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Abstract
Natural language understanding (NLU) and
Natural language generation (NLG) tasks hold
a strong dual relationship, where NLU aims
at predicting semantic labels based on natural
language utterances and NLG does the oppo-
site. The prior work mainly focused on ex-
ploiting the duality in model training in order
to obtain the models with better performance.
However, regarding the fast-growing scale of
models in the current NLP area, sometimes we
may have difficulty retraining whole NLU and
NLG models. To better address the issue, this
paper proposes to leverage the duality in the
inference stage without the need of retraining.
The experiments on three benchmark datasets
demonstrate the effectiveness of the proposed
method in both NLU and NLG, providing the
great potential of practical usage. 1

1 Introduction

Various tasks, though different in their goals and
formations, are usually not independent and yield
diverse relationships between each other within
each domain. It has been found that many tasks
come with a dual form, where we could directly
swap the input and the target of a task to formulate
into another task. Such structural duality emerges
as one of the important relationship for further in-
vestigation, which has been utilized in many tasks
including machine translation (Wu et al., 2016),
speech recognition and synthesis (Tjandra et al.,
2017), and so on. Previous work first exploited the
duality of the task pairs and proposed supervised
(Xia et al., 2017) and unsupervised (reinforcement
learning) (He et al., 2016) learning frameworks in
machine translation. The recent studies magnified
the importance of the duality by revealing exploita-
tion of it could boost the learning for both tasks.

1The source code and data are available at https://
github.com/MiuLab/DuaLUG.

?The first two authors contributed to this paper equally.

Natural language understanding (NLU) (Tur and
De Mori, 2011; Hakkani-Tür et al., 2016) and nat-
ural language generation (NLG) (Wen et al., 2015;
Su et al., 2018) are two major components in mod-
ular conversational systems, where NLU extracts
core semantic concepts from the given utterances,
and NLG constructs the associated sentences based
on the given semantic representations. Su et al.
(2019) was the first attempt that leveraged the
duality in dialogue modeling and employed the
dual supervised learning framework for training
NLU and NLG. Furthermore, Su et al. (2020) pro-
posed a joint learning framework that can train
two modules seamlessly towards the potential of
unsupervised NLU and NLG. Recently, Zhu et al.
(2020) proposed a semi-supervised framework to
learn NLU with an auxiliary generation model for
pseudo-labeling to make use of unlabeled data.

Despite the effectiveness showed by the prior
work, they all focused on leveraging the duality in
the training process to obtain powerful NLU and
NLG models. However, there has been little investi-
gation on how to leverage the dual relationship into
the inference stage. Considering the fast-growing
scale of models in the current NLP area, such as
BERT (Devlin et al., 2018) and GPT-3 (Brown
et al., 2020), retraining the whole models may be
difficult. Due to the constraint, this paper intro-
duces a dual inference framework, which takes the
advantage of existing models from two dual tasks
without re-training (Xia et al., 2017), to perform
inference for each individual task regarding the du-
ality between NLU and NLG. The contributions
can be summarized as 3-fold:

• The paper is the first work that proposes a dual
inference framework for NLU and NLG to
utilize their duality without model re-training.

• The presented framework is flexible for di-
verse trained models, showing the potential of

https://github.com/MiuLab/DuaLUG
https://github.com/MiuLab/DuaLUG
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practical applications and broader usage.

• The experiments on diverse benchmark
datasets consistently validate the effectiveness
of the proposed method.

2 Proposed Dual Inference Framework

With the semantics space X and the natural lan-
guage space Y , given n data pairs {(xi, yi)}ni=1

sampled from the joint space X × Y , the goal of
NLG is to generate corresponding utterances based
on given semantics. In other words, the task is to
learn a mapping function f(x; θx→y) to transform
semantic representations into natural language.

In contrast, the goal of NLU is to capture the
core meaning from utterances, finding a func-
tion g(y; θy→x) to predict semantic representations
given natural language utterances. Note that in this
paper, the NLU task has two parts: (1) intent pre-
diction and (2) slot filling. Hence, x is defined as
a sequence of words (x = {xi}), while semantics
y can be divided into an intent yI and a sequence
of slot tags yS = {ySi }, (y = (yI , yS)). Consider-
ing that this paper focuses on the inference stage,
diverse strategies can be applied to train these mod-
ules. Here we conduct a typical strategy based
on maximum likelihood estimation (MLE) of the
parameterized conditional distribution by the train-
able parameters θx→y and θy→x.

2.1 Dual Inference
After obtaining the parameters θx→y and θy→x

in the training stage, a normal inference process
works as follows:

f(x) = argmax
y′∈Y

{
logP

(
y′ | x; θx→y

)}
,

g(y) = argmax
x′∈X

{
logP

(
x′ | y; θy→x

)}
,

where P (.) represents the probability distribution,
and x′ and y′ stand for model prediction. We can
leverage the duality between f(x) and g(y) into the
inference processes (Xia et al., 2017). By taking
NLG as an example, the core concept of dual infer-
ence is to dissemble the normal inference function
into two parts: (1) inference based on the forward
model θx→y and (2) inference based on the back-
ward model θy→x. The inference process can now
be rewritten into the following:

f(x) ≡ argmax
y′∈Y
{α logP (y′ | x; θx→y)+ (1)

(1− α) logP (y′ | x; θy→x)},

where α is the adjustable weight for balancing two
inference components.

Based on Bayes theorem, the second term in (1)
can be expended as follows:

logP (y′ |x; θy→x)

= log(
P (x | y′; θy→x)P (y

′; θy)

P (x; θx)
),

= logP (x | y′; θy→x)

+ logP (y′; θy)− logP (x; θx),

where θx and θy are parameters for the marginal
distribution of x and y. Finally, the inference pro-
cess considers not only the forward pass but also
the backward model of the dual task. Formally, the
dual inference process of NLU and NLG can be
written as:

f(x) ≡ argmax
y′∈Y
{α logP (y′ | x; θx→y)

+ (1− α)(logP (x | y′; θy→x)

+ β logP (y′; θy)− β logP (x; θx))},
g(y) ≡ argmax

x′∈X
{α logP (x′ | y; θy→x)

+ (1− α)(logP (y | x′; θx→y)

+ β logP (x′; θx)− β logP (y; θy))},

where we introduce an additional weight β to adjust
the influence of marginals. The idea behind this
inference method is intuitive: the prediction from
a model is reliable when the original input can be
reconstructed based on it. Note that this framework
is flexible for any trained models (θx→y and θy→x),
and leveraging the duality does not need any model
re-training but inference.

2.2 Marginal Distribution Estimation
As derived in the previous section, marginal distri-
butions of semantics P (x) and language P (y) are
required in our dual inference method. We follow
the prior work for estimating marginals (Su et al.,
2019).

Language Model We train an RNN-based lan-
guage model (Mikolov et al., 2010; Sundermeyer
et al., 2012) to estimate the distribution of natu-
ral language sentences P (y) by the cross entropy
objective.

Masked Prediction of Semantic Labels A se-
mantic frames x contains an intent label and some
slot-value pairs; for example, {Intent: “atis flight”,
fromloc.city name: “kansas city”, toloc.city name:
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Figure 1: The proposed model for estimating the den-
sity of a given semantic frame.

“los angeles”, depart date.month name: “april
ninth”}. A semantic frame is a parallel set of dis-
crete labels which is not suitable to model by auto-
regressiveness like language modeling. Prior work
(Su et al., 2019, 2020) simplified the NLU task and
treated semantics as a finite number of labels, and
they utilized masked autoencoders (MADE) (Ger-
main et al., 2015) to estimate the joint distribution.
However, the slot values can be arbitrary word se-
quences in the regular NLU setting, so MADE is
no longer applicable for benchmark NLU datasets.

Considering the issue about scalability and the
parallel nature, we use non-autoregressive masked
models (Devlin et al., 2018) to predict the semantic
labels instead of MADE. The masked model is a
two-layer Transformer (Vaswani et al., 2017) illus-
trated in Figure 1. We first encode the slot-value
pairs using a bidirectional LSTM, where an intent
or each slot-value pair has a corresponding encoded
feature vector. Subsequently, in each iteration, we
mask out some encoded features from the input and
use the masked slots or intent as the targets. When
estimating the density of a given semantic frame,
we mask out a random input semantic feature three
times and use the cumulative product of probability
as the marginal distribution to predict the masked
slot.

3 Experiments

To evaluate the proposed methods on a fair basis,
we take two simple GRU-based models for both
NLU and NLG, and the details can be found in
Appendix D. For NLU, accuracy and F1 measure
are reported for intent prediction and slot filling
respectively, while for NLG, the evaluation met-
rics include BLEU and ROUGE-(1, 2, L) scores
with multiple references. The hyperparameters and
other training settings are reported in Appendix A.

Dataset #Train #Test Vocab #Intent #Slot
SNIPS 13084 700 9076 7 72
ATIS 4478 893 1428 25 130

E2E NLG 42063 4693 3210 - 16

Table 1: The statistics of the datasets.

3.1 Datasets
The benchmark datasets conducted in our experi-
ments are listed as follows:

• ATIS (Hemphill et al., 1990): an NLU dataset
containing audio recordings of people mak-
ing flight reservations. It has sentence-level
intents and word-level slot tags.

• SNIPS (Coucke et al., 2018): an NLU dataset
focusing on evaluating voice assistants for
multiple domains, which has sentence-level
intents and word-level slot tags.

• E2E NLG (Novikova et al., 2017): an NLG
dataset in the restaurant domain, where each
meaning representation has up to 5 references
in natural language and no intent labels.

We use the open-sourced Tokenizers2 package
for preprocessing with byte-pair-encoding (BPE)
(Sennrich et al., 2016). The details of datasets are
shown in Table 1, where the vocabulary size is
based on BPE subwords. We augment NLU data
for NLG usage and NLG data for NLU usage, and
the augmentation strategy are detailed in Appendix
C.

3.2 Results and Analysis
Three baselines are performed for each dataset: (1)
Iterative Baseline: simply training NLU and NLG
iteratively, (2) Dual Supervised Learning (Su et al.,
2019), and (3) Joint Baseline: the output from one
model is sent to another as in Su et al. (2020)3. In
joint baselines, the outputs of NLU are intent and
IOB-slot tags, whose modalities are different from
the NLG input, so a simple matching method is
performed (see Appendix C).

For each trained baseline, the proposed dual in-
ference technique is applied. The inference details
are reported in Appendix B. We try two different
approaches of searching inference parameters (α
and β):

2https://github.com/huggingface/
tokenizers

3In our NLU setting, it is infeasible to flow the gradients
though the loop for training the models jointly.

https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
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Learning Scheme NLU NLG
Accuracy F1 BLEU ROUGE-1 ROUGE-2 ROUGE-L

ATIS
Iterative Baseline 84.10 94.26 16.08 35.10 11.94 33.73
+ DualInf(α=0.5, β=0.5) 85.07 93.84 17.38 36.40 13.33 35.09
+ DualInf(α∗, β∗) 85.57 94.63 16.06 35.19 11.93 33.75
Dual Supervised Learning 82.98 94.85 16.98 38.83 15.56 37.50
+ DualInf(α=0.5, β=0.5) 83.68 94.89 20.69 40.62 17.72 39.31
+ DualInf(α∗, β∗) 84.26 95.32 17.05 38.82 15.57 37.42
Joint Baseline 81.44 90.37 21.00 39.70 18.91 38.48
+ DualInf(α=0.5, β=0.5) 81.21 88.42 22.60 41.19 20.24 39.88
+ DualInf(α∗, β∗) 85.88 90.66 20.67 39.41 18.68 38.16
SNIPS
Iterative Baseline 96.58 96.67 15.49 34.32 13.75 33.26
+ DualInf(α=0.5, β=0.5) 97.07 96.70 16.90 35.43 15.18 34.41
+ DualInf(α∗, β∗) 96.88 96.76 15.46 34.21 13.78 33.14
Dual Supervised Learning 96.83 96.71 15.96 36.69 15.39 35.73
+ DualInf(α=0.5, β=0.5) 96.88 96.80 18.07 37.63 16.75 36.67
+ DualInf(α∗, β∗) 95.34 96.68 16.08 36.97 15.62 36.04
Joint Baseline 97.18 94.57 17.15 36.32 15.68 35.36
+ DualInf(α=0.5, β=0.5) 97.27 95.59 18.56 37.87 17.25 36.90
+ DualInf(α∗, β∗) 95.54 96.06 18.26 38.16 17.70 37.40
E2E NLG
Iterative Baseline - 94.25 24.98 44.60 19.40 37.99
+ DualInf(α=0.5, β=0.5) - 94.29 25.34 44.82 19.73 38.23
+ DualInf(α∗, β∗) - 94.55 25.35 44.87 19.74 38.30
Dual Supervised Learning - 94.49 24.73 45.74 19.60 39.91
+ DualInf(α=0.5, β=0.5) - 94.53 25.40 46.25 20.18 40.42
+ DualInf(α∗, β∗) - 94.47 24.67 45.71 19.56 39.88
Joint Baseline - 93.51 25.19 44.80 19.59 38.20
+ DualInf(α=0.5, β=0.5) - 93.43 25.57 45.11 19.90 38.56
+ DualInf(α∗, β∗) - 93.88 25.54 45.17 19.89 38.61

Table 2: For NLU, accuracy and F1 measure are reported for intent prediction and slot filling respectively. The
NLG performance is reported by BLEU, ROUGE-1, ROUGE-2, and ROUGE-L of models (%). All reported
numbers are averaged over three different runs.

• DualInf(α=0.5, β=0.5): simply uses α=0.5
and β=0.5 to balance the effect of backward
inference and the influence of the marginal
distributions.

• DualInf(α∗, β∗): uses the best parameters
α=α∗ and β=β∗ searched by using validation
set for intent prediction, slot filling, language
generation individually. The parameters α and
β ranged from 0.0 to 1.0, with a step of 0.1;
hence for each task, there are 121 pairs of (α,
β).

The results are shown in Table 2. For ATIS,
all NLU models achieve the best performance by

selecting the parameters for intent prediction and
slot filling individually. For NLG, the models with
(α=0.5, β=0.5) outperform the baselines and the
ones with (α∗, β∗), probably because of the dis-
crepancy between the validation set and the test
set. In the results of SNIPS, for the models mainly
trained by standard supervised learning (iterative
baseline and dual supervised learning), the pro-
posed method with (α=0.5, β=0.5) outperform the
others in both NLU and NLG. However, the model
trained with the connection between NLU and NLG
behaves different, which performs best on slot F-1
and ROUGE with (α∗, β∗) and performs best on
intent accuracy and ROUGE with (α=0.5, β=0.5).
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For E2E NLG, the results show a similar trend as
ATIS, better NLU results with (α∗, β∗) in NLU and
better NLG performance with (α=0.5, β=0.5).

In summary, the proposed dual inference tech-
nique can consistently improve the performance of
NLU and NLG models trained by different learning
algorithms, showing its generalization to multiple
datasets/domains and flexibility of diverse training
baselines. Furthermore, for the models learned by
standard supervised learning, simply picking the in-
ference parameters (α=0.5, β=0.5) would possibly
provide improvement on performance.

4 Conclusion

This paper introduces a dual inference framework
for NLU and NLG, enabling us to leverage the
duality between the tasks without re-training the
large-scale models. The benchmark experiments
demonstrate the effectiveness of the proposed dual
inference approach for both NLU and NLG trained
by different learning algorithms even without so-
phisticated parameter search on different datasets,
showing the great potential of future usage.
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A Training Details

In all experiments, we use mini-batch Adam as
the optimizer with each batch of 48 examples on
Nvidia Tesla V100. 10 training epochs were per-
formed without early stop, the hidden size of net-
work layers is 200, and word embedding is of size
50. The ratio of teacher forcing is set to 0.9.

B Inference Details

During inference, we use beam search with beam
size equal to 20. When applying dual inference, we
use beam search to decode 20 possible hypotheses
with the primal model (e.g. NLG). Then, we take
the dual model (e.g. NLU) and the marginal models
to compute the probabilities of these hypotheses in
the opposite direction. Finally, we re-rank the hy-
potheses using the probabilities in both directions
(e.g. NLG and NLU) and select the top-1 ranked
hypothesis.

To make the NLU model be able to decode differ-
ent hypotheses, we need to use the auto-regressive
architecture for slot filling, as described in Ap-
pendix D.

C Data Augmentation

NLU→ NLG As described in 3.2, the modality
of the NLU outputs (an intent and a sequence of
IOB-slot tags) are different from the modality of
the NLG inputs (semantic frame containing intent
(if applicable) and slot-value pairs). Therefore, we
propose a matching method: for each word, the
NLU model will predict an IOB tag ∈ {O, B-slot,
I-slot}, we simply drop the I- and B- and aggregate
all the words with the same slot then combine it
with the predicted intent.

For example, if given the word sequence:

[which, flights, travel, from, kansas,

city, to, los, angeles, on, april, ninth],

the NLU predicts the IOB-slot sequence:

[O, O, O, O, B-fromloc.city name,

I-fromloc.city name,

O, B-toloc.city name, I-toloc.city name, O,

B-depart date.month name,

B-depart date.day number]

and a corresponding intent ”atis flight”, we trans-

form the sequences into a semantic frame:

{intent[atis flight],
fromloc.city name[kansas city],
toloc.city name[los angelos],
depart date.month name[april ninth]}.

The constructed semantic frames can then be used
as the NLG input.

NLG→ NLU The NLG dataset (E2E NLG) is
augmented based on IOB schema and direct match-
ing. For example, a semantic frame with the slot-
value pairs:

{name[Bibimbap House], food[English],
priceRange[moderate], area[riverside],
near[Clare Hall]}

corresponds to the target sentence “Bibimbap
House is a moderately priced restaurant who’s
main cuisine is English food. You will find this
local gem near Clare Hall in the Riverside area.”.
The produced IOB slot data would be

[Bibimbap:B-Name, House:I-Name is:O a:O

moderately:B-PriceRange, priced:I-PriceRange,

restaurant:O, who’s:O, main:O, cuisine:O, is:O,

English:B-Food food:O. You:O, will:O, find:O,

this:O, local:O, gem:O, near:B-Near,

Clare:I-Near, Hall:I-Near, in:O, the:O,

Riverside:B-Area, area:I-Area].

D Model Structure

For NLU, the model is a simple GRU (Cho et al.,
2014) with a word and last output as input at each
timestep i and a linear layer at the end for intent
prediction based on the final hidden state:

oi = GRU([wi, oi−1]).

The model for NLG is almost the same but
with an additional encoder for encoding semantic
frames, where slot-value pairs are encoded into se-
mantic vectors for basic attention, the mean-pooled
semantic vector is used as initial state. We borrow
the encoder structure in Zhu et al. (2020) for our
experiments. At each timestep i, the last predicted
word and the aggregated semantic vector from at-
tention are used as the input:

oi = GRU([hAttn
i , oi−1] | hmean).


