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Abstract

We present a novel way of injecting factual
knowledge about entities into the pretrained
BERT model (Devlin et al., 2019): We align
Wikipedia2Vec entity vectors (Yamada et al.,
2016) with BERT’s native wordpiece vector
space and use the aligned entity vectors as if
they were wordpiece vectors. The resulting
entity-enhanced version of BERT (called E-
BERT) is similar in spirit to ERNIE (Zhang
et al., 2019) and KnowBert (Peters et al.,
2019), but it requires no expensive further pre-
training of the BERT encoder. We evaluate
E-BERT on unsupervised question answering
(QA), supervised relation classification (RC)
and entity linking (EL). On all three tasks, E-
BERT outperforms BERT and other baselines.
We also show quantitatively that the original
BERT model is overly reliant on the surface
form of entity names (e.g., guessing that some-
one with an Italian-sounding name speaks Ital-
ian), and that E-BERT mitigates this problem.

1 Introduction

BERT (Devlin et al., 2019) and its successors (e.g.,
Yang et al. (2019); Liu et al. (2019); Wang et al.
(2019b)) continue to achieve state of the art per-
formance on various NLP tasks. Recently, there
has been interest in enhancing BERT with factual
knowledge about entities (Zhang et al., 2019; Pe-
ters et al., 2019). To this end, we introduce E-
BERT: We align Wikipedia2Vec entity vectors (Ya-
mada et al., 2016) with BERT’s wordpiece vector
space (Section 3.1) and feed the aligned vectors
into BERT as if they were wordpiece vectors (Sec-
tion 3.2). Importantly, we do not make any changes
to the BERT encoder itself, and we do no additional
pretraining. This stands in contrast to previous
entity-enhanced versions of BERT, such as ERNIE
or KnowBert, which require additional encoder pre-
training.

In Section 4, we evaluate our approach on
LAMA (Petroni et al., 2019), a recent unsupervised
QA benchmark for pretrained Language Models
(LMs). We set a new state of the art on LAMA,
with improvements over original BERT, ERNIE
and KnowBert. We also find that the original BERT
model is overly reliant on the surface form of en-
tity names, e.g., it predicts that a person with an
Italian-sounding name speaks Italian, regardless of
whether this is factually correct. To quantify this ef-
fect, we create LAMA-UHN (UnHelpfulNames),
a subset of LAMA where questions with overly
helpful entity names were deleted (Section 4.4).

In Section 5, we show how to apply E-BERT
to two entity-centric downstream tasks: relation
classification (Section 5.1) and entity linking (Sec-
tion 5.2). On the former task, we feed aligned entity
vectors as inputs, on the latter, they serve as inputs
and outputs. In both cases, E-BERT outperforms
original BERT and other baselines.

Summary of contributions.

• Introduction of E-BERT: Feeding entity vec-
tors into BERT without additional encoder
pretraining. (Section 3)

• Evaluation on the LAMA unsupervised QA
benchmark: E-BERT outperforms BERT,
ERNIE and KnowBert. (Section 4)

• LAMA-UHN: A harder version of the LAMA
benchmark with less informative entity names.
(Section 4.4)

• Evaluation on supervised relation classifica-
tion (Section 5.1) and entity linking (Sec-
tion 5.2).

• Upon publication, we will release LAMA-
UHN as well as E-BERTBASE and E-
BERTLARGE.1

1https://github.com/npoe/ebert

https://github.com/npoe/ebert


804

2 Related work

2.1 BERT
BERT (Bidirectional Encoder Representations
from Transformers) is a Transformer (Vaswani
et al., 2017) that was pretrained as a masked LM
(MLM) on unlabeled text. At its base, BERT seg-
ments text into wordpieces from a vocabulary LWP.
Wordpieces are embedded into real-valued vectors
by a lookup function (denoted EBERT : LWP →
RdBERT). The wordpiece vectors are combined
with position and segment embeddings and then
fed into a stack of Transformer layers (the encoder,
denoted FBERT). During pretraining, some word-
pieces are replaced by a special [MASK] token.
The output of BERT is fed into a final feed-forward
net (the MLM head, denoted FMLM), to predict
the identity of the masked wordpieces. After pre-
training, the MLM head is usually replaced by a
task-specific layer, and the entire model is finetuned
on supervised data.

2.2 Entity-enhanced BERT
This paper adds to recent work on entity-enhanced
BERT models, most notably ERNIE (Zhang et al.,
2019) and KnowBert (Peters et al., 2019). ERNIE
and KnowBert are based on the design principle
that BERT be adapted to entity vectors: They intro-
duce new encoder layers to feed pretrained entity
vectors into the Transformer, and they require addi-
tional pretraining to integrate the new parameters.
In contrast, E-BERT’s design principle is that en-
tity vectors be adapted to BERT, which makes our
approach more efficient (see Section 3.3).

Two other knowledge-enhanced MLMs are KEP-
LER (Wang et al., 2019c) and K-Adapter (Wang
et al., 2020), which are based on Roberta (Liu et al.,
2019) rather than BERT. Their factual knowledge
does not stem from entity vectors – instead, they
are trained in a multi-task setting on relation classi-
fication and knowledge base completion.

2.3 Wikipedia2Vec
Wikipedia2Vec (Yamada et al., 2016) embeds
words and entities (Wikipedia URLs) into a com-
mon space. Given a vocabulary of words LWord

and a vocabulary of entities LEnt, it learns a lookup
embedding function EWikipedia : LWord ∪ LEnt →
RdWikipedia . The Wikipedia2Vec loss has three com-
ponents: (1) skipgram Word2Vec (Mikolov et al.,
2013a) operating on LWord, (2) a graph loss op-
erating on the Wikipedia hyperlink graph, whose

vertices are LEnt and (3) a version of Word2Vec
where words are predicted from entities. Loss (3)
ensures that entities and words are embedded into
the same space.

2.4 Vector space alignment
Our vector space alignment strategy is inspired by
cross-lingual word vector alignment (e.g., Mikolov
et al. (2013b); Smith et al. (2017)). A related
method was recently applied by Wang et al. (2019a)
to map cross-lingual word vectors into the multilin-
gual BERT wordpiece vector space.

2.5 Unsupervised QA
QA has typically been tackled as a supervised prob-
lem (e.g., Das et al. (2017); Sun et al. (2018)). Re-
cently, there has been interest in using unsupervised
LMs such as GPT-2 or BERT for this task (Radford
et al., 2019; Petroni et al., 2019). Davison et al.
(2019) mine unsupervised commonsense knowl-
edge from BERT, and Jiang et al. (2019) show the
importance of using good prompts for unsupervised
QA. None of this prior work differentiates quantita-
tively between factual knowledge of LMs and their
ability to reason about the surface form of entity
names.

3 E-BERT

3.1 Aligning entity and wordpiece vectors
Conceptually, we want to transform the vectors of
the entity vector space EWikipedia[LEnt] in such a
way that they look to BERT like vectors from its
native wordpiece vector space EBERT[LWP]. We
model the transformation as an unconstrained lin-
ear mapping W ∈ RdBERT×dWikipedia . Since LWP

does not contain any entities (i.e., LWP ∩ LEnt =
{}), we fit the mapping on LWP ∩ LWord:∑
x∈LWP∩LWord

||WEWikipedia(x)− EBERT(x)||22

Since Wikipedia2Vec embeds LWord and LEnt into
the same space (see Section 2.3), W can be applied
to LEnt as well. We define the E-BERT embedding
function as:

EE-BERT : LEnt → RdBERT

EE-BERT(a) = WEWikipedia(a)

Table 1 shows that despite its simplicity, the
linear mapping achieves high alignment accuracies
on seen and unseen vector pairs.
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Acc@1 Acc@5 Acc@10

train (19.6K words) 90.9 95.7 96.6
development (2.2K words) 83.0 90.9 92.6

Table 1: LWord → LWP alignment accuracy (%),
i.e., how often the correct wordpiece vector is among
the top-K Nearest Neighbors (by cosine) of an aligned
Wikipedia2Vec word vector. In this table, we hold out
10 % of LWP∩LWord as a development set. In all other
experiments, we fit W on the entire intersection.

3.2 Using aligned entity vectors
We explore two strategies for feeding the aligned
entity vectors into the BERT encoder:

E-BERT-concat. E-BERT-concat combines en-
tity IDs and wordpieces by string concatenation,
with the slash symbol as separator (Schick and
Schütze, 2019). For example, the wordpiece-
tokenized input

The native language of Jean Mara ##is is [MASK] .2

becomes

The native language of Jean Marais / Jean Mara ##is is
[MASK] .

The entity ID (bold) is embedded by EE-BERT and
all wordpieces (italics) are embedded by EBERT

(see Figure 1). After the embedding operation, the
sequence of vectors is combined with position and
segment embeddings and fed into FBERT, just like
any normal sequence of wordpiece vectors.

E-BERT-concat is comparable to ERNIE or
KnowBert, which also represent entities as a com-
bination of surface form (wordpieces) and entity
vectors. But in contrast to ERNIE and KnowBERT,
we do not change or further pretrain the BERT
encoder itself.

E-BERT-replace. For ablation purposes, we de-
fine another variant of E-BERT that substitutes the
entity surface form with the entity vector. With
E-BERT-replace, our example becomes:

The native language of Jean Marais is [MASK] .

A note on entity links. So far, we assume that
we know which Wikipedia entity ID a given string
refers to, i.e., that we have access to gold entity
links. Depending on the nature of the task, these
gold entity links may be given as part of the dataset
(RC task), or they may be heuristically annotated

2For readability, we omit the special tokens [CLS] and
[SEP] from all examples.

The native language of Jean Marais / Jean Mara ##is ...

EBERT[LWP] EWikipedia[LEnt]

FBERT (BERT encoder)

EWikipedia[LWord]

W

BERT wordpiece layer Wikipedia2Vec

(linear transformation
fitted on intersection

before training)

EE-BERT[LEnt] =

WEWikipedia[LEnt]

(wordpiece vector space) (word vector space) (entity vector space)

(aligned entity vector space)

Figure 1: Schematic depiction of E-BERT-concat.

(see Appendix on how to reverse-map LAMA en-
tity names). In other scenarios, we need an entity
linker. In this respect, E-BERT is comparable to
ERNIE but not to KnowBert, which has a built-in
latent entity linker. Alternatively, we can train E-
BERT as an entity linker first (see Section 5.2) and
then use the resulting model to annotate training
data for a different task.

3.3 Implementation

We train cased Wikipedia2Vec on a re-
cent Wikipedia dump (2019-09-02), setting
dWikipedia = dBERT. We ignore Wikipedia
pages with fewer than 5 links (Wikipedia2Vec’s
default), with the exception of entities needed for
the downstream entity linking experiments (see
Section 5.2). This results in an entity vocabulary
of size |LEnt| = 2.7M.3

Computational cost. Training Wikipedia2Vec
took us ∼6 hours on 32 CPUs, and the cost of
fitting the linear transformation W is negligible.
We did not require a GPU. For comparison, Know-
Bert W+W was pretrained for 1.25M steps on up to
four Titan RTX GPUs, and ERNIE took one epoch
on the English Wikipedia. (ERNIE’s pretraining
hardware was not disclosed, but it seems likely that
a GPU was involved.)

4 Unsupervised QA

4.1 Data

The LAMA (LAnguage Model Analysis) bench-
mark (Petroni et al., 2019) probes for “factual and
commonsense knowledge” of pretrained LMs. In

3Due to the link threshold and some Wikidata-Wikipedia
mismatches, we lack entity vectors for 6% of LAMA ques-
tions and 10% of FewRel sentences (RC experiment, see Sec-
tion 5.1). In these cases, we fall back onto using wordpieces
only, i.e., onto standard BERT behavior.
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this paper, we use LAMA-Google-RE and LAMA-
T-REx (Elsahar et al., 2018), which are aimed at
factual knowledge. Contrary to most previous work
on QA, LAMA tests LMs without supervised fine-
tuning. Petroni et al. (2019) claim that BERT’s per-
formance on LAMA is comparable with a knowl-
edge base (KB) automatically extracted from text,
and speculate that BERT and similar models “might
become a viable alternative” to such KBs.

The LAMA task follows this schema: Given
a KB triple (sub, rel, obj), the object is elicited
with a relation-specific cloze-style question, e.g.,
(Jean Marais, native-language, French) be-
comes: “The native language of Jean Marais is
[MASK].”4 The model predicts a probability distri-
bution over a limited vocabulary LLAMA ⊂ LWP

to replace [MASK], which is evaluated against the
surface form of the object (here: French).

4.2 Baselines

Our primary baselines are cased BERTBASE and
BERTLARGE

5 as evaluated in Petroni et al. (2019).
We also test ERNIE (Zhang et al., 2019)6 and
KnowBert W+W (Peters et al., 2019),7 two
entity-enhanced BERTBASE-type models.8 E-BERT,
ERNIE and KnowBert have entity vocabularies of
size 2.7M, 5M and 470K, respectively. As this
might put KnowBert at a disadvantage, Table 4
also reports performance on the subset of questions
whose gold subject is known to KnowBert.

4.3 Evaluation measure

We use the same evaluation measure as Petroni
et al. (2019): For a given k, we count a question
as 1 if the correct answer is among the top-k pre-
dictions and as 0 otherwise. Petroni et al. (2019)
call this measure Precision@k (P@k). Since this is
not in line with the typical use of the term “preci-

4LAMA provides oracle entity IDs, however, they are not
used by the BERT baseline. For a fair evaluation, we ignore
them too and instead use the Wikidata query API (https://
query.wikidata.org) to infer entity IDs from surface
forms. See Appendix for details.

5https://github.com/huggingface/
transformers

6https://github.com/thunlp/ERNIE
7https://github.com/allenai/kb
8ERNIE and KnowBert are uncased models. We therefore

lowercase all questions for them and restrict predictions to the
intersection of their wordpiece vocabulary with lowercased
LLAMA. As a result, ERNIE and KnowBert select answers
from∼18K candidates (instead of∼21K), which should work
in their favor. We verify that all lowercased answers appear
in this vocabulary, i.e., ERNIE and KnowBert are in principle
able to answer all questions correctly.

original E-BERT- E-BERT- ERNIE Know-
BERT replace concat Bert

Jean Marais French French French french french
Daniel Ceccaldi Italian French French french italian
Orane Demazis Albanian French French french french
Sylvia Lopez Spanish French Spanish spanish spanish
Annick Alane English French French english english

Table 2: Native language (LAMA-T-REx:P103) of
French-speaking actors according to different models.
Model size is BASE.

sion” in information retrieval (Manning et al., 2008,
p. 161), we call the evaluation measure Hits@k.
Like Petroni et al. (2019), we first average within
relations and then across relations.

4.4 LAMA-UHN

Imagine a person who claims to know a lot of facts.
During a quiz, you ask them about the native lan-
guage of actor Jean Marais. They correctly answer
“French.” For a moment you are impressed, until
you realize that Jean is a typical French name. So
you ask the same question about Daniel Ceccaldi (a
French actor with an Italian-sounding name). This
time, the person says “Italian.”

If this quiz were a QA benchmark, the person
would have achieved a respectable Hits@1 score
of 50%. Yet, you doubt that they really knew the
first answer.

Qualitative inspection of BERT’s answers to
LAMA suggests that the model often behaves less
like a KB and more like the person just described.
In Table 2 for instance, BERT predicts native lan-
guages that are plausible for people’s names, even
when there is no factual basis for these predictions.
This kind of name-based reasoning is a useful strat-
egy for getting a high score on LAMA, as the cor-
rect answer and the best name-based guess tend to
coincide (e.g., people with Italian-sounding names
frequently speak Italian). Hence, LAMA in its cur-
rent form cannot differentiate whether a model is
good at reasoning about (the surface form of) entity
names, good at memorizing facts, or both. To quan-
tify the effect, we create LAMA-UHN (UnHelpful
Names), a subset of LAMA where overly helpful
entity names are heuristically deleted:

Heuristic 1 (string match filter). We first delete
all KB triples (questions) where the correct answer
(e.g., Apple) is a case-insensitive substring of the
subject entity name (e.g., Apple Watch). This af-
fects 12% of all triples, and up to 81% for individ-
ual relations (see Table 3, top).

https://query.wikidata.org
https://query.wikidata.org
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/thunlp/ERNIE
https://github.com/allenai/kb
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Heuristic Relation % deleted Example of a deleted question

1 string match filter

T-REx:P176 (manufacturer) 81% Fiat Multipla is produced by [MASK:Fiat].
T-REx:P138 (named after) 75% Christmas Island is named after [MASK:Christmas].
T-REx:P1001 (applies to jurisdiction) 73% Australian Senate is a legal term in [MASK:Australia].
T-REx:P279 (subclass of) 51% lenticular galaxy is a subclass of [MASK:galaxy].
T-REx:P31 (instance of) 39% [Tantalon Castle] is a [MASK:castle].

2 person name filter

T-REx:P1412 (language used) 63% Fulvio Tomizza used to communicate in [MASK:Italian]. (1,1)
T-REx:P103 (native language) 58% The native language of Tommy Nilsson is [MASK:Swedish]. (-,1)
T-REx:P27 (nationality) 56% Harumi Inoue is a [MASK:Japan] citizen. (1,-)
T-REx:P20 (place of death) 31% Avraham Harman died in [MASK:Jerusalem]. (1,-)
T-REx:P19 (place of birth) 23% [Christel Bodenstein] was born in [MASK:Munich]. (3,3)

Table 3: Statistics and examples of LAMA questions with helpful entity names, which were deleted from LAMA-
UHN. We show the top-5 most strongly affected relations per heuristic. Numbers in brackets indicate which part(s)
of the person name triggered the person name filter, e.g., (-,1) means that the correct answer was ranked first for
the person’s last name, but was not in the top-3 for their first name.

Model size BASE LARGE

Dataset
Model original E-BERT- E-BERT- ERNIE Know- original E-BERT- E-BERT- K-

BERT replace concat Bert BERT replace concat Adapter

0 (original LAMA) 29.2 29.1 36.2 30.4 31.7 30.6 28.5 34.2 27.6
All 1 22.3 29.2 32.6 25.5 25.6 24.6 28.6 30.8 -
subjects 2 (LAMA-UHN) 20.2 28.2 31.1 24.7 24.6 23.0 27.8 29.5 21.7

LAMA-UHN complement 52.7 25.9 56.8 36.2 47.0 52.7 32.1 34.5 -

KnowBert 0 (original LAMA) 32.0 28.5 35.8 30.4 32.0 33.1 28.2 34.9 -
subjects 1 24.8 28.6 32.0 25.7 25.9 27.0 28.3 31.5 -
only 2 (LAMA-UHN) 22.8 27.7 30.6 24.9 25.1 25.5 27.4 30.6 -

Table 4: Mean Hits@1 on LAMA-Google-RE and LAMA-T-REx combined. 0: original LAMA dataset (Petroni
et al., 2019), 1: after string match filter, 2: after string match filter and person name filter (LAMA-UHN). “LAMA-
UHN complement”: Evaluating on all questions that were deleted from LAMA-UHN. “KnowBert subjects only”:
Evaluating on questions whose gold subject is in the KnowBert entity vocabulary. Results for K-Adapter are
calculated from Wang et al. (2020, Table 5). See Appendix for individual relations.

Heuristic 2 (person name filter). Entity names
can be revealing in ways that are more subtle than
string matches. As illustrated by our Jean Marais
example, a person’s name can be a useful prior for
guessing their native language and by extension,
their nationality, place of birth, etc. We therefore
use cloze-style questions to elicit name associations
inherent in BERT, and delete triples that correlate
with them.

The heuristic is best explained via an example.
Consider again (Jean Marais, native-language,
French). We whitespace-tokenize the subject’s
surface form Jean Marais into Jean and Marais.
If BERT considers either name to be a common
French name, then a correct answer is insufficient
evidence for factual knowledge about the entity
Jean Marais. On the other hand, if neither Jean
nor Marais are considered French, but a correct
answer is given regardless, we consider it sufficient
evidence of factual knowledge.

We query BERT with “[X] is a common name
in the following language: [MASK].” for [X] =
Jean and [X] = Marais. (Depending on the rela-
tion, we replace “language” with “city” or “coun-

try”.) If French is among the top-3 answers for
either question, we delete the original triple. We
apply this heuristic to T-REx:P19 (place of birth),
T-REx:P20 (place of death), T-REx:P27 (national-
ity), T-REx:P103 (native language), T-REx:P1412
(language used), Google-RE:place-of-death and
Google-RE:place-of-birth. See Table 3 (bottom)
for examples and statistics.

4.5 Results and discussion

Table 4 shows mean Hits@1 on the original LAMA
dataset (0), after applying the string match filter (1),
and after applying both filters (2, LAMA-UHN).
We also show mean Hits@1 on the LAMA-UHN
complement, i.e., on the set of all questions with
helpful entity names.

E-BERT-concatBASE sets a new state of the art
on LAMA, with major gains over original BERT.
To understand why, compare the performances
of original BERTBASE and E-BERT-replaceBASE

on LAMA-UHN and the LAMA-UHN comple-
ment: On LAMA-UHN, BERTBASE drops by
9% (relative to original LAMA), while E-BERT-
replaceBASE drops by less than 1%. On the comple-
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Figure 2: Left y-axis (bars): delta in mean Hits@1 relative to BERT on individual LAMA relations. Right y-axis
(crosses): frequency of questions where the answer is a substring of the subject entity name (i.e., questions that
would be deleted by the string match filter). Model size: BASE. Due to space constraints, we only show relations
with max absolute delta ≥ 0.075.

ment, BERTBASE gains over 20%, while E-BERT-
replaceBASE drops slightly. This suggests that
BERT’s performance on original LAMA is partly
due to the exploitation of helpful entity names,
while that of E-BERT-replace is due to factual
knowledge. Since E-BERT-concatBASE has access
to entity names and entity vectors, it can leverage
and combine these complementary sources of in-
formation.

For a more in-depth analysis, Figure 2 shows
Delta(Hits@1) w.r.t. BERT (bars, left axis) on
individual relations, along with the frequency of
questions whose correct answer is a substring of
the subject name (crosses, right axis). The losses
of E-BERT-replace are almost exclusively on re-
lations with a high frequency of “easy” substring
answers, while its gains are on relations where such
answers are rare. E-BERT-concat mitigates most of
the losses of E-BERT-replace while keeping most
of its gains. Figure 3 shows that gains of E-BERT-
concat over BERT, KnowBert and ERNIE in terms
of mean Hits@k are especially big for k > 1. This
means that while E-BERT-concat is moderately bet-
ter than the baselines at giving the correct answer,
it is a lot better at “almost giving the correct an-
swer”. Petroni et al. (2019) speculate that even
when factual knowledge is not salient enough for a
top-1 answer, it may still be useful when finetuning
on a downstream task.

5 Downstream tasks

We now demonstrate how to use E-BERT on two
downstream tasks: relation classification (RC) and
entity linking (EL). In both experiments, we keep
the embedding layer (EBERT and/or EE-BERT) fixed
but finetune all other encoder parameters. We use
the BERTBASE architecture throughout.

5.1 Relation classification
In relation classification (RC), a model learns to
predict the directed relation of entities asub and
aobj from text. For instance, given the sentence

Taylor was later part of the ensemble cast in MGM ’s classic
World War II drama “ Battleground ” ( 1949 ) .

with surface forms Battleground and World War
II referring to asub = Battleground (film) and
aobj = Word War II, the model should predict
the relation primary-topic-of-work. We have
three ways of embedding this example:

original BERT (wordpieces): [...] classic World War II
drama “ Battle ##ground ” ( 1949 ) .

E-BERT-concat: [...] classic World War II / World War II
drama “ Battleground (film) / Battle ##ground ” ( 1949 ) .

E-BERT-replace: [...] classic World War II drama “ Bat-
tleground (film) ” ( 1949 ) .

As before, entity IDs (bold) are embedded by
EE-BERT and wordpieces (italics) by EBERT.

Baselines. To assess the impact of vector
space alignment, we train two additional
models (Wikipedia2Vec-BERT-concat and
Wikipedia2Vec-BERT-replace) that feed non-
aligned Wikipedia2Vec vectors directly into BERT
(i.e., they use EWikipedia instead of EE-BERT to
embed entity IDs).

Data. We evaluate on a preprocessed dataset
from Zhang et al. (2019), which is a subset of the
FewRel corpus (Sun et al., 2018) (see Appendix
for details). We use the FewRel oracle entity IDs,
which are also used by ERNIE. Our entity cover-
age is lower than ERNIE’s (90% vs. 96%), which
should put us at a disadvantage. See Appendix for
details on data and preprocessing.
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dev set test set

P R F1 P R F1

original BERT 85.88 85.81 85.75 85.57 85.51 85.45
E-BERT-concat 88.35 88.29 88.19 88.51 88.46 88.38
E-BERT-replace 87.24 87.15 87.09 87.34 87.33 87.22

Wikipedia2Vec-BERT-concat 85.96 85.71 85.69 85.94 85.93 85.84
Wikipedia2Vec-BERT-replace 77.25 77.11 77.07 77.63 77.52 77.45

ERNIE (Zhang et al., 2019) - - - 88.49 88.44 88.32

Table 5: RC macro precision, recall and F1 (%).

Modeling and hyperparameters. We adopt the
setup and hyperparameters of Zhang et al. (2019):
We use the # and $ tokens to mark subject and
object spans in the input, and we feed the last con-
textualized vector of the [CLS] token into a ran-
domly initialized softmax classifier. Like Zhang
et al. (2019), we use the Adam optimizer (Kingma
and Ba, 2014) with a linear learning rate scheduler
(10% warmup) and a batch size of 32. We tune the
number of training epochs and the peak learning
rate on the same parameter ranges as Zhang et al.
(2019). See Appendix for details.

Results and discussion. E-BERT-concat per-
forms better than original BERT and slightly bet-
ter than ERNIE (Table 5). Recall that ERNIE re-
quired additional encoder pretraining to achieve
this result. Interestingly, E-BERT-replace (which is
entity-only) beats original BERT (which is surface-
form-only), i.e., aligned entity vectors seem to be
more useful than entity names for this task. The
drop in F1 from E-BERT to Wikipedia2Vec-BERT
shows the importance of vector space alignment.

5.2 Entity linking

Entity linking (EL) is the task of detecting entity
spans in a text and linking them to the underlying
entity ID. While there are recent advances in fully
end-to-end EL (Broscheit, 2019), the task is typi-
cally broken down into three steps: (1) detecting
spans that are potential entity spans, (2) generat-
ing sets of candidate entities for these spans, (3)
selecting the correct candidate for each span.

For steps (1) and (2), we use KnowBert’s candi-
date generator (Peters et al., 2019), which is based
on a precomputed span-entity co-occurrence ta-
ble (Hoffart et al., 2011). Given an input sen-
tence, the generator finds all spans that occur in
the table, and annotates each with a set of can-
didates A = {a1 . . . aN} and prior probabilities
{p(a1) . . . p(aN )}. Note that the candidates and
priors are span- but not context-specific, and that
the generator may over-generate. For step (3),
our model must therefore learn to (a) reject over-
generated spans and (b) disambiguate candidates
based on context.

Modeling. Recall that BERT was pretrained as a
masked LM (MLM). Given a wordpiece-tokenized
input X with xi = [MASK], it predicts a probabil-
ity distribution over LWP to replace xi:

p(w|X) ∝ exp(ew · FMLM(hi) + bw) (1)

where hi is the contextualized embedding of
[MASK], bw is a learned bias and ew = EBERT(w).
(See also Section 2.1 for notation.) Since
EE-BERT[LEnt] is aligned with EBERT[LWP], the
pretrained MLM should have a good initialization
for predicting entities from context as well.
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Tony Adams
(footballer)

and [E-MASK] / P ##latt * are both injured ...

p(ε|X)

p(Platt (Florida)|X)
. . .
p(David Platt (footballer)|X)

EE-BERT[A]

log(p(a))

FMLM (MLM head)

1
|A|

[
EE-BERT(Platt (Florida)) + . . .+

EE-BERT(David Platt (footballer))
]

FBERT (BERT encoder)

{
A
∪
{ε
} eε, bε

(aligned entity vectors
of candidates)

(candidate priors)

(trainable params)

{
A

Figure 4: Schematic depiction of E-BERT-MLM in in-
ference mode, predicting an entity vector for the name
“Platt” in context. Blue: EBERT wordpiece vectors.
Red: EE-BERT entity vectors. The candidates A and
their priors p(a) are given by the candidate generator.
Assume that the entity Tony Adams (footballer) was
decoded in a previous iteration (see “Iterative refine-
ment”).

Based on this intuition, our E-BERT-MLM
model repurposes the MLM for the entity selection
step. Given a wordpiece-tokenized span s1 . . . sTs
with left context l1 . . . lTl , right context r1 . . . rTr ,
candidates A and priors p(a), we define:

X = l1 . . . lTl [E-MASK] / s1 . . . sTs* r1 . . . rTr

All tokens in X except [E-MASK] are em-
bedded by EBERT. [E-MASK] is embedded
as 1
|A|
∑

a∈A EE-BERT(a), to inform the encoder
about its options for the current span. (See Table 6
for an ablation with the standard [MASK] token.)

The output probability distribution for [E-
MASK] is not defined over LWP but over A ∪ {ε},
where ε stands for rejected spans (see below):

p(a|X) ∝ exp(ea · FMLM(hTl+1) + ba) (2)

where ea = EE-BERT(a) and ba = log(p(a)).9

The null-entity ε has parameters eε, bε that are
trained from scratch.

Finetuning. We finetune E-BERT-MLM on the
training set to minimize

∑
(X,â)−log(p(â|X)),

where (X, â) are pairs of potential spans and their
gold entities. If X has no gold entity (if it was
over-generated), then â = ε.10

9To understand why we set ba = log(p(a)), assume that
the priors are implicitly generated as p(a) = exp(ba)/Z, with
Z =

∑
a′ exp(ba′). It follows that ba = log(p(a))+log(Z).

Since log(Z) is the same for all a′, and the softmax function is
invariant to constant offsets, we can drop log(Z) from Eq. 2.

10If â 6= ε ∧ â 6∈ A, we remove the span from the training
set. We do not do this at test time, i.e., we evaluate on all gold
standard entities.

AIDA-A (dev) AIDA-B (test)
Micro Macro Micro Macro

E-BERT-MLM 90.8 89.1 85.0 84.2
w/o iterative refinement 90.6 89.0 - -
w/ standard [MASK] token 90.3 88.8 - -

Wikipedia2Vec-BERT-MLM 88.7 86.4 80.6 81.0
Wikipedia2Vec-BERT-random 88.2 86.1 80.5 81.2

Kolitsas et al. (2018) 89.4 86.6 82.4 82.6
Broscheit (2019) 86.0 - 79.3 -
KnowBert (Peters et al., 2019) 82.1 - 73.7 -
Chen et al. (2019)† 92.6 93.6 87.5 87.7

Table 6: F1 (%) on AIDA after finetuning. †Might
not be comparable: Chen et al. (2019) evaluate on in-
vocabulary entities only, without ensuring (or report-
ing) the vocabulary’s coverage of the AIDA data.

Iterative refinement. We found it useful to iter-
atively refine predictions during inference, similar
to techniques from non-autoregressive Machine
Translation (Ghazvininejad et al., 2019). We start
with a wordpiece-tokenized input, e.g.:

Adams and P ##latt are both injured and will miss England
’s opening World Cup qualifier ...

We make predictions for all potential spans that the
candidate generator finds in the input. We gather
all spans with argmaxa[p(a|X)] 6= ε, sort them by
1−p(ε|X) and replace the top-k11 non-overlapping
spans with the predicted entity. Our previous ex-
ample might be partially decoded as:

Tony Adams (footballer) and P ##latt are both injured
and will miss England ’s opening 1998 FIFA World Cup
qualifier ...

In the next iteration, decoded entities (bold) are
represented by EE-BERT in the input, while non-
decoded spans continue to be represented by
EBERT (see Figure 4). We set the maximum num-
ber of iterations to J = 3, as there were no im-
provements beyond that point on the dev set.

Baselines. We train two baselines that combine
BERT and Wikipedia2Vec without vector space
alignment:

Wikipedia2Vec-BERT-MLM: BERT and its pre-
trained MLM head, finetuned to predict non-
aligned Wikipedia2Vec vectors. In practice,
this means replacing EE-BERT with EWikipedia

in Eq. 2. Embedding the [E-MASK] token
with non-aligned EWikipedia led to a drop in
dev set micro F1, therefore we report this base-
line with the standard [MASK] token.

11k = ceil( j(m+n)
J

)−m, where 1 ≤ j ≤ J is the current
iteration, m is the number of already decoded entities from
previous iterations, and n = |{X : argmaxa[p(a|X)] 6= ε}|.
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1 2 3 4 5 6 7 8 9 10
Training epoch

0.80

0.85

0.90
F1 E-BERT-MLM

Wikipedia2Vec-BERT-MLM
Wikipedia2Vec-BERT-random

Figure 5: AIDA dev set micro F1 after every epoch.

Wikipedia2Vec-BERT-random: Like Wikipe-
dia2Vec-BERT-MLM, but the MLM head is
replaced by a randomly initialized layer.

Data. We train and evaluate on AIDA, a news
dataset annotated with Wikipedia URLs (Hoffart
et al., 2011). To ensure coverage of the necessary
entities, we include all gold entities and all genera-
tor candidates in the entity vocabulary LEnt, even
if they fall under the Wikipedia2Vec link threshold
(see Section 3.3). While this is based on the unreal-
istic assumption that we know the contents of the
test set in advance, it is necessary for comparability
with Peters et al. (2019), Kolitsas et al. (2018) and
Broscheit (2019), who also design their entity vo-
cabulary around the data. See Appendix for more
details on data and preprocessing. We evaluate
strong match F1, i.e., a prediction must have the
same start, end and entity (URL) as the gold stan-
dard. URLs that redirect to the same Wikipedia
page are considered equivalent.

Hyperparameters. We train with Adam and a
linear learning rate scheduler (10% warmup) for
10 epochs, and we select the best epoch on the dev
set. Peak learning rate and batch size are tuned on
the dev set (see Appendix).

P R F1

E-BERT-MLM 21.1 61.8 31.5
w/ standard [MASK] token 23.3 65.2 34.3

Wikipedia2Vec-BERT-MLM 1.3 8.3 2.3
Wikipedia2Vec-BERT-random 1.3 6.8 2.2

Table 7: AIDA dev set micro precision / recall / F1 (%)
before finetuning. Results without iterative refinement.

Results and discussion. Table 6 shows that E-
BERT-MLM is competitive with previous work
on AIDA. The aligned entity vectors play a key
role in this performance, as they give the model a

good initialization for predicting entities from con-
text. When we remove this initialization by using
non-aligned entity vectors (Wikipedia2Vec-BERT
baselines), we get worse unsupervised performance
(Table 7), slower convergence during finetuning
(Figure 5), and a lower final F1 (Table 6).

6 Conclusion

We introduced E-BERT, an efficient yet effective
way of injecting factual knowledge about entities
into the BERT pretrained Language Model. We
showed how to align Wikipedia2Vec entity vec-
tors with BERT’s wordpiece vector space, and how
to feed the aligned vectors into BERT as if they
were wordpiece vectors. In doing so, we made no
changes to the BERT encoder itself. This stands in
contrast to other entity-enhanced versions of BERT,
such as ERNIE or KnowBert, which add encoder
layers and require expensive further pretraining.

We set a new state of the art on LAMA, a recent
unsupervised QA benchmark. Furthermore, we
presented evidence that the original BERT model
sometimes relies on the surface forms of entity
names (rather than “true” factual knowledge) for
this task. To quantify this effect, we introduced
LAMA-UHN, a subset of LAMA where questions
with helpful entity names are deleted.

We also showed how to apply E-BERT to two
supervised tasks: relation classification and entity
linking. On both tasks, we achieve results com-
petitive with or better than existing baselines, but
without the need for expensive pretraining.
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E-BERT: Efficient-Yet-Effective Entity
Embeddings for BERT (Appendix)

Unsupervised QA (LAMA)

Data
We downloaded the LAMA dataset from https://

dl.fbaipublicfiles.com/LAMA/data.zip. We
use the LAMA-T-REx and LAMA-Google-RE re-
lations, which are aimed at factual knowledge. Ta-
ble 10 shows results on indiviual relations, as well
as the number of questions per relation before and
after applying the LAMA-UHN heuristics.

Preprocessing
As mentioned in Section 4.1, we do not use
LAMA’s oracle entity IDs. Instead, we map sur-
face forms to entity IDs via the Wikidata query
API (https://query.wikidata.org). For exam-
ple, to look up Jean Marais:
SELECT ?id ?str WHERE {

?id rdfs:label ?str .
VALUES ?str { 'Jean Marais'@en } .
FILTER((LANG(?str)) = 'en') .

}

If more than one Wikidata ID is returned, we
select the lowest one. We then map Wikidata IDs
to the corresponding Wikipedia URLs:
SELECT ?id ?wikiurl WHERE {
VALUES ?id { wd:Q168359 } .
?wikiurl schema:about ?id .
?wikiurl schema:inLanguage 'en' .
FILTER REGEX(str(?wikiurl),

'.*en.wikipedia.org.*') .
}

Relation classification

Data
The RC dataset, which is a subset of the FewRel
corpus, was compiled by Zhang et al. (2019). We
downloaded it from https://cloud.tsinghua.

edu.cn/f/32668247e4fd4f9789f2/. Table 8
shows dataset statistics.

Preprocessing
The dataset contains sentences with annotated sub-
ject and object entity mentions, their oracle entity
IDs and their relation (which must be predicted).
We use the BERT wordpiece tokenizer to tokenize
the sentence and insert special wordpieces to mark
the entity mentions: # for subjects and $ for ob-
jects. Then, we insert the entity IDs. For example,
an input to E-BERT-concat would look like this:

[CLS] Taylor was later part of the ensemble cast in
MGM ’s classic $ World War II / World War II $ drama

“ # Battleground (film) / Battle ##ground # ” ( 1949 ) .
[SEP]

We use the oracle entity IDs of the dataset, which
are also used by ERNIE (Zhang et al., 2019).

Hyperparameters
We tune peak learning rate and number of epochs
on the dev set (selection criterion: macro F1). We
do a full search over the same hyperparameter
space as Zhang et al. (2019):

Learning rate: [2 · 10−5, 3 · 10−5,5 · 10−5]
Number of epochs: [3, 4, 5, 6, 7, 8, 9,10]

The best configuration for E-BERT-concat is
marked in bold. Figure 6 shows expected maxi-
mum performance as a function of the number of
evaluated configurations (Dodge et al., 2019).

Entity linking (AIDA)

Data
We downloaded the AIDA dataset from:

• https://allennlp.s3-us-west-2.

amazonaws.com/knowbert/wiki_entity_

linking/aida_train.txt

• https://allennlp.s3-us-west-2.

amazonaws.com/knowbert/wiki_entity_

linking/aida_dev.txt

• https://allennlp.s3-us-west-2.

amazonaws.com/knowbert/wiki_entity_

linking/aida_test.txt

Preprocessing
Each AIDA file contains documents with annotated
entity spans (which must be predicted). The doc-
uments are already whitespace tokenized, and we
further tokenize words into wordpieces with the
standard BERT tokenizer. If a document is too
long (length > 512), we split it into smaller chunks
by (a) finding the sentence boundary that is closest
to the document midpoint, (b) splitting the doc-
ument, and (c) repeating this process recursively
until all chunks are short enough. Table 9 shows
dataset statistics.

Hyperparameters
We tune batch size and peak learning rate on the
AIDA dev set (selection criterion: strong match
micro F1). We do a full search over the following
hyperparameter space:

https://dl.fbaipublicfiles.com/LAMA/data.zip
https://dl.fbaipublicfiles.com/LAMA/data.zip
https://query.wikidata.org
https://cloud.tsinghua.edu.cn/f/32668247e4fd4f9789f2/
https://cloud.tsinghua.edu.cn/f/32668247e4fd4f9789f2/
https://allennlp.s3-us-west-2.amazonaws.com/knowbert/wiki_entity_linking/aida_train.txt
https://allennlp.s3-us-west-2.amazonaws.com/knowbert/wiki_entity_linking/aida_train.txt
https://allennlp.s3-us-west-2.amazonaws.com/knowbert/wiki_entity_linking/aida_train.txt
https://allennlp.s3-us-west-2.amazonaws.com/knowbert/wiki_entity_linking/aida_dev.txt
https://allennlp.s3-us-west-2.amazonaws.com/knowbert/wiki_entity_linking/aida_dev.txt
https://allennlp.s3-us-west-2.amazonaws.com/knowbert/wiki_entity_linking/aida_dev.txt
https://allennlp.s3-us-west-2.amazonaws.com/knowbert/wiki_entity_linking/aida_test.txt
https://allennlp.s3-us-west-2.amazonaws.com/knowbert/wiki_entity_linking/aida_test.txt
https://allennlp.s3-us-west-2.amazonaws.com/knowbert/wiki_entity_linking/aida_test.txt
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Batch size: [16, 32, 64,128]

Learning rate: [2 · 10−5, 3 · 10−5, 5 · 10−5]

The best configuration for E-BERT-MLM is
marked in bold. Figure 7 shows expected maxi-
mum performance as a function of the number of
evaluated configurations (Dodge et al., 2019).

# relations 80
# unique entities 54648

train dev test

# samples 8000 16000 16000
# samples per relation 100 200 200

Table 8: Relation classification dataset statistics.

# unique gold entities 5574
# unique candidate entities 463663

train dev test

# documents 946 216 231
# documents (after chunking) 1111 276 271
# potential spans (candidate generator) 153103 38012 34936
# gold entities 18454 4778 4478

Table 9: Entity linking (AIDA) dataset statistics.
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Figure 6: Relation classification: Expected maximum
macro F1 (dev set) as a function of the number of hy-
perparameter configurations.
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Figure 7: Entity linking: Expected maximum micro F1
(dev set) as a function of the number of hyperparameter
configurations.
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Model size: BASE LARGE

Relation (dataset)
Model original E-BERT E-BERT- ERNIE Know- original E-BERT- E-BERT- number of

BERT replace concat Bert BERT replace concat questions

T-REx:P17 (0, original LAMA) 31.3 53.7 52.4 55.3 23.7 36.5 43.3 42.8 930
T-REx:P17 (1) 31.0 55.0 53.3 55.5 23.2 36.2 44.5 43.3 885
T-REx:P17 (2, LAMA-UHN) 31.0 55.0 53.3 55.5 23.2 36.2 44.5 43.3 885

T-REx:P19 (0, original LAMA) 21.1 26.4 28.1 28.7 23.3 22.2 24.6 25.3 944
T-REx:P19 (1) 20.6 26.5 27.5 28.2 22.9 21.8 24.5 24.8 933
T-REx:P19 (2, LAMA-UHN) 9.8 20.3 18.7 19.4 12.2 11.7 18.1 15.5 728

T-REx:P20 (0, original LAMA) 27.9 29.7 35.8 16.6 31.1 31.7 37.1 33.5 953
T-REx:P20 (1) 28.2 29.9 36.0 16.5 31.0 32.0 37.2 33.8 944
T-REx:P20 (2, LAMA-UHN) 15.5 21.5 23.3 8.4 20.0 18.9 27.3 22.6 656

T-REx:P27 (0, original LAMA) 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 966
T-REx:P27 (1) 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.1 945
T-REx:P27 (2, LAMA-UHN) 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.2 423

T-REx:P30 (0, original LAMA) 25.4 69.9 69.8 66.8 24.0 28.0 75.0 60.4 975
T-REx:P30 (1) 25.1 70.3 69.9 66.6 23.9 27.5 75.0 60.3 963
T-REx:P30 (2, LAMA-UHN) 25.1 70.3 69.9 66.6 23.9 27.5 75.0 60.3 963

T-REx:P31 (0, original LAMA) 36.7 25.5 46.9 43.7 18.7 30.2 12.3 16.1 922
T-REx:P31 (1) 21.1 28.4 35.8 30.3 12.4 16.3 9.9 9.8 564
T-REx:P31 (2, LAMA-UHN) 21.1 28.4 35.8 30.3 12.4 16.3 9.9 9.8 564

T-REx:P36 (0, original LAMA) 62.2 42.1 61.6 57.3 62.2 67.0 44.7 66.0 703
T-REx:P36 (1) 51.5 41.9 53.9 45.9 51.7 57.5 43.8 58.8 534
T-REx:P36 (2, LAMA-UHN) 51.5 41.9 53.9 45.9 51.7 57.5 43.8 58.8 534

T-REx:P37 (0, original LAMA) 54.6 51.2 56.5 60.2 53.1 61.5 54.3 62.7 966
T-REx:P37 (1) 52.9 51.6 55.5 59.4 51.9 60.5 54.2 62.1 924
T-REx:P37 (2, LAMA-UHN) 52.9 51.6 55.5 59.4 51.9 60.5 54.2 62.1 924

T-REx:P39 (0, original LAMA) 8.0 22.9 22.5 17.0 17.2 4.7 8.1 8.6 892
T-REx:P39 (1) 7.5 23.0 22.3 17.1 16.5 4.6 8.1 8.5 878
T-REx:P39 (2, LAMA-UHN) 7.5 23.0 22.3 17.1 16.5 4.6 8.1 8.5 878

T-REx:P47 (0, original LAMA) 13.7 8.9 10.8 9.8 14.0 18.2 15.1 15.9 922
T-REx:P47 (1) 13.6 9.1 10.7 9.6 13.9 18.6 15.2 15.9 904
T-REx:P47 (2, LAMA-UHN) 13.6 9.1 10.7 9.6 13.9 18.6 15.2 15.9 904

T-REx:P101 (0, original LAMA) 9.9 37.8 40.8 16.7 12.2 11.5 37.8 36.1 696
T-REx:P101 (1) 9.5 38.2 40.9 16.1 11.4 10.8 38.0 35.8 685
T-REx:P101 (2, LAMA-UHN) 9.5 38.2 40.9 16.1 11.4 10.8 38.0 35.8 685

T-REx:P103 (0, original LAMA) 72.2 85.8 86.8 85.5 73.4 78.2 84.4 84.9 977
T-REx:P103 (1) 72.1 85.7 86.8 85.4 73.3 78.2 84.4 84.9 975
T-REx:P103 (2, LAMA-UHN) 45.8 81.9 74.7 83.6 72.2 58.6 81.2 71.1 415

T-REx:P106 (0, original LAMA) 0.6 6.5 5.4 8.4 1.6 0.6 4.3 2.1 958
T-REx:P106 (1) 0.6 6.5 5.4 8.4 1.6 0.6 4.3 2.1 958
T-REx:P106 (2, LAMA-UHN) 0.6 6.5 5.4 8.4 1.6 0.6 4.3 2.1 958

T-REx:P108 (0, original LAMA) 6.8 9.9 23.2 14.1 10.7 1.6 11.7 15.9 383
T-REx:P108 (1) 6.5 9.9 23.0 13.9 10.5 1.3 11.8 16.0 382
T-REx:P108 (2, LAMA-UHN) 6.5 9.9 23.0 13.9 10.5 1.3 11.8 16.0 382

T-REx:P127 (0, original LAMA) 34.8 24.0 34.9 36.2 31.4 34.8 25.3 35.8 687
T-REx:P127 (1) 14.2 19.7 23.5 17.1 15.5 14.6 21.1 24.6 451
T-REx:P127 (2, LAMA-UHN) 14.2 19.7 23.5 17.1 15.5 14.6 21.1 24.6 451

Table 10: Mean Hits@1 and number of questions per LAMA relation. 0: original LAMA dataset, 1: after applying
heuristic 1 (string match filter), 2: after applying both heuristics (LAMA-UHN).
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Model size: BASE LARGE

Relation (dataset)
Model original E-BERT E-BERT- ERNIE Know- original E-BERT- E-BERT- number of

BERT replace concat Bert BERT replace concat questions

T-REx:P131 (0, original LAMA) 23.3 33.4 36.4 37.3 27.7 26.3 31.4 37.2 881
T-REx:P131 (1) 16.7 32.0 33.9 32.7 21.5 20.1 31.0 33.4 706
T-REx:P131 (2, LAMA-UHN) 16.7 32.0 33.9 32.7 21.5 20.1 31.0 33.4 706

T-REx:P136 (0, original LAMA) 0.8 5.2 9.1 0.6 0.6 1.3 6.9 13.1 931
T-REx:P136 (1) 0.2 5.1 8.7 0.2 0.1 0.2 6.9 12.2 913
T-REx:P136 (2, LAMA-UHN) 0.2 5.1 8.7 0.2 0.1 0.2 6.9 12.2 913

T-REx:P138 (0, original LAMA) 61.6 8.8 26.5 0.2 63.7 45.1 2.6 24.0 645
T-REx:P138 (1) 5.0 10.0 8.8 0.0 6.9 4.4 4.4 6.2 160
T-REx:P138 (2, LAMA-UHN) 5.0 10.0 8.8 0.0 6.9 4.4 4.4 6.2 160

T-REx:P140 (0, original LAMA) 0.6 0.6 1.1 0.0 0.8 0.6 1.1 0.6 473
T-REx:P140 (1) 0.4 0.6 0.9 0.0 0.6 0.4 0.9 0.4 467
T-REx:P140 (2, LAMA-UHN) 0.4 0.6 0.9 0.0 0.6 0.4 0.9 0.4 467

T-REx:P159 (0, original LAMA) 32.4 30.3 48.3 41.8 36.8 34.7 22.3 45.2 967
T-REx:P159 (1) 23.1 31.6 41.9 34.4 28.7 25.6 20.9 37.8 843
T-REx:P159 (2, LAMA-UHN) 23.1 31.6 41.9 34.4 28.7 25.6 20.9 37.8 843

T-REx:P176 (0, original LAMA) 85.6 41.6 74.6 81.8 90.0 87.5 36.6 81.3 982
T-REx:P176 (1) 31.4 42.9 51.8 26.2 51.3 40.8 44.5 57.1 191
T-REx:P176 (2, LAMA-UHN) 31.4 42.9 51.8 26.2 51.3 40.8 44.5 57.1 191

T-REx:P178 (0, original LAMA) 62.8 49.8 66.6 60.1 70.3 70.8 51.2 69.4 592
T-REx:P178 (1) 40.7 42.6 51.6 36.9 52.2 53.6 51.1 57.7 366
T-REx:P178 (2, LAMA-UHN) 40.7 42.6 51.6 36.9 52.2 53.6 51.1 57.7 366

T-REx:P190 (0, original LAMA) 2.4 2.9 2.5 2.6 2.8 2.3 2.3 2.8 995
T-REx:P190 (1) 1.5 2.4 1.6 1.6 2.0 1.7 1.9 2.3 981
T-REx:P190 (2, LAMA-UHN) 1.5 2.4 1.6 1.6 2.0 1.7 1.9 2.3 981

T-REx:P264 (0, original LAMA) 9.6 30.5 33.6 13.3 21.2 8.2 23.1 15.6 429
T-REx:P264 (1) 9.6 30.6 33.4 13.3 21.3 8.2 23.1 15.7 428
T-REx:P264 (2, LAMA-UHN) 9.6 30.6 33.4 13.3 21.3 8.2 23.1 15.7 428

T-REx:P276 (0, original LAMA) 41.5 23.8 47.7 48.4 43.3 43.8 23.1 51.8 959
T-REx:P276 (1) 19.8 26.1 31.7 27.0 20.6 23.4 25.0 36.0 625
T-REx:P276 (2, LAMA-UHN) 19.8 26.1 31.7 27.0 20.6 23.4 25.0 36.0 625

T-REx:P279 (0, original LAMA) 30.7 14.7 30.7 29.4 31.6 33.5 15.5 29.8 963
T-REx:P279 (1) 3.8 8.6 8.0 4.6 5.3 6.8 8.6 10.1 474
T-REx:P279 (2, LAMA-UHN) 3.8 8.6 8.0 4.6 5.3 6.8 8.6 10.1 474

T-REx:P361 (0, original LAMA) 23.6 19.6 23.0 25.8 26.6 27.4 22.3 25.4 932
T-REx:P361 (1) 12.6 17.9 17.7 13.7 15.3 18.5 20.2 22.0 633
T-REx:P361 (2, LAMA-UHN) 12.6 17.9 17.7 13.7 15.3 18.5 20.2 22.0 633

T-REx:P364 (0, original LAMA) 44.5 61.7 64.0 48.0 40.9 51.1 60.6 61.3 856
T-REx:P364 (1) 43.5 61.7 63.5 47.4 40.0 50.7 60.5 61.2 841
T-REx:P364 (2, LAMA-UHN) 43.5 61.7 63.5 47.4 40.0 50.7 60.5 61.2 841

T-REx:P407 (0, original LAMA) 59.2 68.0 68.8 53.8 60.1 62.1 57.9 56.3 877
T-REx:P407 (1) 57.6 69.5 67.9 53.1 58.6 61.0 59.0 55.2 834
T-REx:P407 (2, LAMA-UHN) 57.6 69.5 67.9 53.1 58.6 61.0 59.0 55.2 834

T-REx:P413 (0, original LAMA) 0.5 0.1 0.0 0.0 41.7 4.1 14.0 7.0 952
T-REx:P413 (1) 0.5 0.1 0.0 0.0 41.7 4.1 14.0 7.0 952
T-REx:P413 (2, LAMA-UHN) 0.5 0.1 0.0 0.0 41.7 4.1 14.0 7.0 952

Table 11: Mean Hits@1 and number of questions per LAMA relation (cont’d). 0: original LAMA dataset, 1: after
applying heuristic 1 (string match filter), 2: after applying both heuristics (LAMA-UHN).
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Model size: BASE LARGE

Relation (dataset
Model original E-BERT E-BERT- ERNIE Know- original E-BERT- E-BERT- number of

BERT replace concat Bert BERT replace concat questions

T-REx:P449 (0, original LAMA) 20.9 30.9 34.7 33.8 57.0 24.0 32.5 28.6 881
T-REx:P449 (1) 18.8 31.1 33.4 32.0 56.0 21.8 32.9 27.5 848
T-REx:P449 (2, LAMA-UHN) 18.8 31.1 33.4 32.0 56.0 21.8 32.9 27.5 848

T-REx:P463 (0, original LAMA) 67.1 61.8 68.9 43.1 35.6 61.3 52.0 66.7 225
T-REx:P463 (1) 67.1 61.8 68.9 43.1 35.6 61.3 52.0 66.7 225
T-REx:P463 (2, LAMA-UHN) 67.1 61.8 68.9 43.1 35.6 61.3 52.0 66.7 225

T-REx:P495 (0, original LAMA) 16.5 46.3 48.3 1.0 30.8 29.7 56.7 46.9 909
T-REx:P495 (1) 15.0 46.0 47.5 0.9 29.6 28.5 56.6 46.2 892
T-REx:P495 (2, LAMA-UHN) 15.0 46.0 47.5 0.9 29.6 28.5 56.6 46.2 892

T-REx:P527 (0, original LAMA) 11.1 7.4 11.9 5.4 12.9 10.5 8.9 12.9 976
T-REx:P527 (1) 5.7 7.6 8.7 0.5 3.0 4.2 8.7 6.3 804
T-REx:P527 (2, LAMA-UHN) 5.7 7.6 8.7 0.5 3.0 4.2 8.7 6.3 804

T-REx:P530 (0, original LAMA) 2.8 1.8 2.0 2.3 2.8 2.7 2.3 2.8 996
T-REx:P530 (1) 2.8 1.8 2.0 2.3 2.8 2.7 2.3 2.8 996
T-REx:P530 (2, LAMA-UHN) 2.8 1.8 2.0 2.3 2.8 2.7 2.3 2.8 996

T-REx:P740 (0, original LAMA) 7.6 10.5 14.7 0.0 10.4 6.0 13.1 10.4 936
T-REx:P740 (1) 5.9 10.3 13.5 0.0 9.0 5.2 12.7 9.5 910
T-REx:P740 (2, LAMA-UHN) 5.9 10.3 13.5 0.0 9.0 5.2 12.7 9.5 910

T-REx:P937 (0, original LAMA) 29.8 33.0 38.8 40.0 32.3 24.9 28.3 34.5 954
T-REx:P937 (1) 29.9 32.9 38.7 39.9 32.2 24.8 28.2 34.4 950
T-REx:P937 (2, LAMA-UHN) 29.9 32.9 38.7 39.9 32.2 24.8 28.2 34.4 950

T-REx:P1001 (0, original LAMA) 70.5 56.9 76.0 75.7 73.0 73.3 49.5 78.0 701
T-REx:P1001 (1) 38.1 67.7 66.7 65.6 43.4 40.7 60.3 66.7 189
T-REx:P1001 (2, LAMA-UHN) 38.1 67.7 66.7 65.6 43.4 40.7 60.3 66.7 189

T-REx:P1303 (0, original LAMA) 7.6 20.3 26.6 5.3 9.1 12.5 29.7 33.2 949
T-REx:P1303 (1) 7.6 20.3 26.6 5.3 9.1 12.5 29.7 33.2 949
T-REx:P1303 (2, LAMA-UHN) 7.6 20.3 26.6 5.3 9.1 12.5 29.7 33.2 949

T-REx:P1376 (0, original LAMA) 73.9 41.5 62.0 71.8 75.2 82.1 47.4 70.1 234
T-REx:P1376 (1) 74.8 42.2 62.8 73.4 75.2 83.5 48.6 72.0 218
T-REx:P1376 (2, LAMA-UHN) 74.8 42.2 62.8 73.4 75.2 83.5 48.6 72.0 218

T-REx:P1412 (0, original LAMA) 65.0 54.0 67.8 73.1 69.2 63.6 49.3 61.2 969
T-REx:P1412 (1) 65.0 54.0 67.8 73.1 69.2 63.6 49.3 61.2 969
T-REx:P1412 (2, LAMA-UHN) 37.7 42.9 47.4 69.2 65.7 51.5 43.5 54.8 361

Google-RE:date of birth (0) 1.6 1.5 1.9 1.9 2.4 1.5 1.5 1.3 1825
Google-RE:date of birth (1) 1.6 1.5 1.9 1.9 2.4 1.5 1.5 1.3 1825
Google-RE:date of birth (2) 1.6 1.5 1.9 1.9 2.4 1.5 1.5 1.3 1825

Google-RE:place of birth (0) 14.9 16.2 16.9 17.7 17.4 16.1 14.8 16.6 2937
Google-RE:place of birth (1) 14.9 16.2 16.8 17.7 17.4 16.0 14.8 16.6 2934
Google-RE:place of birth (2) 5.9 9.4 8.2 10.3 9.4 7.2 8.5 7.9 2451

Google-RE:place of death (0) 13.1 12.8 14.9 6.4 13.4 14.0 17.0 14.9 766
Google-RE:place of death (1) 13.1 12.8 14.9 6.4 13.4 14.0 17.0 14.9 766
Google-RE:place of death (2) 6.6 7.5 7.8 2.0 7.5 7.6 11.8 8.9 655

Table 12: Mean Hits@1 and number of questions per LAMA relation (cont’d). 0: original LAMA dataset, 1: after
applying heuristic 1 (string match filter), 2: after applying both heuristics (LAMA-UHN).


