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Abstract

Mixed Boolean-Arithmetic (MBA) expres-
sions involve both arithmetic calculation (e.g.,
plus, minus, multiply) and bitwise computa-
tion (e.g., and, or, negate, xor). MBA expres-
sions have been widely applied in software ob-
fuscation, transforming programs from a sim-
ple form to a complex form. MBA expres-
sions are challenging to be simplified, because
the interleaving bitwise and arithmetic opera-
tions causing mathematical reduction laws to
be ineffective. Our goal is to recover the orig-
inal, simple form from an obfuscated MBA
expression. In this paper, we first propose
NeuReduce, a string to string method based
on neural networks to automatically learn and
reduce complex MBA expressions. We de-
velop a comprehensive MBA dataset, includ-
ing one million diversified MBA expression
samples and corresponding simplified forms.
After training on the dataset, NeuReduce can
reduce complex MBA expressions to mathe-
matically equivalent but concise forms. By
comparing with three state-of-the-art MBA re-
duction methods, our evaluation result shows
that NeuReduce outperforms all other tools in
terms of accuracy, solving time, and perfor-
mance overhead.

1 Introduction

Mixed Boolean-Arithmetic (MBA) expression
emerges as a software obfuscation (Collberg and
Nagra, 2009; Collberg et al., 2012; Ceccato, 2014;
Bardin et al., 2017) technique, converting software
into a syntactic different but semantic equivalent
form. Software developers have broadly adopted
MBA expressions obfuscation to resist malicious
reverse engineering attacks or illegal cracking. For
instance, software vendors (Mougey and Gabriel,
2014) and communication providers (Moghaddam
et al., 2012) employ MBA obfuscation to protect
critical information such as Digital Rights Man-

agement (DRM) or communication protocols and
protect users’ private contents.

MBA obfuscation technology draws strength
from its neat design and rigorous mathematical
foundation (Zhou and Zhou, 2006; Zhou et al.,
2007). It transforms a simple expression into an
equivalent but more complex form, which con-
tained mixed arithmetic and bitwise calculations.
However, existing mathematical reduction rules
can hardly simplify complex MBA expressions, be-
cause they only fit either pure arithmetic or bitwise
operation. Existing researches explore diverse so-
lutions to conquer MBA obfuscation, including bit-
blast (Eyrolles, 2017; Guinet et al., 2016), pattern
matching (Eyrolles et al., 2016), and software syn-
thesis (Blazytko et al., 2017). Nevertheless, these
methods treat MBA expressions as black-boxes and
neglect expressions’ inner structures, which led to
inevitable limitations such as low simplification
accuracy or high-performance penalty.

In this paper, we propose NeuReduce1, a novel
solution that utilizes neural networks to defeat com-
plex MBA expressions. Our proposal can take com-
plex MBA expression input as a character string for-
mat and output the simplification results. NeuRe-
duce leverages supervised learning to ensure the
correctness and conciseness of its outputs. We also
notice that no large scale or diverse MBA expres-
sions dataset is available for training and evaluating
our proposed approach. We first generate a MBA
dataset consisting of 1,000,000 MBA expressions
with diversified features. To the best of our knowl-
edge, this is the largest and most diverse MBA ex-
pression dataset. Second, we implemented NeuRe-
duce based on modern neural network models, i.e.,
Long Short-Term Memory, Gate Recurrent Unit,
and attention-based recurrent networks. We train
NeuReduce using our comprehensive MBA dataset

1The code, dataset and model are available at
https://github.com/nhpcc502/NeuReduce.git.
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and compared its performance with state-of-the-art
reduction tools. For an impartial comparison, we
carefully reviewed previous researches and summa-
rized three evaluation metrics, i.e., accuracy, com-
plexity, and solving time, as described in Section 5.
Our experiments show that NeuReduce presents
a superior performance than advanced reduction
tools in these three aspects.

In summary, we make the following contribu-
tions:

• We develop a large-scale MBA expression
dataset, including diversified types of obfus-
cated MBA expressions and related reduced
form. The dataset resolves the problem of
lacking sufficient MBA samples to do in-
depth MBA research.

• We propose a novel sequence to sequence
model NeuReduce, which can help security
experts analyze software obfuscated by MBA
rule. To the best of our knowledge, NeuRe-
duce is the first proposal of applying a neural
network method for defeating MBA obfusca-
tion.

• We perform a comprehensive evaluation of
NeuReduce’s effectiveness with other state-
of-the-art methods, and the result shows that
NeuReduce outperforms peer methods in vari-
ous aspects.

2 Background

2.1 MBA Obfuscation

Mixed-Boolean Arithmetic (MBA) obfuscation
(Zhou et al., 2007) is a concise and practical soft-
ware obfuscation approach. It complicates origi-
nal simple operations such as x+ y with complex
but equivalent ones with mixed arithmetic opera-
tions (e.g., +,−, ×, ...) and Boolean operations
(e.g., ∧,∨,¬, ⊕, ...), which hamper reverse en-
gieers from quickly obtaining important software
information. Figure 1 presents an application of
MBA obfuscation. Zhou’s work proves that any
simple operations such as x − y or x ∧ y can be
transformed into complicated and equivalent MBA
rules, which lays the solid mathematical founda-
tion of MBA obfuscation. Therefore, the MBA
obfuscation technique has achieved great success
in software safeguards(Liem et al., 2008; Collberg
et al.; Quarkslab, 2019; Irdeto, 2017).

int f(int x,int y)
{

int res;
res = x & y;

return res;
}

(a) Original program.

int f(int x,int y)
{

int res;
res = 2*(x&˜y)-x

-y+4*(˜x&y)
+3*(˜(xˆy))
-2*(˜x)-(˜(x
&y));

return res;
}

(b) Obfuscated program.

Figure 1: An example of obfuscating C source code
with Mixed-Boolean Arithmetic operations. Source ex-
pression, x&y, is transformed into a complex form. Af-
ter compiling, human analysts have a hard time crack-
ing the new, obfuscated binary code.

2.2 Existing MBA Deobfuscation

Due to its simplicity and high efficiency, MBA ob-
fuscation has been applied in software obfuscation.
On the other side of the arms race, researchers have
started to investigate how to simplify MBA expres-
sions.

Arybo (Guinet et al., 2016) converts all arith-
metic operations into boolean operations. It utilizes
traditional math rules for Boolean simplification to
reduce an intermediate Boolean expression into a
bit-level symbolic expression, which represents the
simplification result. Since high-performance cost
caused by transforming arithmetic operations into
Boolean ones, Arybo can only deal with small-size
MBA expressions. Moreover, simplified results
generated by Arybo is difficult to interpret by hu-
man because it is in a pure Boolean form.

SSPAM (Eyrolles et al., 2016) uses pattern
matching to simplify MBA expression. SSPAM
can figure out some existed real-world MBA ex-
pression cases mentioned by Mougey and Gabriel
(2014). However, the effectiveness of pattern
matching methods heavily relies on collected sub-
stitution rules, which restricted SSPAM from han-
dling generic MBA expressions.

Syntia (Blazytko et al., 2017) utilizes program
synthesis technique to generate a comprehensible
expression for a complex MBA expression. The
result shows that Syntia can successfully synthesize
89% expressions on a synthesized dataset including
500 MBA expressions. Nevertheless, Syntia cannot
guarantee the correctness of generated expressions
due to the uncertainty nature of program synthesis.
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Other nonproprietary reduction tools such as
LLVM compiler optimization (Garba and Favaro,
2019) has a limited effect on MBA reduction. Ey-
rolles (2017) have proven that other popular sym-
bolic calculation software such as Maple2, Wol-
fram Mathematica3, SageMath4, and Z3 (Moura
and Bjørner, 2008) lack the capabilities to handle
MBA expressions.

3 Methodology

It has been proven that the MBA deobfuscation is
an NP-hard problem (Zhou et al., 2007), which
means no general deterministic algorithms can
solve this problem effectively. Existing methods
mentioned in section 2.2 treat MBA obfuscation
as a black-box, rather than understand the mecha-
nism. To address the limitation on existing MBA
deobfuscation methods, we propose NeuReduce, a
novel approach based on the sequence to sequence
architecture (Sutskever et al., 2014; Bahdanau et al.,
2014a) with encoder-decoder (Cho et al., 2014b) to
reduce MBA expressions. Considering the char-
acteristics of the MBA reduction problem, the
reasoning from one sequence to another, we re-
view and compare several deep neural networks
and adopt the most effective model as the basic
module of NeuReduce. We compare four broadly
used neural networks: Long Short-Term Memory
(Hochreiter and Schmidhuber, 1997), Gated Re-
current Unit (Cho et al., 2014a), recurrent neural
network based on the attention mechanism (Bah-
danau et al., 2014b), and Transformer (Vaswani
et al., 2017). The following sections elaborate the
techniques in NeuReduce in details.

3.1 NeuReduce Design

We apply the Encoder-Decoder as NeuReduce’s
framework to implement expression to expression
reduction, as shown in Figure 2. The input of
NeuReduce is an arbitrary-length MBA obfusca-
tion expression represented by a sequence. NeuRe-
duce uses character-level one-hot encoding to en-
code the inputs into a matrix and feeds it into an
encoder composed of recurrent neural networks.
The encoder transforms the input MBA expression
into a fixed-length hidden state vector through a
linear layer. The decoder in NeuReduce is respon-
sible for generating output matrices through recur-

2https://www.maplesoft.com/products/maple
3http://www.wolfram.com/mathematica
4http://www.sagemath.org

rent neural networks based on the encoder’s output.
With the result vector, we can further reconstruct
the corresponding MBA expressions through the
character dictionary. In order to get the best result
from NeuReduce, we adopt four neural networks as
the candidates and discuss the detail of how these
four models are incorporated in NeuReduce in the
next two subsections.

3.2 Recurrent Architecture
LSTM is a powerful basic model for natural lan-
guage processing and reaches state-of-the-art indus-
try standards in many areas. The gate-based units
endow LSTM with the power to solve the vanishing
gradient problem that often occurs in RNN. With
that, LSTM can capture long term dependencies
and discover potential relationships between vari-
ables or operators, which can help NeuReduce to
understand complicated MBA expressions.

We set an embedding layer as the input receiver
and respectively used to accept complicated MBA
expressions and their corresponding expected ex-
pressions in our first experiment. Two layers of
LSTM with tanh activation functions are connected
to the embedding layer. We use the above con-
figuration to construct NeuReduce’s encoder and
decoder. A linear layer with a softmax activation
function is connected to the LSTM layer for the
final output channel to export the prediction result
in the decoder. With the LSTM-based NeuReduce,
we can encode expressions into a size-fixed one-
hot encoding matrix and fed it to NeuReduce. All
hyperparameters of the network are derived from
grid search.

Although LSTM has a strong understanding abil-
ity of long sequence, with complex structure and
numerous parameters, it usually requires numer-
ous time and computation resources to train the
model. GRU is another variant of the recurrent
neural network. Compared with LSTM, GRU has a
more compact structure and fewer parameters, and
its performance will not be significantly reduced
with the reduction of the model. To test the ability
of LSTM and GRU in the same environment for
reducing MBA expressions, we replace the LSTM
in the recurrent layer of NeuReduce with GRU and
keep other configurations unchanged.

3.3 Attention Mechanism
The Encoder-Decoder model is the most popu-
lar model structure in neural machine translation
(Stahlberg, 2019) and has achieved significant per-
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Figure 2: The architecture of NeuReduce with Encoder-Decoder.

formance. However, as mentioned in Section 3.1,
the encoder encodes entire inputs into fixed-length
hidden vectors and ignores the difference in prior-
ity caused by the brackets in expressions, which
leads to the model not being able to make full use
of the heuristic information in expressions.

In order to further improve the capabilities of
NeuReduce, we draw attention to our architecture.
Attention is an improvement of Encoder-Decoder
models, which gifts neural networks the ability to
distinguish valuable parts from the sequences. The
design of attention is complicated, and the model’s
size increases sharply compared with LSTM. We
consider attention as a comparative model for its ex-
cellent performance. For inputs of arbitrary length,
we use the Embedding layer to encode the input
expression into a dense vector, which reduces the
number of parameters and facilitates the calcula-
tion of context vectors with attention probability
weights. We use global attention with Dot-based
scoring function and softmax activation layer in-
troduced by Luong et al. (2015) to assign weights
to each different character. The time-distributed
layer gives final prediction results with the form of
vector. The most successful application of attention
is the Transformer, the most advanced natural lan-
guage processing network that is entirely made up
of linear layers, attention mechanisms, and normal-
ization. We adopt it as a fundamental component
of NeuReduce like the previous three networks, to
verify NeuReduce’s expression reasoning ability.

Complex MBA form Simplified form

(x ∨ y)− (¬x ∧ y) x

4(x ∧ ¬y) + 2(¬(x⊕ y))
3x− 2y−¬x+ 1

(¬x ∧ y) + 2(¬(x ∨ y)) − (x ∨ y)−2(¬x)− x

2(¬x ∨ ¬y ∨ z)− ¬y
x ∨ y ∨ z−(¬x ∧ ¬z)− (¬x ∧ ¬z)

+(¬x ∧ ¬y ∨ ¬z)

Table 1: Examples from our dataset.

4 MBA Dataset

NeuReduce requires a large-scale dataset to train
for good performance. Unfortunately, existing
MBA researchers only contributed a few MBA ex-
amples. We collected all existing specimens and
found they are insufficient for training and evalu-
ating NeuReduce. Therefore, we extend the algo-
rithm introduced by Zhou et al. (2007) to build a
large-scale, diversified MBA dataset. Our dataset
includes 1,000,000 MBA samples, and each sample
comprises the complex MBA form and the corre-
sponding simple form. The complex MBA expres-
sion is guaranteed to be equivalent to the simple
form by the theoretical foundation. Table 1 shows
several examples in our dataset. More detailed
information of the dataset is discussed as follows.

MBA Generation Approach. Zhou et al.
(2007)’s work described a high-level principle for
constructing MBA obfuscation rules from the truth



639

tables and the linear equation system. However,
their work did not answer practical questions when
building a large scale of MBA transformation rules,
such as the number of variables in one expression,
the length of the MBA corpus, or the cost of
generation.

Enlightening by the existing work, we design
a functional toolkit for generating MBA formu-
las. By the theorem, a bitwise expression En

with n variables has 22
n

different reduced Boolean
expression. We first synthesize the 22

n
distinct

Boolean expressions based on the truth tables, such
as ¬x ∧ y, x ⊕ y. Then we generate one identity
by linear equation system. The method can ensure
that the generated rules are syntactic correct and
semantically equal since the solid math founda-
tion. Moreover, we verify the equality of each rule
through an SMT solver Z3 (Moura and Bjørner,
2008). One example of MBA rule generation is
shown bellow,

M =

x y x⊕y x∨¬y −1


0 0 0 1 1
0 1 1 0 1
1 0 1 1 1
1 1 0 1 1

~v = [1,−1,−1,−2, 2]T ,~s = M~v = 0, MBA
identity E = x − y − (x ⊕ y) − 2 ∗ (x ∨
¬y) + 2 ∗ (−1) = 0, generated MBA expression
y − x = −(x ⊕ y) − 2 ∗ (x ∨ ¬y) + 2 ∗ (−1),
y = x − (x ⊕ y) − 2 ∗ (x ∨ ¬y) + 2 ∗ (−1),
2 = x− y − (x⊕ y)− 2 ∗ (x ∨ ¬y), etc.

Moreover, MBA expression can be generated by
linear combination of multiple MBA rules, such
as x = −¬x − 1, y = x − (x ∨ ¬y) + (¬x ∨ y),
⇒ x+ y = −¬x− 1 + x− (x ∨ ¬y) + (¬x ∨ y).

Expression Format and Complexity. Each rule
in the dataset is composed of a tuple in the form
of (Ec, Eg), in which Ec represents complex MBA
expression, and Eg means the related simplified re-
sult as the ground truth. Given the complexity and
practicability of MBA expression, the number of
different variables ranges from 2 to 10. Moreover,
Ec and Eg are presented as character strings, of
which the length ranges from 3 to 100(the maxi-
mum exceeds 500).

Scale. In theory, the MBA generation method de-
scribed above can produce an infinite number of
MBA rules. To serve the purpose of training and

evaluating NeuReduce in practice, we use it to gen-
erate 1,000,000 MBA expressions. Eyrolles (2017)
has proven that 2-variable and 3-variable MBA
expressions are commonly used in practical soft-
ware obfuscation. Therefore, we split the dataset
into three parts: 800,000 samples of 2-variable
and 3-variable MBA expression, the other 200,000
multiple-variable MBA expressions are for testing
the model’s adaptability and generality.

5 Experiment Settings

In this section, we present our experimental setup
in detail, including the dataset settings, peer tool
baselines, evaluation metrics, and configurations of
model training.

5.1 Dataset Settings

First, we are interested in exploring NeuReduce’s
learning and generalization ability. We uniformly
sampled MBA expression from the dataset to com-
pose two training sets, Trains and Trainl . Trains
includes 100,000 MBA expressions to train four dif-
ferent NeuReduce models, and Trainl containing
1 million rules is used to test how much the per-
formance of NeuReduce has improved with more
training samples. Table 2 illustrates the statistics of
the training and testing dataset. In these two train-
ing sets, we set 95% of data for training and 5% for
validation. The Test dataset is separately gener-
ated rather than sampled from the training dataset,
which ensure that every one test sample is different
from the one in training dataset. We use the follow-
ing three features to measure the complexity of an
MBA expression.

• Number of variables. The number of occur-
rences of the variables containing in one MBA
expression
• Number of operators. The number of occur-

rences of the operators containing in a MBA
expression
• MBA Length. The length of an MBA expres-

sion as a character string.

5.2 Peer Tools for Comparison

We investigate and collect existing start-of-the-art
MBA reduction tools: Arybo 5, SSPAM 6, and Syn-
tia 7. We download the three open source tools

5https://github.com/quarkslab/arybo
6https://github.com/quarkslab/sspam
7https://github.com/RUB-SysSec/syntia



640

Trains Trainl Test

SRC TRG SRC TRG SRC TRG

Size 100K 100K 1M 1M 10K 10K

# of Varis
Range 17.00±15.00 4.50±3.50 17.00±16.00 4.50±3.50 16.50±14.50 4.50±3.50
Mean 19.19 3.87 19.19 3.87 19.16 3.91
Std. 6.99 2.08 6.99 2.08 6.99 2.09

# of Ops
Range 26.00±23.00 6.00±6.00 25.00±24.00 6.00±6.00 25.00±23.00 6.00±6.00
Mean 31.88 5.91 31.89 5.90 31.85 5.94
Std. 11.78 2.57 11.79 2.57 11.78 2.60

Length
Range 54.00±46.00 18.00±17.00 51.50±48.50 18.00±17.00 52.00±48.00 18.00±17.00
Mean 73.98 15.97 74.01 15.97 73.91 16.11
Std. 23.93 7.86 23.94 7.85 23.96 7.93

Table 2: Statistic of the experimental datasets. SRC means complex MBA expression, TRG means the related
simplification result. Range, Mean and Std. deviation are measures of the spread of complexity of the dataset.

from GitHub and run them on the same dataset as
the comparison baselines. Arybo is a tool for apply-
ing Bit-Blast to simplify MBA expressions written
in Python. SSPAM (Symbolic Simplification with
Pattern Matching) is a Python tool which applies
pattern matching to do simplification. Syntia gen-
erates input-output samples from the obfuscated
code, and then produces a simple expression by
MCTS(Monte Carlo Tree Search)-based program
synthesis.

5.3 Evaluation Metrics
We propose three metrics—accuracy, complexity,
and solving time—to evaluate the complexity of
NeuReduce and baseline tools.

Accuracy. Accuracy means the expression Ep

generated by the neural network is equivalent to
the ground truth Eg. One case is that Ep is the same
as Eg, which the output of model is correct. The
others is that the format of Ep is different from Ee,
we use SMT solver to check equivalence between
Ep and Eg. Let Cp be the total number of samples,
Ceq be the number of the same one as Eg, Csq be
the number of one that is semantically equivalence
with Eg, the definition of accuracy is shown below,

Acc =
Ceq + Csq

Cp
(1)

Higher accuracy means the tool can generate more
number of correct simplified expression. However,
accuracy cannot reveal the comprehensive ability
of one tool. For example, the bit explosion method
can ensure that every one reduction expression is
correct, but the result is hard for humans to under-
stand.

Complexity. Another metric for evaluating MBA
expression simplification is complexity or readabil-
ity. For a reduced expression, the higher complexity
means the lower readability for human to under-
stand the simplification expression. We use the
length of the expression (the number of characters
in the string) to indicate the complexity of a expres-
sion. Shorter expression means lower complexity
and higher readablity for human to understand it.

Solving Time. The last metric is to test the ef-
ficiency of a tool, the solving time of reducing a
MBA expression. One MBA simplification tool is
not practical due to its solving time is unbearable.
We set 40 minutes as a practical timeout threshold
for a simplification process. If the tool does not
return one result within the period, we will label it
as time out.

5.4 Training Configurations

We use the same setting to train four different neu-
ral network-based NeuReduce. Adam (Kingma
and Ba, 2014) is employed as our optimizer with
loss function categorical crossentropy. The initial
learning rate of the model is set to 10−2, and we
dynamically adjust it from 10−2 to 10−6 based on
the losses of validation set. We train our models
on NVIDIA Titan Xp GPUs for 1000 epochs with
1024 batch size.

6 Results and Analysis

We use the small-sized training set Trains to train
the four different neural networks – LSTM, GRU,
Attention LSTM, and Transformer. After training,
we compare the models with existing reduction
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Method Ceq Csq T.O. Ratio(%) Result Length Solving Time
(Average) (Average)

baseline
Arybo 862 0 9,138 8.62 20,618.82 640.7
SSPAM 1,420 0 8,580 14.20 61.78 438.2
Syntia 842 734 0 15.76 20.03 7.5

NeuReduce

LSTM 7,144 50 0 71.94 18.12 0.03
GRU 6,432 1,018 0 75.40 18.01 0.02
Attention LSTM 7,357 36 0 73.93 18.04 0.40
Transformer 7,796 28 0 78.24 18.02 0.43

Table 3: Comparative evaluation results using Test dataset. The models are trained on dataset Trains . Ceq means
prediction results are equal to ground truth, Csq means prediction results are equal to ground truth via SMT solver
validation. T.O. indicates that no reduction result is given within 40 minutes. Ratio indicates the correctness rate
(calculated by equation 1) of the model’s solutions. Result Length can indicate the complexity of each method’s
output, and Solving Time(seconds for each sample) measures the efficiency of models.

tools on the Test dataset, which contains 10, 000
MBA expressions and related simplified forms.
The evaluated results are shown in Table 3.

Arybo does not output any wrong result, because
Arybo uses the Bit-Blast method, which maps each
variable to bit and then simplifies it. Although
Arybo can ensure the correctness of simplified
MBA expression, it suffers from high performance
cost. The solving time of Arybo is up to 640s, and
90% of the MBA expressions can not be simplified
in 40 minutes. Another problem with Arybo is that
its reduction result is more complicated than the
original one —the average length of reduction re-
sults is 20k, which is unreadable and unacceptable
for security experts.

Since the simplification rules of complex MBA
expressions are not included in SSPAM’s pattern
matching library, SSPAM cannot simplify 85% of
MBA expressions on Test dataset.

Syntia can simplify one MBA expression in 10
seconds, but only 1576 MBA expressions can be
correctly simplified by it. Syntia’s output largely
relies on the quality of input-output samples. There-
fore, Syntia is hard to handle complex MBA ex-
pressions.

After training, NeuReduce can output grammati-
cally correct expression in 1 second. NeuReduce
can simplify at least 71% of MBA expressions on
Test dataset, and its simplification result is accept-
able for humans. From the table, the accuracy of
Attention-based model is slightly lower than the
one of GRU-based. From the aspect of expres-
sion representation, GRU-based NeuReduce uses a
sparse 0/1 Matrix to encode expressions, while At-
tention mechanism uses dense vectors. The dense

vector can reduce the number of model parame-
ters, but it may lack useful information input to the
model. On the other hand, Attention mechanism
can effectively allocate a large weight to critical
information when processing long texts and filter
out useless information. However, each character
is essential for a correct MBA expression. The ex-
periment shows that Transformer-based model can
simplify more MBA expressions, but GRU-based
model can output expression faster.

To compare the output of these methods intu-
itively, we extract one MBA expression that can be
simplified by all peer tools and NeuReduce from
the Test dataset and the reduced results are shown
in Table 4. Even though all methods can output
a correct solution, the answers of Arybo and SS-
PAM are not as concise and simple as Syntia and
NeuReduce. 8

Moreover, we want to know how much the per-
formance of NeuReduce improves when training
it with more samples. We used the Trainl, as in-
troduced in Section 5, to train the LSTM-based
and GRU-based NeuReduce. The architecture and
configuration of the NeuReduce are the same as de-
scribed in Section 3. After 40 hours of training for
each model, we evaluate them on the Test dataset.
The evaluation results show that their accuracy has
a great promotion than before, 96.43% accuracy
for LSTM-based NeuReduce and 97.16% accuracy
for GRU-based NeuReduce.

8The result of Arybo is a bit-vector of n-elements that
is set by the user. To explain Arybo’s result, an example
is shown: let y = 3, −1 = 1111,then −3 − 1 = −4,
y = y0y1y2y3 = 0011, the sum is 1100, which is −4 in
complement representation.
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MBA expression
(x ∧ y)− (¬x ∧ y) + (x⊕ y)
+3 ∗ (¬(x ∨ y))− (¬(x⊕ y))
−(x ∨ ¬y)− (¬x)− 1

ground truth −y − 1

Arybo† [(y0 + 1), (y1 + 1), (y2 + 1), (y3 + 1)]

SSPAM (((((x+ y)− (((−x) + x) ∧ y))
−(3 ∗ (x ∨ y))) + (2 ∗ (x⊕ y))) + 3)

Syntia (−y − 1)

LSTM −y − 1
GRU −y − 1
Attention LSTM −y − 1
Transformer y

Table 4: Comparison of simplified results. †Arybo
works on 4-bit MBA expression.

7 Related Work

Recent research has applied machine learning to
perform mathematical reasoning. Evans et al.
(2018) shows how to use tree neural network to
predict one logic entails another logic. The work
is different from NeuReduce since their task is to
determine the implicit relationship of two proposi-
tional logic, which is a partial order, rather than to
predict the equality between two expressions.

Ling et al. (2017) and Kushman et al. (2014) uses
neural networks to extract mathematical problems
from text and output correct answers. Their work
is more focused on natural language understanding
of math problems, rather than purely reasoning the
logical equivalence of different expressions.

Saxton et al. (2019) is an extensive survey of
mathematical reasoning. They provide a dataset
containing a variety of mathematical samples from
algebra problems to probability calculation. Their
work well proves that state-of-the-art neural net-
works can work well in mathematical reasoning
problem. However, the sample of expression reduc-
tion in their work only involves simple exponential
equation reduction, which is not matched to the
MBA expression.

There has also been a recent interest in solv-
ing mathematical problems. Zaremba et al. (2014)
shows how to use a recurrent neural network to ex-
tract mathematical identities with a novel grammar
framework. Kaiser and Sutskever (2015) uses a
convolutional neural network to solve the problem
of addition and multiplication with excellent gen-
eralization capabilities. Selsam et al. (2018) uses
a message-passing network with a bipartite graph
structure to determine satisfiability in formulas of
conjunctive normal form. The other relevant re-

search works are shown in Allamanis et al. (2017);
Bartosz et al. (2019); Arabshahi et al. (2018).

8 Conclusion

Mixed Boolean-Arithmetic (MBA) transformation,
using arithmetic and bitwise operations to trans-
late expressions, have been applied in software
obfuscation. This paper introduces a new method,
NeuReduce, to simplify complex MBA expression
by recurrent neural network. Due to the insufficient
number of existing MBA expressions for training
our neural network, we first extend a method to
generate MBA expressions and develop a large-
scale MBA expression dataset, including 1,000,000
diversified complex MBA samples and their sim-
plified expressions. Four neural network models–
LSTM, GRU, Attention LSTM, Transformer–are
trained and tested on the dataset. The evaluation
results show that, compared with state-of-the-art
tools, NeuReduce has the highest accuracy with
negligible overhead. Our experiments also show
that NeuReduce’s performance can be further im-
proved when training on more samples.
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