments),
same style.

Reliable paragraph lines are categorized as follows: L for
leading line, B for body lines, T for trailing line. Header lines
are categorized H (see section 6.1). Other lines are catego-
rized as ? for undefined.

In order to fill paragraph models, paragraph settings are
derived from the reliable paragraphs that are detected. When
derived, leading lines of unordered and ordered list items are
considered to create list item models (see sections 6.4 and 6.5
above).

Once paragraph models and list item models are built, the
models are used to detect less reliable paragraphs and list
items (i.e., containing less than three body lines). Compatible
models are applied and lines are categorized L, B (if exists)
or T (if exists). Remaining undefined lines are categorized
considering line-spacing.

7 Evaluation of the Sentence Boundary
Detection

While the shared task is dedicated to Sentence Boundary De-
tection, we focused on designing our top-down pipeline for
the PDF itself. Therefore, we did not have enough time to
fine tune the output. The main difficulty we encountered was
to align our internal representation to the expected FinSBD
representation since both representations are very different.

72

A complex ad-hoc module had to be implemented to try to
map our structure to the expected character-based structure.

Our algorithm consists in splitting the text blocks extracted
by our top-down pipeline using a single regular expression
based on the presence of an end of sentence punctuation mark
followed by a space separator or a line separator. In the fol-
lowing tables we show the detailed results of an improved
version of our system in which the beginning and end of para-
graphs are correctly detected. We only kept the subtaskl re-
sult of our original submission to ease comparisons. We re-
moved the results on lists and numbered items since our sys-
tem does not give these units yet.

In Table 1 and table 2 are shown the results obtained on the
train set, respectively in English and in French. We focused
on the sentence and the items for the system we submitted.
Our system has much better results in terms of Precision but
seems to miss many sentences.

Document sent item

f1 prec. recall fl prec. recall
Invesco-Fu 37.8 442 33.0 0 0.0 0
EdR-Privat 437 348 589 11.1 78.6 6.0
CANDRIAM-G 63.8 83.7 515 785 739 83.6
Dexia-Equi 659 80.5 558 46.1 673 350
Credit-Sui 785 899 69.8 480 69.1 36.7
Macro 579 666 538 36.7 578 323

Table 1: Results on the English train set, 32.6 F-measure on sub-
task1 (VS 23.6 for our official submission) sorted by F-measure on
sentences

Our results on the test set are shown in Table 3 and table 4.
One can see that the results are high in English as compared to
the train set but the dataset is too small to draw any conclusion
from that. The fact that the same pattern in French maybe
show that our rule based system does not suffer too much
from over-fitting.

8 Conclusion

Our team participated to the FinSBD-2 Shared Task dedicated
to Sentence Boundary Detection in Financial Prospectuses. It
was our first participation to this shared task. Our motivation
was to improve our model driven approach to multilingual
document analysis.

The work we have achieved is very promising. We had the
opportunity to handle the full workflow and to define, control
and implement each NLP component.

Concerning FinSBD shared task, we lack time to finalize
the creation of list objects, unordered list objects and sen-
tences. We chose to control the whole workflow and it was
a bit too ambitious regarding time constraints since aligning
our internal representations to the offsets of the groundtruth.

In a near future, we intend to enhance the implementation
of our page layout model in order to be compliant with the
page layout model described in [Giguet, 2008]. We would
also like to implement the document model we introduced
in INEX Book Structure Extraction Competition in order to
divide a document in main parts and chapters [Giguet et al.,
2009]. This strategy applied at document scope could have

Document sent item Document sent item

f1 prec. recall fl prec. recall f1 prec. recall fl prec. recall
LCL-OBLIGA 28.8 363 238 2.9 34 2.6 CM-CIC-OBL 323 277 388 40.0 36.2 44.7
LCL-DOUBLE 334 36.8 30.7 3.7 53 29 LCL-MULTI- 353 345 36.2 0 0.0 0.0
LCL-INVEST 346 43.6 287 1.1 2.6 0.7 HEXASTEP-H 40.6 715 283 11.1 333 6.7
AMUNDI-VIE 349 443 28.8 2.5 6.5 1.6 AMUNDI-IND 50.0 515 486 0 0 0.0
FUNDQUEST- 38.1 519 30.1 43.0 444 417 LAZARD-ACT 57.1 69.8 482 39.1 293 58.6
BNP-PARIBA 448 70.8 32.8 45.0 39.1 52.9 FIP-IXO-DE 58.7 71.1 50.0 50.0 100.0 333
QUILVEST-C 51.0 62.1 433 346 519 259 BNP-Pariba 59.0 541 649 31.6 245 444
GROUPAMA-O 53.1 60.5 473 39.7 40.0 395 GREEN-BOND 595 67.1 53.6 27.6 522 18.8
AVIVA-INTE 533 66.1 44.6 320 29.1 356 KLE-EONIA- 604 703 53.0 63.5 614 65.9
CREDIT-MUT 53.7 835 39.6 33.8 26.1 47.9 ECUREUIL-P 67.8 73.0 634 55.7 53.1 58.6
GUTENBERG- 542 584 50.5 345 370 323 Macro 321 59.1 485 31.9 39.0 331
Fondo-BNP- 572 592 553 66.7 737 609
CM-CIC-EUR 57.3 568 57.8 44.8 414 438 Table 4: Results on the French test set, 27.98 F-measure on sub-
FCPLIDINV 39.8 784 483 88.9 889 889 task1l (VS 26.2 for our original submission) sorted by F-measure on
GASPAL-CON 615 734 529 358 70.7 24.0 sentences
Le-PALE-FR 62.0 76.8 519 60.1 488 782
NORDEN-SMA 62.1 74.0 534 49.7 404 64.7
ORCHIDEE-I 623 648 60.1 545 70.6 444 [Bachenko et al., 1995] Joan Bachenko, Eileen Fitzpatrick,
SELECT-OBL 65.6 909 513 329 286 387 and Jeffrey Daugherty. A rule-based phrase parser for
Sécuri-Tau 68.1 843 57.1 286 190 57.1 real-time text-to-speech synthesis. Natural Language En-
QUADRIGE-M 692 85.6 58.1 82.8 89.1 774 gineering, 1(2):191-212, 1995.
FCPI-Innov 72.8 84.6 639 50.2 52.6 43.1
INNOVEN-EU 777 89.7 685 8.5 11.8 6.7 [Bernhard er al., 2017] Delphine Bernhard, Amalia Todi-
Macro 54.6 66.6 46.9 38.1 40.0 401 rascu, Fanny MARTIN, Pascale Erhart, Lucie Steible,

Table 2: Results on the French train set 31.9 F-measure on subtask1
(VS 33.5% for our original submission) sorted by F-measure on sen-
tences

Document sent item

f1 prec. recall fl prec. recall
Arabesque- 71.8 88.4 60.5 553 887 40.1
MAGALLANES 769 92.1 66.0 238 889 137
Macro 743 90.2 63.2 395 88.8 269

Table 3: Results on the English test set : 37.9 F-measure on sub-
task1l (VS 31.7 for our original submission) sorted by F-measure on
sentences

made more accurate decisions at lower level of the hierarchy
(i.e., divide-and-conquer strategy).

References

[Ait Azzi et al., 2019] Abderrahim Ait Azzi, Houda
Bouamor, and Sira Ferra. The finsbd-2019 shared
task:sentence boundary detection in pdf noisy text in the
financial domain. In Chung-Chi Chen, Hen-Hsen Huang,
Hiroya Takamura, and Hsin-Hsi Chen, editors, Proceed-
ings of the First Workshop on Financial Technology and
Natural Language Processing, pages 74-80, Macao,
China, August 2019.

[Antonacopoulos et al., 2009] Apostolos
David Bridson, Christos Papadopoulos, and Stefan
Pletschacher. A realistic dataset for performance eval-
vation of document layout analysis. In Proceedings of
the International Conference on Document Analysis and
Recognition, ICDAR, pages 296-300, 01 2009.

Antonacopoulos,

73

Dominique Huck, and Christophe Rey. Problemes de
tokénisation pour deux langues régionales de France,
I’alsacien et le picard. In DIiLiTAL 2017, Actes de 1’atelier
“ Diversité Linguistique et TAL ”, pages 14-23, Orléans,
France, June 2017.

[Corro, 2020] Caio Corro. Span-based discontinuous con-
stituency parsing: a family of exact chart-based algorithms
with time complexities from o(n®) down to o(n?), 2020.

[Dale ez al., 2000] Robert Dale, H. L. Somers, and Hermann
Moisl. Handbook of Natural Language Processing. Mar-
cel Dekker, Inc., USA, 2000.

[Déjean and Meunier, 2006] Hervé Déjean and Jean-Luc
Meunier. A system for converting pdf documents into
structured xml format. In Horst Bunke and A. Lawrence
Spitz, editors, Document Analysis Systems VII, pages 129—
140, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[Déjean and Meunier, 2010] Hervé Déjean and Jean-Luc
Meunier. Reflections on the inex structure extraction com-
petition. In Proceedings of the 9th IAPR International
Workshop on Document Analysis Systems, DAS ° 10, page
301-308, New York, NY, USA, 2010. Association for
Computing Machinery.

[Déjean, 2007] Hervé Déjean. pdf2xml open source soft-
ware, 2007. Last access on July 31, 2019.

[Déjean, 2010] Hervé Déjean. Numbered sequence detection
in documents. In Laurence Likforman-Sulem and Gady
Agam, editors, Document Recognition and Retrieval XVII,
volume 7534, pages 41 — 52. International Society for Op-
tics and Photonics, SPIE, 2010.

[Gabay et al., 2019] Simon Gabay, Marine Riguet, and Loic
Barrault. A Workflow For On The Fly Normalisation Of
17th c. French. In DH2019, Utrecht, Netherlands, July
2019. ADHO.

[Giguet and Lejeune, 2019] Emmanuel Giguet and Gaél
Lejeune. Daniel @FinTOC-2019 shared task : TOC ex-
traction and title detection. In Proceedings of the Second
Financial Narrative Processing Workshop (FNP 2019),
pages 63—68, Turku, Finland, September 2019. Linkoping
University Electronic Press.

[Giguet and Lucas, 2010a] Emmanuel Giguet and Nadine
Lucas. The book structure extraction competition with the
resurgence software at caen university. In Shlomo Geva,
Jaap Kamps, and Andrew Trotman, editors, Focused Re-
trieval and Evaluation, pages 170-178, Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

[Giguet and Lucas, 2010b] Emmanuel Giguet and Nadine
Lucas. The book structure extraction competition with the
resurgence software for part and chapter detection at caen
university. In Shlomo Geva, Jaap Kamps, Ralf Schenkel,
and Andrew Trotman, editors, Comparative Evaluation of
Focused Retrieval - 9th International Workshop of the Ini-
titative for the Evaluation of XML Retrieval, INEX 2010,
Vugh, The Netherlands, December 13-15, 2010, Revised
Selected Papers, volume 6932 of Lecture Notes in Com-
puter Science, pages 128—139. Springer, 2010.

[Giguet et al., 2009] Emmanuel Giguet, Alexandre Bau-
drillart, and Nadine Lucas. Resurgence for the book struc-
ture extraction competition. In Shlomo Geva, Jaap Kamps,
and Andrew Trotman, editors, INEX 2009 Workshop Pre-
Proceedings, pages 136—142, 2009.

[Giguet, 1995] Emmanuel Giguet. Multilingual sentence
categorization according to language. In Proceedings of
the European Chapter of the Association for Computa-
tional Linguistics (EACL) SIGDAT Workshop ”From text
to tags : Issues in Multilingual Language Analysis, pages
73-76, March 1995.

[Giguet, 2008] Emmanuel Giguet. Rapport scientifique du
projet résurgence. Technical report, Université de Caen
Basse-Normandie, November 2008.

[Giguet, 2011] Emmanuel Giguet. De I’analyse syntaxique
automatique a I’analyse automatique du discours dans les
collections multilingues de documents numériques com-
posites. Mémoire d’habilitation a diriger des recherches,
Université de Caen Basse-Normandie, September 2011.

[Grefenstette and Tapanainen, 1994] Gregory Grefenstette
and Pasi Tapanainen. What is a word, what is a sen-
tence? problems of tokenization. In Proceedings of the
3rd Conference on Computational Lexicography and
TextResearch, pages 79-87, 1994.

[Kiss and Strunk, 2006] Tibor Kiss and Jan Strunk. Unsu-
pervised multilingual sentence boundary detection. Com-
putational Linguistics, 32(4):485-525, 2006.

[Le and Mikolov, 2014] Quoc V. Le and Tomas Mikolov.

Distributed representations of sentences and documents.
CoRR, abs/1405.4053, 2014.

[Luc, 2001] Christophe Luc. Une typologie des
énumérations basée sur les structures rhétoriques et
architecturales du texte. In TALN2001, Université de

74

Tours, 05/07/2001-07/07/2001, pages 263-272. ., juillet
2001.

[Martin ef al., 2020] Louis Martin, Benjamin Muller, Pe-
dro Javier Ortiz Sudrez, Yoann Dupont, Laurent Ro-
mary, Eric Villemonte de la Clergerie, Djamé Seddah, and
Benoit Sagot. Camembert: a tasty french language model.
In Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, 2020.

[Maurel et al., 2006] Fabrice Maurel, Mustapha Mojahid,
Nadine Vigouroux, and Jacques Virbel. = Documents
numériques et transmodalité. transposition automatique
a l'oral des structures visuelles de texte. Document
numérique, 9, 09 2006.

[Maurel, 2004] Fabrice Maurel. Transmodalité et multi-
modalité écrit/oral : modélisation, traitement automatique
et évaluation de stratégies de présentation des structures
”visuo-architecturale” des textes. PhD thesis, Université
de Toulouse 3, 2004.

[Pascual and Virbel, 1996] Elsa Pascual and Jacques Virbel.
Semantic and Layout Properties of Text punctuation. 34th
Annual meeting of the Association for Computational
Linguistics. In International Workshop on Punctuation
in Computational Linguistics, Santa Cruz, USA, , Santa
Cruz, USA, juin 1996. Univ. of California. Dates de
conférence : juin 1996 1996. Pages de la publication : ?.

[Rémi Juge, 2019] Sira Ferradans Rémi Juge, Najah-
Imane Bentabet. The fintoc-2019 shared task: Financial
document structure extraction. In The Second Workshop
on Financial Narrative Processing of NoDalida 2019,
2019.

[Smith, 2020] Noah A. Smith. Contextual word represen-
tations: Putting words into computers. Commun. ACM,
63(6):66-74, May 2020.

[Sorin, 2015] Laurent Sorin. Contributions of textual ar-
chitectures to the non-visual accessibility of digital doc-
uments. Theses, Université Toulouse le Mirail - Toulouse
II, December 2015.

[Virbel, 1999] Jacques Virbel. Structures textuelles.
Planches. Fasciccule I : Enumérations. Rapport de
recherche -, IRIT, Université Paul Sabatier, Toulouse,
février 1999.

	Introduction
	The importance of sentences in NLP Architectures
	Sentence Segmentation in Practice
	State of the art on Sentence Boundary Detection
	State of the art on Lists and Enumerations

	Preprocessing PDF Documents
	Dealing with Text Content : tokens, lines and blocks
	Dealing with Vectorial Shapes

	Handling Page Layout at Document Scope
	Dealing with Content Areas
	From Page Layout to Page Layout Models
	Detecting Header and Footer Areas

	Parsing with a Document Model
	Detecting the Table of Contents
	Linking TOC Entries and Headers

	Detection and Structure Induction of Document Objects in PDF Documents
	Table Detection and Table Structure Induction in PDF Documents
	Unordered List Structure Induction in PDF Documents
	Ordered List Structure Induction in PDF Documents
	Paragraph Structure Induction in PDF Documents

	Evaluation of the Sentence Boundary Detection
	Conclusion

