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Abstract

The embedding layers transforming input
words into real vectors are the key components
of deep neural networks used in natural lan-
guage processing. However, when the vocab-
ulary is large, the corresponding weight matri-
ces can be enormous, which precludes their de-
ployment in a limited resource setting. We in-
troduce a novel way of parameterizing embed-
ding layers based on the Tensor Train decom-
position, which allows compressing the model
significantly at the cost of a negligible drop or
even a slight gain in performance. We evalu-
ate our method on a wide range of benchmarks
in natural language processing and analyze the
trade-off between performance and compres-
sion ratios for a wide range of architectures,
from MLPs to LSTMs and Transformers.

1 Introduction

Deep neural networks (DNNs) typically used in
natural language processing (NLP) employ large
embeddings layers, which map the input words
into continuous representations and usually have
the form of lookup tables. Despite such simplic-
ity, these layers often occupy a large portion of
model weights which may cause problems in train-
ing and deploying them in a limited resource set-
ting. Thus, the compression of large neural net-
works and the development of novel lightweight
architectures have become essential problems in
NLP research.

One way to reduce the number of parameters
in the trained model is to imply a specific struc-
ture on its weight matrices, e.g., assume that they
are low-rank or can be well approximated by low-
rank tensor networks (Jaderberg et al., 2014). Such
approaches are successful at compressing the pre-
trained models, but they do not facilitate the train-
ing itself. Furthermore, they usually require an
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additional fine-tuning stage to recover the perfor-
mance of the original model (Lebedev et al., 2015;
Chen et al., 2018a).

In this paper, we introduce a new, parameter
efficient embedding layer, termed TT–embedding,
which can be plugged in into any model and trained
end-to-end. The benefits of our compressed TT–
layer are twofold. Firstly, instead of storing huge
embedding matrix, we store a sequence of much
smaller 2-dimensional and 3-dimensional tensors,
necessary for reconstructing the required embed-
dings, which allows compressing the model signifi-
cantly at the cost of a negligible performance drop.
Secondly, the overall number of parameters can be
relatively small (and constant) during training.

The main contributions of our paper are:

• We propose to replace a standard dense em-
bedding matrix with a novel compactly param-
eterized TT–embedding layer.

• We provide a theoretical justification of the
proposed method from the softmax bottle-
neck (Yang et al., 2017b) perspective.

• We propose a novel initialization scheme for
layers factorized with TT decomposition (Os-
eledets, 2010; Novikov et al., 2015).

• We evaluate TT–embedding on a variety
of benchmarks in NLP and report better
compression-accuracy trade-off than standard
embedding and its low-rank decomposition.

2 Related work

In recent years, a large body of research was de-
voted to compressing and speeding up various com-
ponents of neural networks used in NLP tasks.
Joulin et al. (2016) adapted the framework of
product quantization to reduce the number of pa-
rameters in linear models used for text classifi-
cation. See et al. (2016) proposed to compress
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LSTM-based neural machine translation models
with pruning algorithms. Lobacheva et al. (2017)
showed that the recurrent models could be sig-
nificantly sparsified with the help of variational
dropout (Kingma et al., 2015). Cheong and Daniel
(2019) successfully compressed the Transformer
architecture with the combination of pruning and
quantization.

There is a plethora of prior work on compress-
ing the embedding layers used in NLP models.
Chen et al. (2018b) proposed more compact K-
way D-dimensional discrete encoding scheme to
replace the “one-hot” encoding of categorical fea-
tures, such as words in NLP taks. Variani et al.
(2018) introduced WEST, a compression method
based on structured sparse and structured dense
decomposition of the embedding matrix. Chen
et al. (2018a) proposed to compress the pre-trained
embedding matrix by capitalizing on the power-
law distribution of words and using smaller dimen-
sionality (lower rank) for the embeddings of less
frequent words. Baevski and Auli (2018) used
a similar idea in end-to-end fashion by training
such structured low-rank embeddings from scratch.
However, both of these methods rely on the assump-
tion of power-law distribution of tokens and are not
efficient when dealing with other popular tokeniza-
tions, such as wordpieces (Schuster and Nakajima,
2012; Wu et al., 2016) or BPEs (Sennrich et al.,
2015). The effectiveness of simple low-rank factor-
ized embeddings has been recently re-discovered
by Lan et al. (2019), and we refer to this method as
to important baseline. Also, Lam (2018) proposed
a quantization algorithm for compressing word vec-
tors, but its benefits are orthogonal to those of low-
rank matrix and tensor factorizations and they can
be used together, complementing each other.

Tensor methods have also been already suc-
cessfully applied to neural networks compres-
sion. Novikov et al. (2015) coined the idea of
reshaping weights of fully-connected layers into
high-dimensional tensors and representing them
in Tensor Train (TT) (Oseledets, 2011) format.
This approach was later extended to convolu-
tional (Garipov et al., 2016) and recurrent (Yang
et al., 2017a; Tjandra et al., 2017; Yu et al., 2017)
neural networks. Furthermore, Lebedev et al.
(2015) showed that convolutional layers could be
also compressed with canonical (CP) tensor de-
composition (Carroll and Chang, 1970; Harshman,
1970). Finally, Wang et al. (2018) compressed

both fully-connected and convolutional layers with
Tensor Ring decomposition (Zhao et al., 2016). Re-
cently, Ma et al. (2019) succesfully applied Block-
Term Tensor Decomposition to the compression of
self-attention modules in the Transformer (Vaswani
et al., 2017) architecture. In this work, we show
the benefits of applying tensor machinery to the
compression of embedding layers, which are an
essential component of all models used in NLP.

3 Motivation

Since most of the parameters in the NLP models
occupy the embedding layers, we can greatly re-
duce size of the entire model by compressing these
layers. Our goal is to replace the standard embed-
ding matrix with a more compact, yet powerful and
trainable, representation which would allow us to
efficiently map words into vectors.

In this section, we briefly discuss our motivation
of using tensorized embedding layers instead of
both standard embedding layers and their low-rank
factorized counterpart.

3.1 Compression ratio perspective

The simplest approach to compactly represent a
matrix of a large size is to use the low–rank ma-
trix factorization, which treats matrix E ∈ RI×J
as a product of two matrices E = UV>. Here
U ∈ RI×R and V ∈ RJ×R are much “thinner”
matrices, and R is the rank hyperparameter. Note
that rather than training the model with the standard
embedding layer, and then trying to compress the
obtained embedding, we can initially seek the em-
bedding matrix in the described low–rank format.
Then, for evaluation and training, the individual
word embedding E[i, :] can be computed as a prod-
uct U[i, :]V> which does not require materializing
the full matrix E. This approach reduces the num-
ber of degrees of freedom in the embedding layer
from IJ to (I + J)R.

However, typically, in the NLP tasks, the em-
bedding dimension J is much smaller than the vo-
cabulary size I , and obtaining significant compres-
sion ratio using low-rank matrix factorization is
problematic. In order to preserve the model perfor-
mance, the rank R cannot be taken very small, and
the compression ratio is bounded by IJ

(I+J)R ≤
J
R ,

which is close to 1 for usually full-rank embedding
matrix (see Figure 1 in (Chen et al., 2018b)). To
overcome this bound and achieve significant com-
pression ratio even for matrices of disproportional
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dimensionalities, we reshape them into multidimen-
sional tensors and apply the Tensor Train decom-
position, which allows for more compact represen-
tation with the number of parameters falling down
to logarithmic with respect to I .

3.2 Softmax bottleneck perspective

We hypothesize that such tensorized embeddings
are not only superior in terms of more efficient
compression, but are more theoretically justified
for the usage in NLP tasks than embedding lay-
ers based on matrix factorization. Our analysis is
based on softmax bottleneck theory (Yang et al.,
2017b) and the fact that modern NLP architectures
typically use the same weights for both embedding
and softmax layers (Press and Wolf, 2016; Inan
et al., 2016).

This theory models a natural language as a col-
lection of pairs of a context and its conditional
next token distributions: L = {(ci, Pθ(X|ci)}Ni=1,
and considers parametric language models with a
Softmax function operating on a context vector hc
and a word embedding xi to define the conditional
distribution Pθ(x|c). Given the number of context
vectors N , the number of tokens M , and dimen-
sionality of word embeddings d, the following three
matrices are defined: Hθ ∈ RN×d, Wθ ∈ RM×d,
A ∈ RN×M . The rows of these matrices corre-
spond to context vectors, word embeddings, and
log probabilities of the true data distribution respec-
tively. Such language model attempts to approx-
imate A (up to an addition of constant matrices
corresponding to a degree of freedom in Softmax)
in the form

A = HθW
>
θ . (1)

Note that the rank of HθW
>
θ is bounded by d,

while the matrix A is presumed to be a high rank
matrix (Yang et al., 2017a), which provides an up-
per bound on expressivity of such models. Now,
suppose that the matrix Wθ is additionally factor-
ized as Wθ = UθV

>
θ with some rank R. Then the

rank of right-hand side of Equation (1) is bounded
by R, which further reduces expressivity of such
models. Contrary to this, we show that tensorized
embeddings do not reduce expressivity in the soft-
max bottleneck sense — while the embedding ma-
trix is compressed it still has full matrix rank. We
provide a rigorous statement in Section 4.4 and
verify benefits of tensorized embeddings over low-
rank factorized ones empirically in Section 5.

4 Tensor Train embedding

In this section, we briefly introduce the necessary
notation and present the algorithm for training the
TT–embedding layer. Hereinafter, by N -way ten-
sor X we mean a multidimensional array:

X ∈ RI1×I2×···×IN .

with entries X (i1, . . . , iN ) such that {0 ≤ ik <
Ik}Nk=1.

4.1 Tensor Train decomposition
A tensor X is said to be represented in the Ten-
sor Train (TT) format (Oseledets, 2011) if each
element of X can be computed as:

X (i1, i2, . . . , iN ) =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑
rN−1=1

G(1)(i1, r1)G(2)(r1, i2, r2) . . .G(N)(rN−1, iN ),

where the tensors G(k) ∈ RRk−1×Ik×Rk are the
so-called TT–cores and R0 = RN = 1 by defini-
tion. The minimal values of {Rk}N−1k=1 for which
the TT–decomposition exists are called TT–ranks.
Note, that the element X (i1, i2 . . . iN ) is effec-
tively the product of 2 vectors and N − 2 matrices:

X (i1, . . . , iN ) = G(1)[i1, :]︸ ︷︷ ︸
1×R1

G(2)[:, i2, :]︸ ︷︷ ︸
R1×R2

. . .

G(N−1)[:, iN−1, :]︸ ︷︷ ︸
RN−2×RN−1

G(N)[:, iN ]︸ ︷︷ ︸
RN−1×1

,

where G(k)[:, ik, :] stands for the slice (a subset of
a tensor with some indices fixed) of the correspond-
ing TT–core G(k).

The number of degrees of freedom in such a de-
composition can be evaluated as

∑N
k=1Rk−1IkRk.

Thus, in the case of small ranks, the total num-
ber of parameters required to store a tensor in
TT–representation is significantly smaller than∏N
k=1 Ik parameters required to store the full ten-

sor of the corresponding size. This observation
makes the application of the TT–decomposition ap-
pealing in many problems dealing with extremely
large tensors.

4.2 TT–matrix
Let X ∈ RI×J be a matrix of size I × J . Given
two arbitrary factorizations of its dimensions into
natural numbers, I =

∏N
k=1 Ik and J =

∏N
k=1 Jk,
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Reshaping TT decomposition 

Figure 1: Construction of the TT–matrix from the standard embedding matrix. Blue color depicts how the single
element in the initial matrix is transformed into the product of the highlighted vectors and matrices in the TT–cores.

we can reshape1 and transpose this matrix into an
N -way tensor X ∈ RI1J1×I2J2×···×INJN and then
apply the TT–decomposition to it, resulting in a
more compact representation.

More concretely, define the bijections I(i) =
(i1, . . . , iN ) and J (j) = (j1, . . . , jN ) that map
row and column indices i and j of the matrix X
to the N -dimensional vector-indices such that 0 ≤
ik < Ik, 0 ≤ jk < Jk, ∀k = 1, . . . , N . From the
matrix X we can form an N -way tensor X whose
k-th dimension is of length IkJk and is indexed by
the tuple (ik, jk). This tensor is then represented
in the TT–format:

X ((i1, j1) . . . (iN , jN )) =

G(1)[(i1, j1), :] . . .G(N)[:, (iN , jN )]. (2)

Such representation of the matrix in the TT–format
is called TT–matrix (Oseledets, 2010; Novikov
et al., 2015) and is also known as Matrix Prod-
uct Operator (Pirvu et al., 2010) in physics lit-
erature. The factorizations (I1, I2, . . . IN ) ×
(J1, J2, . . . JN ) will be referred to as the shape of
the TT–matrix, or TT–shapes. The construction of
the TT–matrix from the standard matrix is visual-
ized in Figure 1 for the tensor of order 3. Note,
that in this case the TT–cores are in fact 4-th order
tensors as the indices are given by tuples (ik, jk),
but all the operations defined for tensors in the
TT–format are naturally extended to TT–matrices.

4.3 TT–embedding

By TT–embedding, we call a layer with trainable
parameters (TT–cores) represented as a TT–matrix
E of the underlying tensor shape (I1, I2, . . . IN )×
(J1, J2, . . . JN ) which can be transformed into a
valid embedding layer E ∈ RI×J , with I =∏N
k=1 Ik and J =

∏N
k=1 Jk. To specify the shapes

of TT–cores one has also to provide the TT–ranks,
1by reshape we mean a column-major reshape com-

mand such as numpy.reshape in Python.

which are treated as hyperparameters of the layer
and explicitly define the total compression ratio.

In order to compute the embedding for a par-
ticular word indexed i in the vocabulary, we first
map the row index i into the N -dimensional vector
index (i1, . . . , iN ), and then calculate components
of the embedding with formula (2). Note, that the
computation of all its components is equivalent to
selecting the particular slices in TT-cores (slices
of shapes J1 × R1 in G(1), R1 × J2 × R2 in G(2)

and so on) and performing a sequence of matrix
multiplications, which is executed efficiently in
modern linear algebra packages, such as BLAS.
Pseudocode for the procedure of computing the
mapping i→ (i1, . . . , iN ) is given in Appendix A.

In order to construct TT–embedding layer for a
vocabulary of size I and embedding dimension J ,
and to train a model with such a layer, one has to
perform the following steps.

• Provide factorizations of I and J into
factors I = I1 × I2 × · · · × IN and
J = J1 × J2 × · · · × JN , and specify the set
of TT–ranks {R1, R2, . . . , RN−1}.

• Initialize the set of parameters of the embed-
ding Θ = {G(k) ∈ RRk−1×Ik×Jk×Rk}Nk=1.
Concrete initialization scenarios are discussed
further in the text.

• During training, given a batch of indices
{i1, i2, . . . ib}, compute the corresponding
embeddings {e1, e2, . . . , eb} using Equa-
tion (2).

• Computed embeddings can be followed by
any standard layer such as LSTM (Hochre-
iter and Schmidhuber, 1997) or self-
attention (Vaswani et al., 2017), and trained
with backpropagation since they differentially
depend on the parameters Θ.

TT–embedding implies a specific structure on
the order of tokens in the vocabulary (the order
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of rows in the embedding matrix), and determin-
ing the optimal order is an appealing problem to
solve. However, we leave this problem for future
work and use the order produced by the standard
tokenizer (sorted by frequency) in our current ex-
periments.

We also experimented with a more general form
of TT-decomposition, namely Tensor Ring (TR) de-
composition (Zhao et al., 2016; Wang et al., 2018).
This decomposition by construction has the appeal-
ing property of being circular permutation invariant
(and, thus, more robust with respect to the order
of the tokens), which could have potentially pro-
vided an improvement over the TT-based models
with simple frequency based ordering. However,
despite having stronger generalization abilities, TR
might require more intricate optimization proce-
dure (Section 2.5 in Grasedyck et al. (2013)), and
we did not observe the benefits of using TR instead
of TT in our experiments (Appendix C).

Initialization The standard way to initialize an
embedding matrix E ∈ RI×J is via, e.g., Glorot
initializer (Glorot and Bengio, 2010), which ini-
tializes each element as E(i, j) ∼ N

(
0, 2

I+J

)
.

For the TT–embedding, we can only initialize the
TT–cores, and the distribution of the elements of
the resulting matrix E is rather non–trivial. How-
ever, it is easy to verify that if we initialize each
TT–core element as G(k)(rk−1, ik, rk) ∼ N (0, 1),
the resulting distribution of the matrix elements
E(i, j) has the property that E[E(i, j)] = 0 and
Σ2 := Var[E(i, j)] =

∏N
k=1Rk. Capitalizing

on this observation, in order to obtain the de-
sired variance Var[E(i, j)] = σ2 while keeping
E[E(i, j)] = 0, we can simply initialize each TT–
core as

G(k)(rk−1, ik, rk) ∼ N
(

0,
(σ

Σ

)2/N
)
. (3)

The resulting distribution is not Gaussian, however,
it approaches the Gaussian distribution2 with the
increase of the TT–rank (Figure 2).

In our experiments, we have used the modi-
fied Glorot initializer implemented by formula (3),
which greatly improved performance, as opposed
to initializing TT–cores simply via a standard nor-
mal distribution. It is also possible to initialize TT–
embedding layer by converting the learned embed-
ding matrix into TT–format using the TT–SVD al-

2Asymptotic normality is a consequence of application of
the Central Limit Theorem.

Figure 2: Distribution of matrix elements of the TT–
matrix of shape (5, 5, 5, 5) × (5, 5, 5, 5) initialized by
formula (3) with σ = 1. As the TT–rank increases, the
resulting distribution approaches Gaussian N (0, 1).

gorithm (Oseledets, 2011), however, this approach
requires the pretrained embedding matrix and per-
forms worse in practice (Garipov et al., 2016).

Hyperparameter selection TT–embedding in-
troduces two additional structure-specific hyper-
parameters, namely TT–shapes and TT–ranks.

TT–embedding does not require the vocabulary
size I to be represented exactly as the product
of factors I1, . . . , IN , in fact, any factorization∏N
k=1 Ik = Ĩ ≥ I will suffice. However, in order

to achieve the highest possible compression ratio
for a fixed value of Ĩ , the factors {Ik}Nk=1 should
be as close to each other as possible (Novikov et al.,
2015; Yang et al., 2017a). Our implementation in-
cludes a simple automated procedure for selecting a
good set of values ({Ik}Nk=1, {Jk}Nk=1) during TT–
embedding initialization. The factors J1, . . . , JN
are defined by the embedding dimensionality J
which can be easily chosen to support good factor-
ization, e.g., 512 = 8×8×8 or 480 = 6×5×4×4.

The values of TT–ranks directly define the com-
pression ratio, so choosing them to be too small
or too large will result into either significant per-
formance drop or little reduction of the number
of parameters. In our experiments, we set all TT–
ranks to 16 for problems with small vocabularies
and 64−192 for problems with larger vocabularies
which resulted in a good trade-off between com-
pression ratio and the metric of interest.

4.4 Expressivity of TT–embedding
Recall that in Section 3 we argued that one advan-
tage of TT–embeddings is the property of being full
rank matrices despite providing a significant data
compression. Let us now formalize this statement.

For a fixed I =
∏N
k=1 Ik, J =

∏N
k=1 Jk, and

a set of ranks R = (R1, R2, . . . , RN−1), we con-
siderMR, the set of all tensors represented in the
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TT-matrix format such that for any X ∈MR

TT-rank(X ) ≤ R,

entry-wise. Let X denote an ordinary matrix of
size N ×M obtained from the TT-matrix X with
the inverse of procedure decsribed in Section 4.2
(application of formulas from Section 4.1, followed
by transposing and reshaping). We show that the
following results holds true.

Theorem 1. For all X ∈ MR besides a set of
measure zero

rank X = min(I, J),

where the ordinary matrix rank is assumed.

See Appendix B for a proof.
This theorem states that for almost all TT-

embeddings (besides a negligible set), the corre-
sponding standard embedding matrix is full-rank.
Thus, using the same matrix in the softmax layer,
we can achieve significant compression without
hitting the softmax bottleneck, as opposed to the
low-rank matrix factorization.

5 Experiments

Code We have implemented TT–embeddings de-
scribed in Section 4 in Python using PyTorch
(Paszke et al., 2019). The code is available at
the anonymous repository https://github.com/tt-
embedding/tt-embeddings.

Experimental setup We tested our approach on
several popular NLP tasks:

• Sentiment analysis — as a starting point in
our experiments, we test TT–embeddings on
a rather simple task of predicting sentiment.

• Neural Machine Translation (NMT) — to
verify the applicability of TT–embeddings in
more practical problems, we test it on a more
challenging task of machine translation.

• Language Modeling (LM) — then, we eval-
uate TT–embeddings on language modeling
task in the case of extremely large vocabulary.

• Click Through Rate (CTR) prediction —
finally, we show that TT–embeddings can be
applied for the binary classification with cate-
gorical features of significant cardinality.

To prove the generality and wide applicability
of the proposed approach, we tested it on various
architectures, such as MLPs (CTR), LSTMs (senti-
ment analysis), and Transformers (NMT, LM). The
baselines we compare with are

1. Standard embedding layer parametrized by a
matrix E ∈ RI×J with the baseline compres-
sion ratio of 1.

2. Low-rank factorized embedding layer
parametrized by two matrices U ∈ RI×D
and V ∈ RJ×D such that the corresponding
embedding matrix is E = UV>. The com-
pression ratio in this case is I×J

(I+J)×D ≈
J
D .

Note that Transformers in LM and NMT use the
same weight matrix for their embedding and soft-
max layers (Press and Wolf, 2016; Inan et al., 2016)
which already significantly reduces model size. Un-
tying weights and tensorizing the embedding layer
only will lead to the increase in the number of
parameters instead of compression. In our experi-
ments, we use two separate TT-decompositions of
the same shape for embedding and softmax layers
and report the compression ratios as |V |×dmodel

2×TT-params .

5.1 Sentiment analysis
For this experiment, we have used the IMDB
dataset (Maas et al., 2011) with two categories, and
the Stanford Sentiment Treebank (SST) (Socher
et al., 2013) with five categories. We have taken
the most frequent 25000 words for the IMDB
dataset and 17200 for SST, embedded them into a
J–dimensional space using either standard embed-
ding or TT–embedding layer, and performed clas-
sification using a standard bidirectional two–layer
LSTM with hidden size h = 128, and dropout rate
Pdrop = 0.5.

Our findings are summarized in Table 1. We
observe that the models with largely compressed
embedding layers can perform equally or even bet-
ter than the full uncompressed models. This sug-
gests that learning individual independent embed-
dings for each particular word is superfluous, as the
expressive power of LSTM is sufficient to make
use of these intertwined, yet more compact embed-
dings. Moreover, slightly better test accuracy of the
compressed models in certain cases (e.g., for the
SST dataset of a rather small size) insinuates that
imposing specific tensorial low–rank structure on
the embedding matrix can be viewed as a special
form of regularization, thus potentially improving

https://github.com/tt-embedding/tt-embeddings
https://github.com/tt-embedding/tt-embeddings
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Table 1: Sentiment analysis, LSTM on IMDB and SST datasets. Embedding compression is calculated as the ratio
between the number of parameters in the full embedding layer and TT–embedding layer. The LSTM parts are
identical in both models, and the TT–ranks were set to 16 in these experiments.

Dataset Model Embedding shape Test acc. Emb Total
compr. params

IMDB

Full 25000× 256 0.886 1 7.19M
TT1 (25, 30, 40)× (4, 8, 8) 0.871 93 0.86M
TT2 (10, 10, 15, 20)× (4, 4, 4, 4) 0.888 232 0.82M
TT3 (5, 5, 5, 5, 6, 8)× (2, 2, 2, 2, 4, 4) 0.897 441 0.81M

SST

Full 17200× 256 0.374 1 5.19M
TT1 (24, 25, 30)× (4, 8, 8) 0.415 78 0.85M
TT2 (10, 10, 12, 15)× (4, 4, 4, 4) 0.411 182 0.82M
TT3 (4, 5, 5, 5, 6, 6)× (2, 2, 2, 2, 4, 4) 0.399 307 0.81M

Table 2: NMT, Transformer-big on WMT‘14 English-to-German dataset. Both case-sensitive tokenized BLEU
(higher is better) and de-tokenized SacreBLEU (Post, 2018) on newstest2014 are reported. In case of low-rank
(LR) factorization, rank is the factorization rank; in case of TT-embedding (TT), rank is the TT-rank.

Model Embedding shape Rank Token Sacre Emb Total
BLEU BLEU compr. params

Big 32768× 1024 — 29.58 28.84 1 210M

Big+LR1 (32768× 64), (64× 1024) 64 28.98 28.26 15.5 179M
Big+LR2 (32768× 32), (32× 1024) 32 27.79 27.04 31 178M
Big+LR3 (32768× 16), (16× 1024) 16 24.80 24.12 62 177M

Big+TT1 (32, 32, 32)× (8, 8, 16) 64 29.17 28.53 15.3 179M
Big+TT2 (32, 32, 32)× (8, 8, 16) 48 28.53 27.97 26.8 178M
Big+TT3 (32, 32, 32)× (8, 8, 16) 32 28.26 27.70 58.5 177M

model generalization. A detailed and comprehen-
sive test of this hypothesis goes beyond the scope
of this paper, and we leave it for future work.

5.2 Neural Machine Translation
For this experiment, we have trained the
Transformer-big model (dmodel = 1024, dff =
4096, h = 16) from Vaswani et al. (2017) on
WMT 2014 English–German dataset consisting of
roughly 4.5 million sentence pairs. We evaluated
on newstest2014 dataset using beam search with
a beam size of 4 and no length penalty. We did
not employ checkpoint averaging and used the last
checkpoint to compute the BLEU score. Sentences
were tokenized with YouTokenToMe3 byte-pair-
encodings, resulting in a joint vocabulary of 32768
tokens. For the full list of hyperparameters, see
the Appendix D.

3https://github.com/VKCOM/YouTokenToMe

Our results are summarized in Table 2. We
observe that even in this rather challenging task,
both embedding and softmax layers can be com-
pressed significantly, at the cost of a small drop
in the BLEU score. However, with the increase
of compression factor, the performance deterio-
rates rapidly. Compared to the sentiment analysis,
NMT is a much more complex task which bene-
fits more from additional capacity (in the form of
more powerful RNN or more transformer blocks)
rather than regularization (Bahdanau et al., 2014;
Vaswani et al., 2017; Wu et al., 2019), which may
explain why we did not manage to improve the
model by regularizing its embedding layers with
TT-embedding.

Compared to the low-rank factorization of the
embedding layer, the BLEU score of the Trans-
former with TT-embedding is higher and degrades
much slower with the decrease of TT-rank. We hy-

https://github.com/VKCOM/YouTokenToMe
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Table 3: LM, Transformer-XL (Dai et al., 2019) on the WikiText-103 dataset. Lower perplexity (PPL) is better.

Model Embedding shape Rank Valid Test Emb Total
PPL PPL compr. params

TXL 267735× 512 — 22.55 24.37 1 192M

TXL+LR1 (267735× 128), (128× 512) 128 25.79 26.92 4 89M
TXL+LR1 (267735× 96), (96× 512) 96 26.57 27.75 5.3 81M
TXL+LR1 (267735× 48), (48× 512) 64 27.46 28.51 10.7 72M

TXL+TT1 (60, 60, 75)× (8, 8, 8) 192 24.38 25.67 3.8 91M
TXL+TT2 (60, 60, 75)× (8, 8, 8) 128 25.53 26.73 8.6 71M
TXL+TT3 (60, 60, 75)× (8, 8, 8) 96 26.73 28.04 15.1 64M

pothesize that this is because of the corresponding
embedding matrix being full rank and not suffering
from the softmax bottleneck (Yang et al., 2017b).

TT-embeddings induce 8% training iteration
time overhead if compared to the baseline
Transformer-big due to our current implementation
heavily relying on slow torch.einsum function
while standard embedding and softmax layers make
use of fast and highly-optimized Tensor Cores for
mixed-precision training. We expect a dedicated
CUDA kernel to be much more efficient.

5.3 Language modeling

We took the Transformer-XL (Dai et al., 2019),
an open source4 state-of-the-art language model-
ing architecture at the time of this writing, and re-
placed its embedding and softmax layers with TT–
factorizations. Then, we tested different model con-
figurations on WikiText–103 (Merity et al., 2016)
and reported the results in Table 3. For the full list
of hyperparameters, see the Appendix D.

Compared to sentiment analysis and NMT, we
were not able to achieve that high compression
ratios for embedding and softmax layers in LM.
However, in our case of extremely large vocabu-
lary (≈ 270000 words), even moderate 3.8 times
compression allowed us to save 100M of weights
at the cost of ∼ 1.5 perplexity drop. Note that TT-
embeddings also outperform low-rank factorization
achieving better trade-off between compression and
the performance.

6 Click Through Rate prediction

Among other applications of the TT–embedding
layer, we chose to focus on CTR prediction, a pop-

4https://github.com/kimiyoung/transformer-xl

ular task in digital advertising (He et al., 2014). We
consider open dataset provided by Criteo for Kag-
gle Display Advertising Challenge (Criteo Labs,
2014) which consists of 39 categorical features,
45.8M samples and is binary labeled according to
whether the user clicked on the given advertisement.
Unique values of categorical features are bijectively
mapped into integers. To reduce the memory foot-
print, if the size of a corresponding vocabulary is
immense (e.g., a cardinality of some features in this
dataset is of order 106), these integers are further
hashed by taking modulus with respect to some
fixed number such as 105. However, due to strong
compression properties of TT–embeddings, this is
not necessary for our approach, and we consider
both full and hashed datasets in our experiments.

CTR with the baseline algorithm The task at
hand can be treated as a binary classification prob-
lem. As a baseline algorithm, we consider the neu-
ral network with the following architecture. First,
each of the categorical features is passed through
a separate embedding layer with embedding size
J . After that, the embedded features are concate-
nated and passed through 4 fully-connected layers
of 1024 neurons and ReLU activation functions.
In all experiments, we used Adam optimizer with
the learning rate equal to 0.0005. Since many in-
put features have a large number of unique values
(e.g., 10131227) and storing the corresponding em-
bedding matrices would be costly, we employ the
hashing procedure mentioned earlier.

CTR with TT–embeddings We substitute the
embedding layers with the TT–embedding layers.
Besides that, we leave the overall structure of the
neural network unchanged with the same parame-
ters as in the baseline approach. Table 4 presents

https://github.com/kimiyoung/transformer-xl
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Table 4: CTR prediction. The hashed dataset is constructed with hashing value 105. Embedding layers with more
than 2000 unique tokens were replaced by TT–embeddings.

Hash Model Factorization TT Hidden Test Emb. Total
rank size loss compr. params

105

Full — — 1024 0.4440 1 41.2M
TT1 3 factors 16 1024 0.4433 61 4.7M
TT2 4 factors 16 1024 0.4440 92 4.5M
TT3 3 factors 2 128 0.4515 2100 0.53M
TT4 4 factors 2 128 0.4530 4193 0.53M

—
TT1 3 factors 16 1024 0.4444 1004 5.2M
TT2 4 factors 16 1024 0.4438 2011 4.7M

the experimental results on the Criteo CTR dataset.
To the best of our knowledge, our loss value is very
close to the state-of-the-art result (Juan et al., 2016).
These experiments indicate that the substitution of
large embedding layers with TT–embeddings leads
to significant compression ratios (up to 2011 times)
with a slight improvement in the test loss, and up
to 4200 with a small drop in the test loss. The total
size of the compressed model does not exceed 20
Mb, while the baseline model weighs about 160
Mb. The obtained compression ratio suggests that
the usage of TT–embedding layers may be benefi-
cial in CTR prediction.

7 Discussion and future work

We propose a novel embedding layer, the TT–
embedding, for compressing huge lookup tables
used for encoding categorical features of signifi-
cant cardinality, such as the index of a token in
natural language processing tasks. The proposed
approach, based on the TT–decomposition, exper-
imentally proved to be effective, as it heavily de-
creases the number of training parameters at the
cost of a small deterioration in performance. In
addition, our method can be easily integrated into
any deep learning framework and trained via back-
propagation, while capitalizing on reduced memory
requirements and increased training batch size.

Our experimental results suggest several appeal-
ing directions for future work. First of all, TT–
embeddings impose a concrete tensorial low-rank
structure on the embedding matrix, which was
shown to improve the generalization ability of the
networks acting as a regularizer. The properties
and conditions of applicability of this regularizer
are subject to more rigorous analysis. Secondly,

unlike standard embedding, we can introduce non-
linearity into TT-cores to improve their expressive
power (Khrulkov et al., 2019). Additionally, it is
important to understand how the order of tokens
in the vocabulary affects the properties of the net-
works with TT–embedding. We hypothesize that
there exists the optimal order of tokens which better
exploits the particular structure of TT–embedding
and leads to a boost in performance and/or com-
pression ratio. Finally, the idea of applying higher–
order tensor decompositions to reduce the number
of parameters in neural nets is complementary to
more traditional methods such as pruning (Han
et al., 2015) and quantization (Hubara et al., 2017;
Xu et al., 2018). Thus, it would be interesting to
make a thorough comparison of all these methods
and investigate whether their combination may lead
to even stronger compression.
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A Multiindex construction

Algorithm 1 The algorithm implementing the bi-
jection I(i) as described in Section 4.2.

Require: I – vocabulary size, {Ik}Nk=1 – an ar-
bitrary factorization of I ,

i – index of the target word in vocabu-
lary.
Returns: I(i) = (i1, . . . , iN ) –N -dimensional
index.
Initialize: L = {1, I1, I1I2, . . . , I1I2 . . . IN−1}

for k = N to 1 do
ik ← floor(i/L[k])
i← i mod L[k]

end for

Algorithm 2 The algorithm implementing the bi-
jection (i1, . . . , iN )→ i, inverse to I(i).

Require: I – vocabulary size, {Ik}Nk=1 – an ar-
bitrary factorization of I ,

(i1, . . . , iN ) – N -dimensional index.
Returns: i – index of the target word in vocabu-
lary
Initialize: L = {1, I1, I1I2, . . . , I1I2 . . . IN−1}

i← 0
for k = 1 to N do
i← i+ ik × L[k]

end for

B Proof of Theorem 1

Recall that for fixed I =
∏N
k=1 Ik, J =

∏N
k=1 Jk,

and a set of ranks R = (R1, R2, . . . , RN−1) we
definedMR, the set of all tensors represented in
the TT-matrix format such that for any X ∈MR

we have
TT-rank(X ) ≤ R,

entry-wise. Let X denote an ordinary matrix of
size N ×M obtained from the TT-matrix X with
the inverse of procedure decsribed in Section 4.2
(application of formulas from Section 4.1, followed
by transposing and reshaping).

Our analysis is based on the fact thatMR forms
an irreducible algebraic set (Buczyńska et al.,
2015; Hartshorne, 2013). Concretely, we will use
the fact that for an irreducible algebraic set A any
algebraic subset B either has measure zero, or co-
incides with A. We start with a simple lemma.

Lemma 1. Let

B = {X ∈MR : rank X < min(I, J)},

then B is an algebraic subset ofMR.

Proof. We need to show that B is cut out by polyno-
mial equations onMR. This readily follows from
the facts that mat(·) is a linear mapping, and that
the upper bound on matrix rank can be specified
by requiring all minors of specific size to vanish
(which is a polynomial constraint).

We now show that B is in fact a proper subset of
MR, i.e., B (MR.

Lemma 2. For any MR there exists X ∈ MR

with
rank X = min(I, J).

Proof. We provide a concrete example of such
a tensor. Define the collection of TT–cores
{G(k) ∈ R1×Ik×Jk×1}Nk=1 using the equations

G(k)[:, (i, j), :] = δij , (4)

with δij denoting the Kronecker delta symbol. It
easy to verify that X of a tensor X specified by
this collection of cores takes a very simple form:
X[i, j] = δij , which clearly is of maximal rank.

Using Lemmas 1 and 2 and based on previous
discussion on properties of algebraic sets we con-
clude that the following theorem holds.

Theorem 1. For all X ∈ MR besides a set of
measure zero

rank X = min(I, J),

where the ordinary matrix rank is assumed.

C Tensor Ring Embedding

Tensor Ring (TR) decomposition is a generalization
to TT-decomposition where the first and the last
cores are 3-dimensional tensors which corresponds
to R0 = RN > 1. Formally, a tensor X is said to
be represented in the TR format (Zhao et al., 2016)
if each element of X can be computed as:

X (i1, i2, . . . , id) =

R0∑
r0=1

R1∑
r1=1

· · ·
RN−1∑
rN−1=1

G(1)(r0, i1, r1)

G(2)(r1, i2, r2) . . .G(N)(rN−1, iN , r0).
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Reshaping TR decomposition

Figure 3: Construction of the TR–matrix from the standard embedding matrix. Blue color depicts how the single el-
ement in the initial matrix is transformed into the product of the highlighted matrices. In contrast to TT-embedding,
matrix trace operator is applied to the final matrix, resulting in a scalar (highlighted element).

Table 5: Sentiment analysis, LSTM with either TT-embedding or TR-embedding on IMDB and SST datasets.

Dataset Model Embedding shape Rank Test acc. Emb Total
compr. params

IMDB

Full 25000× 256 — 0.886 1 7.19M

TT1 (25, 30, 40)× (4, 8, 8) 16 0.871 93 0.86M
TT2 (10, 10, 15, 20)× (4, 4, 4, 4) 16 0.888 232 0.82M
TT3 (5, 5, 5, 5, 6, 8)× (2, 2, 2, 2, 4, 4) 16 0.897 441 0.81M

TR1 (25, 30, 40)× (4, 8, 8) 16 0.869 45 0.87M
TR2 (10, 10, 15, 20)× (4, 4, 4, 4) 16 0.872 109 0.86M
TR3 (5, 5, 5, 5, 6, 8)× (2, 2, 2, 2, 4, 4) 16 0.884 215 0.82M
TR4 (25, 30, 40)× (4, 8, 8) 8 0.854 152 0.83M
TR5 (10, 10, 15, 20)× (4, 4, 4, 4) 8 0.882 455 0.80M
TR6 (5, 5, 5, 5, 6, 8)× (2, 2, 2, 2, 4, 4) 8 0.890 1042 0.80M

SST

Full 17200× 256 — 0.374 1 5.19M

TT1 (24, 25, 30)× (4, 8, 8) 16 0.415 78 0.85M
TT2 (10, 10, 12, 15)× (4, 4, 4, 4) 16 0.411 182 0.82M
TT3 (4, 5, 5, 5, 6, 6)× (2, 2, 2, 2, 4, 4) 16 0.399 307 0.81M

TR1 (24, 25, 30)× (4, 8, 8) 8 0.427 128 0.83M
TR2 (10, 10, 12, 15)× (4, 4, 4, 4) 8 0.411 366 0.80M
TR3 (4, 5, 5, 5, 6, 6)× (2, 2, 2, 2, 4, 4) 8 0.394 800 0.78M

Similar to TT, we can define TR-matrix (see Fig-
ure 3) and corresponding TR-embedding layer.

While our results (Table 5 and Table 6) sug-
gest that TT-embedding shows better compression-
performance trade-off than its TR counterpart,
much more experimentation is needed to properly
compare these two approaches (for example, we
see that TR is a promising direction for future work
as it outperforms TT on SST-2 benchmark). How-
ever, such analysis is computationally heavy and
goes beyond the scope of this paper.

D Complete list of hyperparameters

Table 7 and Table 8 contain full lists of hyperparam-
eters we used for training Transformer models for
neural machine translation and language modeling
respectively.
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Table 6: NMT, Transformer-big with either TT- or TR-embedding on WMT‘14 English-to-German dataset.

Model Embedding shape Rank Token Sacre Emb Total
BLEU BLEU compr. params

Big 32768× 1024 — 29.58 28.84 1 210M

Big+TT1 (32, 32, 32)× (8, 8, 16) 64 29.17 28.53 15.3 179M
Big+TT2 (32, 32, 32)× (8, 8, 16) 48 28.53 27.97 26.8 178M
Big+TT3 (32, 32, 32)× (8, 8, 16) 32 28.26 27.70 58.5 177M

Big+TR1 (32, 32, 32)× (8, 8, 16) 32 28.64 28.07 16 179M
Big+TR2 (32, 32, 32)× (8, 8, 16) 16 28.10 27.50 64 177M

Table 7: Hyperparameters of Transformer-big used
for neural machine translation on WMT‘14.

Parameter Value

Data cleaning
max sequence length in tokens 128
max source / target ratio 2.5

Model
vocabulary size, |V | 32768
hidden size, dmodel 1024
intermediate FF layer size, dff 4096
number of attention heads, h 16
number of layers in enc / dec 6

Optimization
optimizer NovoGrad
learning rate 0.04
betas, (β1, β2) (0.95, 0.25)
learning rate decay policy cosine
weight decay 0.0001
batch size in tokens 393216
number of training steps 80000
number of warmup steps 4000

Regularization
global dropout, Pdrop 0.2
label smoothing 0.1

Inference
beam search beam size 4
length penalty 0

Table 8: Hyperparameters of Transformer-XL used
for language modeling on WikiText-103.

Parameter Value

Model
vocabulary size, |V | 267735
hidden size, dmodel 512
intermediate FF layer size, dff 2048
number of attention heads, h 8
number of layers 16

Optimization
optimizer NovoGrad
learning rate 0.025
betas, (β1, β2) (0.95, 0.25)
learning rate decay policy cosine
weight decay 0.0001
batch size in sequences 1024
target sequence length 128
memory sequence length 128
number of training steps 300000
number of warmup steps 3000

Regularization
global dropout, Pdrop 0.15

Inference
batch size 4
target sequence length 128
memory sequence length 640
max positional encodings length 400


