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Abstract

Neural dialogue response generation has
gained much popularity in recent years. Max-
imum Likelihood Estimation (MLE) objective
is widely adopted in existing dialogue model
learning. However, models trained with MLE
objective function are plagued by the low-
diversity issue when it comes to the open-
domain conversational setting. Inspired by the
observation that humans not only learn from
the positive signals but also benefit from cor-
recting behaviors of undesirable actions, in
this work, we introduce contrastive learning
into dialogue generation, where the model ex-
plicitly perceives the difference between the
well-chosen positive and negative utterances.
Specifically, we employ a pretrained baseline
model as a reference. During contrastive learn-
ing, the target dialogue model is trained to give
higher conditional probabilities for the posi-
tive samples, and lower conditional probabil-
ities for those negative samples, compared to
the reference model. To manage the multi-
mapping relations prevalent in human conver-
sation, we augment contrastive dialogue learn-
ing with group-wise dual sampling. Exten-
sive experimental results show that the pro-
posed group-wise contrastive learning frame-
work is suited for training a wide range of neu-
ral dialogue generation models with very fa-
vorable performance over the baseline training
approaches.

1 Introduction

Open-domain human-machine dialogue systems,
especially the generation-based genre, have at-
tracted extensive attention recently. Typically,
following the neural encoder-decoder paradigm,
contemporary dialogue generation models (Shang
et al., 2015; Serban et al., 2016; Xing et al., 2017;
Yan, 2018; Huang et al., 2020; Liu et al., 2020),
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more often than not, are trained with Maximum
Likelihood Estimation (MLE) principle to mimic
human context-response pairs in the training cor-
pus. While notable gains have been achieved under
this learning framework, prior art (Li et al., 2016a,
2017; Zhang et al., 2018a) suggests that naive MLE
objective used for training neural dialogue genera-
tion models is not that effective enough and tends
to result in issues like dull response generation.
By optimizing the likelihood of training dialogues,
neural models are inclined to assign high probabili-
ties to “safe” responses, due to the fact that vacuous
responses like “I don’t know” are of relatively high
frequencies in conversational datasets (Li et al.,
2016a).

One promising training framework for neural
dialogue generation is adversarial learning (Good-
fellow et al., 2014; Li et al., 2017), where a dis-
criminator provides rewards for the generator by
contrastively distinguishing dialogues as human-
generated or machine-generated. However, the
learning ability of GANs in text is drastically
limited due to training instability and model col-
lapse (Nie et al., 2019; Caccia et al., 2020). First,
the discriminator is usually unlikely to be fooled
very easily, and the generator can hardly learn
from those ineffective rewards. Second, the gener-
ator is sometimes encouraged to mimic the high-
frequency generic responses in the training corpus,
because in some cases, the discriminator fails to
distinguish a good response from a bad one: it can
easily recognize contentful but less-grammatical
responses as machine-generated, yet treat those
human-generated dull responses as the oracle.

In this paper, we introduce contrastive learn-
ing (Hadsell et al., 2006; Gutmann and Hyvirinen,
2012) into dialogue generation, where the model
explicitly perceives the difference between the well-
chosen positive and negative utterances. From the
perspective of contrastive learning, the discrim-
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[ Thanks for the offer though. ] 1 do not like cooking.
My hobby is to watch sports.

@ [ Reading is my favorite hobby. ]

Figure 1: An illustration case of group-wise contrastive learning. For a given training instance, the proposed
framework explicitly considers the multi-mapping relations in human conversations, by encouraging the dialogue
generation model to pull the matched sample pairs together and push the mismatched pairs apart in the latent space.

inator in adversarial learning considers human-
generated responses as positive utterances and syn-
thetic ones as negative samples. Instead, this work
deems highly-matched context-response pairs as
positive samples and mismatched training pairs
as negative samples. In particular, we utilize a
pretrained baseline model as a reference. Dur-
ing contrastive learning, for context ¢ and its re-
sponse 7, the target dialogue model is trained to
give higher conditional probabilities p(r|c) for the
positive samples, and lower conditional probabili-
ties for those negative samples, compared to the ref-
erence model. This training paradigm encourages
the model to pull the positive data points together
and push apart the negative samples, as exempli-
fied in Figure 1. As a result, our proposed train-
ing scheme explicitly takes the semantic associa-
tions and differences among training examples into
account for dialogue modeling. Besides, by con-
trastively characterizing the distinctions relative to
a strong reference, our method implicitly enhances
the distinctiveness of the generated responses as
well, and ensures that the overall performance of
the target model is not inferior to the reference.

Contrastively learning from one pair of positive
and negative samples is quite straightforward, how-
ever, multi-mapping relations prevail in human-
human conversations, where there exist multiple
appropriate responses for a given context, and a
response sometimes fits well to several contexts,
known as one-to-many and many-to-one relations.
Such complex multi-mapping relations are over-

looked in previous learning framework, which ham-
pers effective dialogue response learning. Further-
more, if a potential highly-matched utterance pair is
treated as the negative sample or an outlier is used
as the positive sample, the model may be confused.
Therefore, in order to consider the multi-mapping
phenomenon in human conversations and remedy
the potential problematic false learning samples,
and enhance the training stability, we augment con-
trastive learning with group-wise dual sampling,
where groups of positive and negative instances
are sampled regarding both the context and the
response, respectively. To further depict subtle dif-
ferences between instances in the group, we adapt
the instance importance with the matching scores,
and optimize the weighted loss.

We show an illustration case to understand our
learning framework in Figure 1. Given a training
context-response pair (¢, r), for context “What are
your hobbies? I love to cook”, multiple highly-
matched responses are organized as the positive
samples r*, and the mismatched utterances are
deemed as the negatives 7. On the dual direction,
regarding the response “Reading is my favorite
hobby”, multiple sampled context utterances are
similarly divided into ¢* and ¢". Compared with
the reference baseline, the target dialogue model is
trained to give higher generation probabilities for
positive instances, (¢, ") and (c*,r), and lower
probabilities for negatives (¢,r”) and (¢, r). By
this mean, the target model is actually induced to
pull the positive sample pairs together and push the
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mismatched pairs apart, and thus learns from the
distinctions between the positives and negatives.

The proposed group-wise contrastive learning
framework is suited for training various neural di-
alogue generation models. We conduct extensive
studies on three large-scale conversation datasets
using four popular dialogue models to assess the
proposed approach. The experimental results con-
firm the effectiveness of our learning framework
with very favorable performance over the baseline
training approaches’.

2 Contrastive Dialogue Learning

2.1 Dialogue Learning by Comparison

Given training data D containing context-response
pairs {(c, r);} Y, a dialogue model parameterized
by 0 aims to map from the input context c to the
output response 7. To achieve this, conventional di-
alogue learning approaches search the parameter 6
by maximizing the conditional probability pe(r|c)
over the training samples. MLE maximizes the log-
likelihood of training pairs while adversarial based
approaches rely on the discriminator to distinguish
between good responses and bad ones. To com-
bat the aforementioned drawbacks of traditional
training approaches in dialogue learning, we ad-
vocate the use of contrastive learning to explic-
itly perceive the difference between the positive
and negative samples. Inspired by Gutmann and
Hyvirinen (2012); Dai and Lin (2017), we utilize a
pretrained baseline model p,,(+; @), to provide the
target dialogue model p,,(+; @) a strong reference
when contrasting the positive samples and the neg-
atives. Humans not only learn from the positive
signals but also benefit from correcting behaviors
of undesirable actions. Intuitively, the target dia-
logue model is expected to give higher conditional
probabilities p(r|c) for the positive samples, and
lower conditional probabilities for those negative
samples, compared to the reference model. To-
wards this end, we define the difference between

m(T|c, @) and p,(7|c, @) as:

Pm(r]c, 6)

Dl(e;r);6,¢) =log’ "o o5

6]
We wish that D((¢, 1); 6, ¢) > 0 for any positive
pair and vice versa for any negative pair. Con-
cretely speaking, we minimize the following loss

!Code is available at https://github.com/

hengyicai/Contrastivelearning4Dialogue
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function:

L"(0;D, ) =
1
— logo(D((c,7)%; 0, ¢))
N Z:e , (2)
_ ﬁ Z log[1 —o(D((c,7);0,9))]
(e,r)eD

where o(-) is the sigmoid activation function, the
given training pair (¢, r) can be used as the positive
sample (¢, r)* and the negative sample (c, )" can
be obtained through negative sampling using the
given instance (¢, 7).

Optimizing the dialogue model with the above
objective function is reminiscent of nonlinear lo-
gistic regression in Noise-Contrastive Estimation
(NCE) (Gutmann and Hyvérinen, 2012). The un-
derlying motivation of our formulation and NCE
are essentially different. The reference model in
our work is utilized to constrain the behaviors of
the target model, rather than serve as a noise distri-
bution to provide noise data. Another difference is
that, instead of using the log-ratio between p,,(+; 0)
and py,(-; ¢) to compute posterior classification
probabilities as in NCE, we introduce the func-
tion D((e, 7); 0, @) to characterize the distinctions
of intrinsic dialogue properties relative to the refer-
ence, and encourage the generation of positive sam-
ples as well as penalize the negative ones through
minimizing the loss in Eq.(2). Besides, by con-
trastively characterizing the distinctions relative to
a strong reference, our method implicitly enhances
the distinctiveness of the generated response as
well, and ensures that the overall performance of
the target model is not inferior to the reference.

2.2 Contrastive Dual Sampling

Nevertheless, in the presence of multi-mapping re-
lations in human dialogues, effectively sampling
the positive and negative pairs in conversation is
not that straightforward and even runs the risk of
introducing false learning samples. To manage
the complex multi-mapping phenomenon in human
conversations and enhance the training stability,
we augment the contrastive learning with group-
wise dual sampling, where groups of positive and
negative instances are sampled regarding both the
context and the response, respectively. To put it
concretely, for each training instance (c,r), we
find a group of positive examples {(c,r*);}E_,
with highest matching degree and a group of nega-
tive examples {(c,7");}X_, with lowest matching
degree, using an off-the-shelf pretrained matching
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Figure 2: A demonstration of the proposed group-wise contrastive dialogue learning pipeline. For each training
pair, it first samples a group of highly-matched examples and another group of most mismatched utterances regard-
ing both the context and response to build the contrastive samples, using an off-the-shelf conversation matching
model (§2.2). The target dialogue model is then trained with group-wise contrastive learning (§2.3).

model to compute the matching scores between the
given context and candidate responses. Similarly,
{(c*,r):}k_, and {(c,r);}F_, are also retrieved
from the training set to serve as the context-side
contrastive examples, as shown in Figure 2(a). In
this work, we adopt MSN (Yuan et al., 2019), a
context-response matching network based on multi-
hop selection, as the off-the-shelf matching model.
Note that other sophisticated matching models can
also be applied, e.g., deep attention matching net-
work (Zhou et al., 2018).

2.3 Group-wise Contrastive Learning

For each training instance (c¢,r), as describe in
§2.2, we sample k different positive and negative
pairs regarding both the dialogue context and its re-
sponse to manage multi-mapping relations in con-
versation and stabilize the model training. The
resultant well-chosen samples are composed of
positive samples, {(c, 7*);}¥_, and {(c*, r);}E_,,
and the negatives, {(c,7);}%_, and {(c’,7);}E_,.
Then, the loss function is updated as:

L£'(0;D, ) =
1 1 2k+1
+.
N 2 gpy1 2 leso(P((er)ii0.9)
(e,r)eD =1 ’ (3)

2k
T i 3 log[1 - o(D((c, 1) 6, )]

(e,r)eD i=1

Given varied matching degrees of the collected
context-response pairs in open-domain dialogue,
indiscriminately training on such data impedes the
model to perceive intra-group differences of these
samples. We thus utilize the matching score s at-
tached with each sample to adapt its instance effect
on the group-wise contrastive dialogue learning.
Specifically, for a given training example (¢, 7),

the matching score s* of its positive pair lies in
(0, 1] and the negative score s lies in [—1,0]. To
induce the model learning from sample pairs with
varied matching degrees discriminately, the loss
function is finally defined to be:

L£(6;D, ¢) =
1 1 2k+1
N X apii X loslsio(D((er)i6.9))
(e,r)eD i=1 )

1 1 _ _
"W 2 o el Pl 0, 9)

@
The loss function £(0) reaches its lower bound
when the positive and negative pairs can be per-
fectly distinguished, i.e., pr,, (7]c, 8) > p,(r|e, P)
for the positive samples and pp,(r|c,0) <
pn(7|c, @) for the negatives, which indicates that
the target dialogue model is able to clearly contrast
a group of positive candidates from the negative
ones and generate highly-distinctive responses for
the given contexts.

2.4 Discussion

Neural sequence-to-sequence models trained with
the MLE objective function are plagued by the low-
diversity issue when it comes to the open-domain
conversational setting, in which bland and generic
utterances usually dominate the data distribution.
Since the objective of MLE is to maximize only
the probabilities of ground-truth context-response
pairs, it fails to capture the multi-mapping nature of
human dialogues, not to mention the semantic dif-
ferences among various candidates for a given ex-
ample. While the proposed group-wise contrastive
learning framework explicitly explores multiple
variants of a given dialogue example by leverag-
ing an off-the-shelf matching model, and implicitly
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PersonaChat Douban OpenSubtitles
#context-response pairs 140,248 218,039 353,046
Avg. #turns per context 2.69 3.94 3.79
Avg. #words per utterance 11.96 15.28 6.85
Training Pairs 113,558 198,039 293,129
Validation Pairs 13,602 10,000 29,960
Test Pairs 13,088 10,000 29,957
#Tokens 18,029 40,000 40,000

Table 1: Data statistics for PersonaChat, Douban and
OpenSubtitles datasets.

guarantees the ground-truth generation probabili-
ties through the contrastive constraints in Eq.(4).

Adversarial learning approaches and our pro-
posed framework both involve an auxiliary model
during the training process. However, GANs are
learned via a competition between the target gen-
erator and the counteracting discriminator, which
needs careful tuning to prevent model collapse in
text modeling (Caccia et al., 2020), whereas in our
framework, the auxiliary reference system mod-
els conversation data in the same direction with
the target dialogue model, and is stable during the
learning procedure.

3 Experiments

3.1 Experiment Settings

Datasets We perform experiments on three con-
versation datasets: PersonaChat (Zhang et al.,
2018b), Douban Corpus (Wu et al., 2017) and
OpenSubtitles (Lison and Tiedemann, 2016). Per-
sonaChat, an English-language dataset, contains
multi-turn dialogues between pairs of speakers,
collected via Amazon Mechanical Turk. Douban
consists of daily conversations from a popular so-
cial networking service—Douban group? in China.
OpenSubtitles contains human-human conversa-
tions converted from movie transcripts in English.
Data statistics are listed in Table 1.

Experimental Models We apply the proposed
group-wise contrastive learning framework to
several state-of-the-art models, including (i)
SEQ2SEQ: a LSTM-based sequence-to-sequence
model with attention mechanisms (Bahdanau et al.,
2015), (ii)) HRED: a hierarchical recurrent neu-
ral dialogue generation model (Serban et al.,
2016), (iii) TRANSFORMER: an encoder-decoder
architecture relying solely on attention mecha-
nisms (Vaswani et al., 2017), (iv) HRAN: a hier-
archical recurrent attention network for multi-turn

https://www.douban.com/group

response generation (Xing et al., 2018). Each
model is trained using two protocols: the vanilla
MLE training procedure and the proposed group-
wise contrastive learning procedure, keeping other
configurations the same.

Baselines We compare our group-wise con-
trastive learning framework against the following
dialogue learning approaches: (i) ADVERSARIAL:
an adversarial training approach for response gen-
eration (Li et al., 2017), (ii)) MMI: a training ob-
jective which maximums the mutual information
between the dialogue context and its response (Li
et al., 2016a; Zhang et al., 2018c), (iii) DEEPRL:
a reinforcement learning framework for neural
response generation with heuristic reward func-
tions to boost response qualities (Li et al., 2016b),
(iv) CVAE: a conditional variational auto-encoder
learning framework to maximize the data like-
lihood, augmented with the KL-annealing tech-
nique (Bowman et al., 2016) and a BOW loss (Zhao
et al., 2017), and (v) DIALOGWAE: a conditional
Wasserstein auto-encoder framework, modeling the
distribution of dialogues by training a GAN within
the latent variable space (Gu et al., 2019).

Automatic Evaluation Metrics We adopt sev-
eral standard metrics widely used in existing works
to measure the performance of dialogue gener-
ation models, including BLEU (Papineni et al.,
2002), embedding-based metrics (Average, Ex-
trema, Greedy and Coheren(:e)3 (Liu et al., 2016;
Xu et al., 2018; Sedoc et al., 2019), entropy-based
metrics* (Ent-{1,2}) (Serban et al., 2017) and dis-
tinct metrics (Dist-{1,2,3}) (Li et al., 2016a).

3.2 Implementation and Reproducibility

We implement our model in ParlAI (Miller et al.,
2017) and train them on Nvidia P40 GPUs. All the
models use pretrained word embeddings produced
by fastText (Bojanowski et al., 2017), and the di-
mensionality of word vectors is 300. For experi-
mental models, 2-layer LSTM-based encoder and
decoder with hidden size 256 are used in SEQ2SEQ.
We use the base Transformer configuration de-
scribed in  Vaswani et al. (2017), i.e., 6 blocks
with 8 attention heads and 512 hidden units. 2-
layer GRU-based RNNs are employed to build the
word-level encoder, utterance-level encoder and

*https://chateval.org/

“We compute the entropy value for the empirical distribu-
tion of n-grams based on the maximum likelihood estimation
on the training data.
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Models BLEU-1/2/3/4 Dist-1 Dist-2 Dist-3 Avg. Ext.  Gre. Coh. Ent-1/2
SEQ2SEQ 12.040/3.9950/0.8815/0.2312 0.4309 2.045 4.303 36.33 28.66 63.64 41.66 6.891/10.81
SEQ2SEQ (») 13.660/4.9160 /1.5970/ 0.6122 0.8492  5.093 12.000 39.76 31.74 64.76 49.39 7.016/10.90
HRED 12.410/3.8360/0.8455/0.2364 0.4744 2546  6.127 36.52 28.37 64.12 39.08 6.792/10.66
@ HRED (») 13.180/4.3220/1.0360/0.3274 0.7130  4.468 11.220 38.54 29.65 64.26 44.07 6.931/10.84
TRANSFORMER 11.460/3.2080/0.5389/0.1476 0.4813  2.544 6.146 35.72 27.38 63.61 38.02 6.804/10.55
TRANSFORMER (») 12.660 / 3.8920/0.8406 / 0.2577 0.7859  4.562 10.950 37.42 2895 64.02 41.96 6.918/10.80
HRAN 12.190/3.8290/0.7752/0.2171  0.5074  2.883  7.104 36.53 28.08 63.58 40.22 6.964/10.83
HRAN (») 13.430/4.5030/1.0630/0.3513 0.7713  4.974 12.380 39.04 30.08 64.48 46.63 6.942/10.87
SEQ2SEQ 5.585/0.7887/0.1008/0.0296 1.1610  6.105 13.100 46.75 36.80 53.52 52.13 7.225/11.13
SEQ2SEQ (») 5.821/0.7910/0.1053/0.0377 1.3010 7.935 18.070 46.96 36.99 53.41 53.40 7.464/11.66
HRED 5.899/0.7925/0.0786/0.0206 0.8334  5.147 14.160 48.12 36.50 54.20 49.99 7.107/10.90
(b) HRED (») 5.778/0.7968 / 0.0996 / 0.0387 1.2910 7.461 19.450 48.23 36.51 5334 50.31 7.436/11.10
TRANSFORMER 5.229/0.6443/0.0764/0.0240 1.1140  5.658 13.830 4545 3545 53.04 48.04 7.084/11.15
TRANSFORMER (»)  5.386/0.6460/0.0889/0.0274 1.3280 6.723 15.800 45.96 36.11 53.33 48.92 7.238/11.16
HRAN 5.366/0.7229/0.0860 /0.0182 1.0960  6.679 17.250 47.44 3635 53.93 5025 7.202/11.15
HRAN (») 5.541/0.7424/0.0723/0.0194 1.6630 10.030 24.240 48.01 36.99 53.46 51.81 7.394/10.94
SEQ2SEQ 5.666/1.0870/0.2471/0.0416 0.2880  2.110  5.566 54.22 46.11 63.96 56.82 6.685/10.54
SEQ2SEQ (») 5.696/1.1290/0.2199/0.0476 0.4495 3.681 10.860 54.32 47.13 64.54 58.60 6.792/10.80
HRED 5.489/0.9953/0.2206/0.0711 0.3020  2.179  6.355 54.61 54.36 6791 56.45 6.699/10.74
© HRED (») 5.670/1.0930/0.2461/0.0828 0.4490 3.099 8.949 54.19 54.36 68.16 57.26 6.722/10.80
TRANSFORMER 4.619/0.8294/0.1500/0.0307 0.3470 2.038 5.028 5229 4421 63.16 5340 6.677/10.40
TRANSFORMER (»)  4.712/0.8197/0.1744/0.0314 0.3897 2.437 6.188 52.34 4512 63.52 54.11 6.722/10.50
HRAN 5.090/0.8424/0.1665/0.0405 0.3205 2.604  8.188 54.74 54.52 68.16 56.58 6.556/10.53
HRAN (») 5.423/0.9192/0.1913/0.0529 0.5034 3.935 11.920 5440 54.54 68.30 57.48 6.699/10.89

Table 2: Automatic evaluation results (%) on the test set of three datasets: (a) PersonaChat, (b) Douban and
(c) OpenSubtitles. “»” denotes that the model is trained using our proposed framework. The metrics Average,
Extrema, Greedy and Coherence are abbreviated as Avg., Ext., Gre. and Coh., respectively. The best results in

each group are highlighted with bold.

response decoder for both the HRED and HRAN.
The GRU hidden size is set to 256. For both mod-
els using different training procedures, we pretrain
them by MLE and the result checkpoint is adopted
as the reference model used in our framework. We
employ BM25 (Robertson and Zaragoza, 2009) to
construct the index used during the contrastive dual
sampling procedure. The group size k is set to 3.
Regarding comparison models, we adopt the de-
fault configurations used in the original papers. We
optimize models by Adam (Kingma and Ba, 2015)
with an initial learning rate of 0.001 and the batch
size of 128. All systems are trained until the vali-
dation loss fails to decrease for 5 checkpoints. We
compute the loss on the validation set at every 0.5
epochs and save the parameters for the top model.
Evaluation scores on the test set from the saved
model are finally reported.

3.3 Evaluation Results

Performance on Experimental Models We in-
stantiate the proposed framework on several state-
of-the-art models for dialogue generation. Table 2
reports the automatic evaluation results of our learn-
ing framework and the conventional MLE training
procedure. By training dialogue models using the

proposed learning framework, we witness solid per-
formance boosts on three conversation datasets in
terms of almost all the evaluation metrics, com-
pared to the vanilla training. Such improvements
are also consistent across various experimental ar-
chitectures, affirming the general applicability and
superiority of the proposed framework.

Comparison with Baseline Approaches We
compare our proposed framework with existing
learning approaches designed for dialogue gener-
ation task. Table 3 summarizes the evaluation re-
sults. We observe that our learning framework
outperforms previous approaches regarding the ma-
jority of evaluation metrics. It is worth noting that
the proposed framework brings a relatively large
improvement regarding both the response diver-
sity and conversation coherence, indicating that
our approach helps the dialogue model to gener-
ate not only informative but also context-relevant
responses, which confirms our hypothesis that the
group-wise contrastive learning encourages distinc-
tiveness.

Human Evaluation We further conduct human
evaluations to assess the proposed learning frame-
work. We choose the PersonaChat as our evaluation
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Learning Approaches BLEU-1/2/3/4 Dist-1 Dist-2 Dist-3  Avg. Ext. Gre. Coh. Ent-1/2

ADVERSARIAL 12.190/4.0060/0.8950/0.2644 0.6269 3.357  7.374 3593 29.00 63.65 42.38 6.980/10.88
MMI 14.030/4.6460/1.3340/0.5022 0.4734 2.443 5515 39.34 3092 64.84 45.16 6.874/10.65
DEEPRL 12.660/4.0150/1.0140/0.3314 0.6838 3.838  8.581 37.23 29.68 64.30 44.13 6.885/10.85
CVAE 11.570/2.8100/0.6357/0.1714 02876 2326  7.506 39.29 30.61 63.67 41.76 6.869/10.82
DIALOGWAE 11.430/2.9260/0.5676/0.1436  0.9936 5.080 9.928 38.68 28.70 63.39 41.06 7.009/11.09
Ours 13.660/4.9160/1.5970/0.6122 0.8492 5.093 12.000 39.76 31.74 64.76 49.39 7.016/10.90

Table 3: Performance (%) of our approach instantiated

sonaChat.
Opponent Win Loss Tie Kappa
Ours vs. VANILLA MLE  53% 10% 37% 0.5750
Ours vs. ADVERSARIAL 47% 15% 38% 0.5495
Ours vs. MMI 43% 12% 45% 0.5863
Ours vs. DEEPRL 40% 22% 38% 0.6036
Ours vs. CVAE 40% 15% 45% 0.5510
Ours vs. DIALOGWAE  45% 18% 37% 0.4216

Table 4: The results of human evaluation on the test set
of PersonaChat.

corpus since its expressions are more close to the
style of daily chat and are easier for the annotators
to make judgments. Three crowd-sourced graduate
students are employed to evaluate the quality of
generated responses for 100 randomly sampled in-
put contexts. During the evaluation, the annotators
are requested to select a preferred response, or vote
a tie, considering the following aspects of response
quality: fluency, informativeness, coherence and
engagingness. Table 4 summarizes the evaluation
results and the Cohen’s kappa scores (Cohen, 1960)
to measure the intra-rater reliability. We observe
that our learning framework brings more prefer-
able replies compared with the competitors. This
indicates that training the dialogue model with the
proposed group-wise contrastive learning frame-
work does improve the response quality.

3.4 Model Analysis

Effect of the Group-wise Learning Strategy
To manage the multi-mapping relations in human-
human conversation and stabilize the model train-
ing with noisy data, the dialogue model is induced
to contrast a group of positive samples from the
negative ones, pulling the matched sample pairs to-
gether and pushing the mismatched pairs apart. We
ablate the group-wise learning from the framework
by using only one pair of positive and negative
samples to verify its effectiveness. As presented
in Table 5 (a), we can see that disabling group-
wise learning hurts performance significantly on
all evaluation metrics. Note that ablating either

on naive SEQ2SEQ and baseline approaches on Per-

the group-wise positive sampling (Table 5 (b)) or
group-wise negative sampling (Table 5 (c)) also
leads to a performance drop with respect to the
evaluation metrics. It demonstrates that the group-
wise learning strategy plays a key role in achieving
strong performance.

Effect of the Dual Sampling In our framework,
the contrastive samples can be organized regarding
either the dialogue context or response, allowing
the dialogue model to explore both the many-to-
one and one-to-many relations in human conversa-
tion. We investigate different sampling strategies
in Table 5 (d) and (e). We notice that when both
the response-side and context-side samplings to-
gether incorporated into the learning framework,
the model achieves its best performance, verifying
the effectiveness of the contrastive dual sampling.

Impact of Matching Scores To discriminatively
exploit the sampled context-response pairs with
varied matching degrees, we utilize the matching
score attached with each sample to adapt its in-
stance effect on the model training. We conduct
the ablation test of this learning strategy by sim-
ply discarding the impact of matching scores as
in Eq.(3). As shown in Table 5 (f), training with-
out considering matching degrees of samples leads
to a consistent performance drop, which suggests
that the system can benefit from perceiving fine-
grained differences within the group during con-
trastive learning.

Impact of Group Size We explore the impact
of using different group size k in our group-wise
contrastive learning framework in Figure 3. We ob-
serve that increasing the group size k leads to con-
tinuous improvement on the Distinct metric while
other reference-based metrics achieve the best re-
sults at a moderate group size. We conjecture that
a larger group size allows the dialogue model to
learn from more diverse expressions, meanwhile
it also risks introducing more utterances that are
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Framework variants BLEU-1/2/3/4 Dist-1 Dist-2 Dist-3  Avg. Ext.  Gre. Coh. Ent-1/2
(a) w/o group-wise sampling 12.870/4.102/0.9564/0.2308 0.3965 2.070 4.633 36.52 29.09 6421 4240 6.836/10.62
(b) w/o group-wise positive sampling  13.120/4.800/1.4180/0.5967 0.4632 2270  5.002 3826 31.18 64.66 43.03 6.812/10.49
(c) w/o group-wise negative sampling 13.210/4.698/1.3970/0.5587 0.7175 3.532 7473 3823 3096 64.62 46.27 6.911/10.68
(d) w/o response-side sampling 13.340/4.730/ 1.4820/0.5779 0.8487 4.964 11.340 39.31 31.51 64.66 48.35 6.938/10.75
(e) w/o context-side sampling 13.170/4.539/1.4160/0.5308 0.8455 4.892 11.210 39.57 31.81 64.56 47.19 6.904/10.66
(f) w/o impact of matching scores 13.560/4.359/1.1140/0.3823 0.6086 3.809 9.037 38.78 30.35 6444 46.88 6.952/10.90
Full version 13.660/4.916/1.5970/0.6122 0.8492 5.093 12.000 39.76 31.74 64.76 49.39 7.016/10.90
Table 5: Ablation test (%) using SEQ2SEQ with different framework variants on PersonaChat.
BLEU Distinct Average
13.4 1 39.2
. ; 39
13.1 . a 0.9 e
13
120 o5 383;@
12.8 0.8 7 37.8
1 2 3 4 5 6 7 1 2 3 5 6 7 1 2 3 4 5 6 7
Extrema k Greedy k Coherence k
31 5 64.6 495
308 64.5 49
306 64.4 485
30.4 64.3 48
30.2 ¢ > A 64.2 ¢ 47.5 i
30 o 64.1 47
29.8 64 46.5
1 2 3 4 5 6 7 1 2 3 5 6 7 1 2 3 4 5 6 7
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Figure 3: Evaluation results (%) with different group size k on the validation set of PersonaChat using the proposed
framework instantiated on SEQ2SEQ. BLEU-1 and Dist-1 are denoted as “BLEU” and “Distinct”, respectively.

inconsistent with the references.

4 Related Work

Learning Methods for Dialogue Generation
Typically, state-of-the-art neural dialogue genera-
tion models adopt Maximum Likelihood Estimation
(MLE) as their learning approach, maximizing log-
likelihood of model parameters on the training data.
Though effective, well-known issues, including the
notorious general dull response problem, are re-
ported by prior art (Li et al., 2016a; Zhao et al.,
2017) on dialogue models trained with MLE.
Alternative dialogue learning approaches are pro-
posed to tackle the issues. Li et al. (2016a); Zhang
et al. (2018c) introduce the Maximum Mutual In-
formation as the objective function to promote
response diversity. Techniques of reinforcement
learning (RL) and adversarial learning have been
introduced into dialogue generation by Li et al.
(2016b, 2017) to better approximate the optimiza-
tion goal of dialogue models. Conditional varia-
tional framework (Zhao et al., 2017; Shen et al.,
2017; Park et al., 2018) has also shown a promise
in dialogue generation. Gu et al. (2019) further
introduce a conditional Wasserstein autoencoder
that employs GAN (Goodfellow et al., 2014) to
model the multimodal latent structures. Cai et al.
(2020) design a multi-curriculum learning frame-

work to facilitate the dialogue model training. Con-
trasted with existing learning methods for dialogue
generation, the proposed framework in this work
encourages the model to learn from the difference
between well-chosen contrastive pairs, which ex-
plicitly models the multi-mapping relations in con-
versation and promotes the distinctiveness of the
generated responses in the meantime.

Contrastive Learning The concept of learn-
ing by contrasting positive pairs against nega-
tive pairs (Hadsell et al., 2006; Gutmann and
Hyvirinen, 2012) has been successfully adopted
in many tasks. For example, contrastive learning
in language modeling task (Mnih and Teh, 2012;
Vaswani et al., 2013; Baltescu and Blunsom, 2015)
aims to approximate the negative log-likelihood by
training the model to correctly classify between
generated noise samples and words observed in
the training data. Contrastive visual representation
learning (van den Oord et al., 2018; Chen et al.,
2020) trains a generative model to score real data
points higher than negative samples. Dai and Lin
(2017) propose to use contrastive learning for im-
age caption. Clark et al. (2020) use contrastive
learning to train a discriminative model for lan-
guage representation learning. Compared with ex-
isting work, samples used in this paper, instead of
being sampled randomly, are carefully chosen to ex-
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hibit particular properties of human dialogues. An-
other difference is that, we manage multi-mapping
relations prevalent in human conversation using
many positives and many negatives, which captures
both the intra-group and inter-group variability.

5 Conclusion

In this work, we propose a group-wise contrastive
dialogue learning approach, that explicitly per-
ceives the difference between the well-chosen pos-
itive and negative utterances, and manages the
multi-mapping relations in human conversations
simultaneously. Given a training instance, the pro-
posed learning framework first organizes a group
of positive samples and negative samples regard-
ing context-response matching degrees, and then
trains the target dialogue model to give higher con-
ditional probabilities for positive pairs and lower
probabilities for the negatives. Extensive exper-
imental results show that the proposed learning
framework brings a solid favorable performance
boost amongst various strong baseline approaches.
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