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Abstract

Out-of-vocabulary (OOV) words cause serious
troubles in solving natural language tasks with
a neural network. Existing approaches to this
problem resort to using subwords, which are
shorter and more ambiguous units than words,
in order to represent OOV words with a bag of
subwords. In this study, inspired by the pro-
cesses for creating words from known words,
we propose a robust method of estimating OOV
word embeddings by referring to pre-trained
word embeddings for known words with sim-
ilar surfaces to target OOV words. We collect
known words by segmenting OOV words and
by approximate string matching, and we then
aggregate their pre-trained embeddings. Ex-
perimental results show that the obtained OOV
word embeddings improve not only word sim-
ilarity tasks but also downstream tasks in Twit-
ter and biomedical domains where OOV words
often appear, even when the computed OOV
embeddings are integrated into a BERT-based
strong baseline.

1 Introduction

The dynamic nature of language and the limited
size of training data requires neural network mod-
els to handle out-of-vocabulary (OOV) words that
are absent from the training data. We thus use
an UNK embedding shared among diverse OOV

words or break those OOV words into semantically-
ambiguous subwords (even characters), leading to
poor task performance (Peng et al., 2019; Sato et al.,
2020).

To solve this problem, several approaches (Pin-
ter et al., 2017; Zhao et al., 2018; Sasaki et al.,
2019) learn subword embeddings from pre-trained
embeddings and then use these subword embed-
dings for computing OOV word embeddings (§ 2).
However, the embeddings computed by these ap-

∗Currently, he works for NTT Laboratories.

BoS GloVe
(sub)word highe <high high er> higher high

cosine 48.4 34.2 20.1 −7.8 36.5 69.8

Table 1: Cosine similarity between Glove.840B embed-
ding of “higher” and related embeddings: subword and
reconstructed embeddings of “higher” by BoS (Zhao
et al., 2018) and Glove.840B embedding of “high.”
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Figure 1: Backed-off estimation of OOV embedding.

proaches are subject to the noisiness and ambigu-
ity of intermediate subwords. For example, the
Glove.840B1 embedding of “higher” is closer to
“high” compared with the embedding of “higher”
reconstructed from its subwords using the method
of BoS (Zhao et al., 2018), due to the ambiguous
subword er> as shown in Table 1.

Contextual word embeddings such as BERT (De-
vlin et al., 2019) can mitigate subword ambiguity
by considering context. However, it has been re-
ported that adversarial typos can degrade a BERT

model that uses subword tokenization (Pruthi et al.,
2019; Sun et al., 2020). Subword meanings change
across domains, making domain adaptation diffi-
cult (Sato et al., 2020). These problems are more
critical in the processing of noisy text (Wang et al.,
2020; Niu et al., 2020).

To solve the above problems, we propose di-

1http://nlp.stanford.edu/data/glove.
840B.300d.zip

http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
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rectly leveraging word-based pre-trained embed-
dings to compute OOV embeddings (Figure 1) (§ 3).
Inspired by the two major processes for creating
words, compounding and derivation, our method
dynamically extracts words with pre-trained em-
beddings whose surfaces are similar to the tar-
get OOV word. Our method then aggregates pre-
trained word embeddings on the basis of similar-
ity score over the known words calculated by a
character-level CNN encoder. We further integrate
this method into a BERT-based fine-tuning model.
In essence, the proposed method directly computes
OOV embeddings from pre-trained word embed-
dings, whereas the existing methods compute indi-
rectly via their subwords.

To investigate the performance of the proposed
method against baseline approaches, we conduct
both intrinsic and extrinsic evaluations of OOV

word embeddings (§ 4). In the experiments for the
intrinsic evaluation, we examine the performance
of the proposed method in inducing embeddings for
rare words by using the CARD benchmark (Pilehvar
et al., 2018) and for misspelled words by using the
TOEFL dataset (Flor et al., 2019). Then, in those for
the extrinsic evaluation, we demonstrate the effec-
tiveness of the calculated OOV word embeddings
in two downstream tasks, named entity recognition
(NER) and part-of-speech (POS) tagging for Twitter
and biomedical domains, where OOV words fre-
quently appear. We finally evaluate the BERT-based
fine-tuning model with our method on these tasks
and adversarial perturbations (Sun et al., 2020).

The contributions of this work are as follows.

• We propose a robust backed-off approach
for estimating OOV word embeddings, in-
spired by two processes for creating words:
compounding and derivation.

• We confirm by intrinsic and extrinsic evalua-
tions that the proposed method outperforms
subword-based methods in computing OOV

word embeddings.

• We demonstrate that the proposed extension
to BERT boosts the performance of BERT
except for one POS dataset and robustness
to adversarial perturbations on a sentiment
dataset.

2 Related work

Existing approaches for leveraging surface informa-
tion in computing OOV word embeddings basically

learn the embeddings of characters or subwords
to reconstruct pre-trained word embeddings from
them and then use the obtained embeddings to com-
pute embeddings for OOV words (Pinter et al., 2017;
Zhao et al., 2018; Sasaki et al., 2019). Zhao et al.
(2018) proposed Bag-of-Subwords (BoS) to recon-
struct pre-trained word embeddings from bag-of-
character n-grams in the same way as fastText (Bo-
janowski et al., 2017). Sasaki et al. (2019) extended
BoS to reduce the number of embedding vectors
and introduce a self-attention mechanism into the
aggregation of subword embeddings. However,
these methods compute embeddings via ambigu-
ous character or subword embeddings. This will
degrade the quality of embeddings for target OOV

words as we will confirm later in § 4.

Other approaches utilize the embeddings of the
known words around a target OOV word as its con-
textual information (Lazaridou et al., 2017; Kho-
dak et al., 2018; Schick and Schütze, 2019; Hu
et al., 2019). Schick and Schütze (2020) reported
that they can improve BERT (Devlin et al., 2019)
for understanding rare words. Notably, in these
approaches for utilizing both surface and context
information, the surface-based embeddings are the
same as (Zhao et al., 2018). These approaches can
have difficulties in representing misspelled words
or spelling variations when a small number of con-
texts are available in a text corpus.

Several approaches utilize external data such as
a knowledge base (Bahdanau et al., 2018; Yang
et al., 2019; Yao et al., 2019). Existing approaches
successfully impute OOV word embeddings by con-
volutional graph neural network (Yang et al., 2019)
or by spectral embeddings derived from an affinity
matrix of entities (Yao et al., 2019). These ap-
proaches can have difficulties in representing OOV

words that do not exist in the external data and have
little versatile applicability to misspelled words.

Recently, contextualized word embeddings such
as BERT (Devlin et al., 2019) mitigate the prob-
lem of subword ambiguities by dynamically in-
ferring meanings of OOV words from their con-
texts. However, several researchers reported that
BERT remains brittle to misspellings (Pruthi et al.,
2019; Sun et al., 2020), rare words (Schick and
Schütze, 2020), and out-of-domain samples (Park
et al., 2019). Pre-trained word embeddings are re-
ported to be more effective for these cases and mor-
phological tasks such as entity typing and NER (Zhu
et al., 2019).
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We therefore improve not only models based on
pre-trained word embeddings but also the brittle
subword-based BERT. Our approach will broaden
the application range of neural-network models.

3 Robust backed-off estimation of OOV
word embeddings

In this section, we describe our method of com-
puting embeddings for target OOV words by using
a weighted sum of pre-trained word embeddings.
Specifically, we calculate the weights over known
words from similarity scores derived on the basis
of their surface information (Figure 1).

In what follows, we first describe how to retrieve
known words that have surfaces similar to a target
OOV word (§ 3.1), and we next describe how to
aggregate their pre-trained embeddings on the basis
of the similarity scores calculated through a neural
network surface encoder (§ 3.2). We then discuss
how to integrate our method into the BERT-based
fine tuning model (Devlin et al., 2019) (§ 3.3).

3.1 Efficient back-off to known words
We first describe methods of efficiently extracting
known words with a similar surface to a target OOV

word: (i) segmentation of the target OOV word re-
ferring to known words and (ii) approximate string
matching used for extracting known words with a
similar surface from the OOV word. These compo-
nents are inspired by the two major processes for
creating words, namely, compounding and deriva-
tion, from existing words; we back-off unknown
words to known words to rewind and replay the
processes for creating words.

In this paper, we assume that word embeddings
are already trained on a large corpus in an unsu-
pervised method such as GloVe (Pennington et al.,
2014). Backing off to these known words can al-
leviate the ambiguity of subwords because word-
level pre-trained embeddings can be expected to be
less polysemous than subword embeddings. More-
over, we do not update word-level pre-trained em-
beddings in training the reconstruction task de-
scribed below. Then, we dynamically calculate the
embeddings for OOV words in the same continuous
space with known words.

Segmentation by known words Inspired by the
compounding of words such as German nouns (e.g.,
“Kinder|garten”) and chemical compounds (e.g.,
“dichloro|difluoro|methane”), the first approach ex-
tracts known words contained in the target OOV

word. Using known words and characters as vocab-
ulary, we first enumerate all possible segmentations
of the OOV word as a lattice using dynamic pro-
gramming and then choose the segmentation. We
then extract nseg known words in order of length
from the segmentation with the smallest number
of words/characters,2 assuming longer words to be
less ambiguous.

Approximate string matching Inspired by the
derivation of words (e.g., “ignore/ignorance”), the
second approach extracts known words with sim-
ilar surface features from the target OOV word by
approximate string matching. As a similarity mea-
sure for the surface distance between the target OOV

word and known words, we use string similarity
coefficients that view a word as a bag of n-grams.
The string similarity coefficient has been used for
fast approximate string matching. We search for
napprox known words in order of string similarity to
the OOV word. The approximate string matching is
robust to subtle spelling variations and can extract
a word with the correct spelling in most cases.

3.2 Aggregation of pre-trained word
embeddings for known words

Next, we describe the calculation of OOV word
embeddings from known words wseg

i and wapprox
i

that are extracted for the target OOV word q using
the segmentation by known words and approximate
string matching, respectively. Words extracted by
the methods described above can contain undesired
words whose meanings are far from the target OOV

word. Thus, we calculate more accurate similarity
scores for the extracted words through a neural
network surface encoder.

By computing surface representations vq and
vwk

i
of the target OOV word q and the extracted

known words wk
i (k ∈ {seg, approx}) through a

character-level CNN (Zhang et al., 2015), we cal-
culate the similarity score sq,wk

i
between the OOV

word q and known word w:

sq,wk
i
= f(vq,vwk

i
;W k) (1)

= softmax
(
vTq ·W k · vwk

i

)
, (2)

where W k is a learnable parameter. We then ag-
gregate the pre-trained word embeddings ew on
the basis of similarity scores sq,wk to calculate the

2If there is more than one such segmentation, we extract
unique known words from all segmentations in order of length.
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OOV embedding êq as follows:

êq = αsege
seg
q + αapproxe

approx
q , (3)

where ekq =
nk∑
i

sq,wk
i
ewk

i
, (4)

αk = h(sq,wk ;θk) (5)

= softmax
(
θk · sq,wk

)
. (6)

Here, θk are learnable parameters, and sq,wk repre-
sents the vector of similarities sq,wk

i
between q and

each known word wk
i (i = 1 . . . nseg or napprox).

We consider utilizing cosine similarity as the
reconstruction objective over an individual oracle
embedding eq. Here, we used pre-trained embed-
dings, eq (in experiments, GloVe.840B), as the or-
acle embeddings for each word:

L = cosine(eq, êq). (7)

W k, θk, and the parameters of a character-CNN are
updated in this manner. Although there are other
ways of designing W k, such as using the same
matrix for words of the same length, we leave this
as future work.

3.3 Extension to BERT-based fine-tuning
We finally integrate the proposed method with con-
textualized word embeddings, BERT (Devlin et al.,
2019). Although BERT works effectively in prac-
tice, the subword-based modeling is known to be
brittle when the input has misspellings (§ 2). For
example, typos in informative words can signifi-
cantly change the set of subwords, which causes se-
vere damage to subword-based modeling (e.g., “ro-
bustness”→ <robust|ness>, “robusntess”→
<rob|us|ntes|s>). We thus utilize OOV embed-
dings computed by our method to enhance BERT.

We extend the pre-trained BERT to refer to oov
embeddings in fine-tuning. We first tokenize each
word into subwords with a BERT tokenizer (Wolf
et al., 2019). For each subword, the embedding of
the words containing the subwords is added to the
BERT’s pre-trained subword embedding as follows.

e = (1− α)esubword + αW 1 · eword (8)

α = sigmoid(W 2 · esubword) (9)

Here, esubword ∈ Rm is the BERT’s subword em-
bedding, and eword ∈ Rn is the pre-trained or
OOV word embedding computed with our method.
W 1 ∈ Rm×n and W 2 ∈ Rn are learnable pa-
rameters in the fine-tuning. For example, when

“robusntess” is tokenized into <rob|us|ntes|s>,
<rob’s embedding [e in (8)] is calculated from
BERT’s subword embedding of <rob (esubword)
and our embedding of “robusntess” (eword).

Finally, we input the subword embeddings com-
puted in this way to the BERT model and calculate
the output label. In the fine-tuning process, we up-
date the parameters of the BERT model including
its embedding layers while fixing the word embed-
dings computed with the proposed method. This
method is applicable to any neural network other
than BERT-based fine tuning model.

4 Experiments

We evaluated the performance of OOV word embed-
dings calculated by the proposed method. We per-
formed intrinsic evaluations on benchmark datasets
(§ 4.1) and extrinsic evaluations on two down-
stream tasks: named entity recognition (NER) and
part-of-speech (POS) tagging (§ 4.2). We then con-
ducted experiments on the extension to a BERT-
based fine-tuning model (§ 4.3 and § 4.4).

We used Glove.840B embeddings1 (2.2M vocab-
ulary size) as the pre-trained embeddings (known
words) following Sasaki et al. (2019). In all the
experiments, we used PyTorch (v1.0.1)3 as the core
architecture and regarded words that were absent
from GloVe.840B as OOV words. For the extrinsic
evaluations (§ 4.2, § 4.3 and § 4.4), the reported
numbers are the medians of five trials.

4.1 Intrinsic evaluations: CARD and TOEFL

We evaluated the performance of OOV embeddings
through similarity estimations of rare words or mis-
spelled words. For the baseline methods, we also
evaluated the BoS (Zhao et al., 2018) and KVQ-
FH (F = 1M, H = 0.5M) (Sasaki et al., 2019)
referred to in § 2. Although these studies focus on
replacing infrequent words as well as OOV words,
we here focus on replacing only OOV words. In
addition to these subword-based baselines, we used
a simple baseline (Simple back-off) that backs off
an OOV word to the most orthographically-similar
known word. This is a special case of the proposed
method with nseg = 0, napprox = 1.

Datasets and experimental settings
The CARD-660 (Pilehvar et al., 2018) (hereafter,
CARD) is a rare word benchmark that consists of
pairs of words annotated with their similarity score.

3https://pytorch.org/

https://pytorch.org/
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CARD contains 660 word pairs of 1306 words with
duplicates collected from various domains, such
as computer science, social media, and medicine.
Among these word pairs, 289 pairs contain OOV

words that are absent from GloVe.840B. We cal-
culated the cosine similarities between the embed-
dings for the two words in a pair and evaluated the
Spearman’s correlation coefficient ρ between the
cosine similarity and the annotated similarity. We
also calculated the correlation for pairs containing
OOV words.

The TOEFL-Spell dataset (Flor et al., 2019)
(hereafter, TOEFL) contains examples of mis-
spellings appearing in a corpus of essays written
by English language learners. We extracted 1514
pairs of a correct, known word and a misspelled,
OOV word for evaluation. We computed the em-
bedding for the misspelled word and evaluated the
cosine similarity to the gold embedding of the cor-
rect word. We could evaluate the robustness against
practical misspelled words using TOEFL rather than
synthetic adversarial perturbations.

To train the subword-based baselines and the pro-
posed method, we randomly sampled 105 words
with frequency f4 (103 < f < 105) from the
Glove.840B embeddings. We then sampled the
103 embeddings from the 105 embeddings as the
development data and the remaining embeddings
to optimize the parameters of the proposed method.
We adopted Adam (Kingma and Ba, 2015) with a
learning rate of 10−3 as the optimizer. We set the
gradient clipping as 1, the dropout rate as 0.3, the
number of epochs as 50, and the batch size as 1000,
and we chose the model at the epoch that achieved
the maximum total cosine similarities between the
GloVe.840B embeddings and the induced embed-
dings for the target words in the development data.

To find orthographically similar words with the
proposed method and Simple back-off, we ran
Simple back-off with various similarity measures5

(Dice, Cosine, Jaccard, and Overlap) and n-grams
(1 ≤ n ≤ 7), and we obtained the Jaccard mea-
sure based on 3-grams as the best-performing con-
figuration for the development set. In computing
the surface representations vq and vwk

i
in Eq. 2

through a character-CNN with the proposed method,
we set the dimension to 100, and the convolu-
tions had window sizes of 1, 3, 5 and 7 characters.
We then searched for the best-performing hyper-

4We used the word frequencies at https://github.
com/losyer/compact_reconstruction.

5https://github.com/chokkan/simstring

CARD (ρ) TOEFL (cos)

ALL OOV OOV

GloVe (Pennington et al., 2014) 27.3 - -
BoS (Zhao et al., 2018) 40.7 17.2 33.4
KVQ-FH (Sasaki et al., 2019) 44.0 25.0 28.8
Simple back-off 45.8 32.5 44.5
This work 47.6 35.3 37.5

Table 2: Results of intrinsic evaluation of OOV embed-
dings. CARD was evaluated with Spearman’s correla-
tion coefficient ρ and TOEFL with cosine similarity.

parameters nseg and napprox (1 ≤ n∗ ≤ 10) of
the proposed method for the development set and
obtained nseg = 7, napprox = 10.

Results

Table 2 shows the results of the intrinsic evalua-
tions. ALL indicates the performance on all word
pairs, while OOV indicates the performance only
on pairs that contained an OOV word. We regarded
the cosine similarity of a word pair as zero when
a method could not compute embeddings for OOV

words in pairs, following Yang et al. (2019). The
correlation coefficients for the known word pairs
were 55.5 for all methods for the CARD dataset. We
observed that the proposed method outperformed
all baselines except for Simple back-off on the
TOEFL dataset. We considered the Simple back-
off baseline to be tailored for misspelings. Notably,
compared with the subword-based methods, the
proposed method was robust against the misspelled
words for the TOEFL dataset, which demonstrates
the risk of relying on subword embeddings.

We conducted a qualitative analysis of our two
modules: segmentation by known words (hereafter
SEG) and approximate string matching (hereafter
APPROX) described in § 3.2. SEG successfully
handled compound words such as “horse|cloth”
and “boat|master,” while APPROX successfully
handled “aeolipile.” The meanings of these words
can be inferred from their surfaces; we believe
that our method could successfully compute their
embeddings by relating them to the known words.
Both methods failed to handle “covfefe” (a mis-
spelling of “coverage”) and proper nouns such as
“Kobani” (a place) and “AccuRay” (a company).
From these observations, the proposed method is
considered to be less effective with these words as
well as acronyms whose meanings are difficult to
predict from their surfaces.

https://github.com/losyer/compact_reconstruction
https://github.com/losyer/compact_reconstruction
https://github.com/chokkan/simstring
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Figure 2: Results of intrinsic evaluations on pairs with
OOV words when varying nseg and napprox.

Sensitivity to hyper-parameters
To investigate the impact of using the two modules,
segmentation by known words and approximate
string matching (§ 3.2), we evaluated the perfor-
mance of the intrinsic evaluations with various nseg

and napprox. Figure 2 depicts the performance of
the proposed method with different nseg, napprox

(0 ≤ n∗ ≤ 10). The larger the nseg and napprox

used, the more shorter and less superficially-similar
known words were taken into account. This result
shows that segmentation by known words tended
to benefit compound words in CARD, and approxi-
mate string matching tended to benefit misspellings
in TOEFL. This is reasonable since we can guess
the meaning of a compound word in a construc-
tive way and the meaning of a misspelled word by
considering words with close spellings.

4.2 Extrinsic evaluations: NER and POS
tagging

We then conducted extrinsic evaluations on NER

and POS tagging using the proposed and baseline
methods to compute OOV embeddings. In addi-
tion to the baselines in the intrinsic evaluation,
we used two baselines for comparison: a single
unknown embedding (Single-UNK) and a context-
based model (HiCE) (Hu et al., 2019). Single-UNK
trains a single embedding for OOV words in training
on downstream datasets. HiCE uses only context
information to encode target OOV words. We also
evaluated combinations of individual surface-based
methods with HiCE. We integrated of a surface em-
bedding, esurface, and a context embedding, econtext,
following Schick and Schütze (2019):

e = (1− α) · esurface + α · econtext (10)

α = sigmoid(W [esurface; econtext]). (11)

We simultaneously trained W as well as esurface

and econtext with the pre-trained embeddings.

Datasets #sents. OOV%
token type

Twitter NER
RARE-NER (Derczynski et al., 2017) 5690 7% 27%
MULTI-NER (Zhang et al., 2018) 8257 16% 49%

Biomedical NER
BC2GM (Smith et al., 2008) 20,131 2% 22%
BC4CHEMD (Krallinger et al., 2015) 87,685 2% 29%
BC5CDR (Wei et al., 2016) 13,938 1% 8%
NCBI-DISEASE (Dogan et al., 2014) 7287 2% 13%

Twitter POS
ARK (Gimpel et al., 2011) 1827 11% 29%
T-POS (Ritter et al., 2011) 787 7% 20%
DCU (Foster et al., 2011) 519 4% 10%

Table 3: Datasets used in extrinsic evaluations.

Datasets and experimental settings

We evaluated whether the computed embeddings
captured semantic and morphosyntactic informa-
tion through NER and POS tagging on domains
where many OOV words appear. Table 3 shows
a summary of the datasets used in the extrinsic
evaluations. Here, OOV% represents the OOV word
rate in each dataset. For each dataset, we used the
standard split for training, development, and test
sets. We used the training data of T-POS for the
DCU training following Derczynski et al. (2013).

We adopted the Bi-LSTM-CRF (Lample et al.,
2016) and Bi-LSTM tagger (Pinter et al., 2017) for
NER and POS tagging and measured the perfor-
mance in terms of the classification accuracy and
entity-level F1 score, respectively. We used two
bidirectional LSTM layers of hidden size 200 for
the two taggers. In the training of both taggers,
we adopted Adam with a learning rate of 10−3 as
the optimizer. We set the gradient clipping as 1,
the dropout rate as 0.5, and the number of epochs
as 50, and the batch size was 500 for the biomed-
ical NER datasets and 50 for the Twitter POS and
NER datasets, and we then chose the model at the
epoch that achieved the best performance on the
development data.

When training the taggers, we fixed their embed-
ding layers to the pre-trained embeddings or OOV

embeddings computed by each method except for
the shared OOV embedding in Single-UNK. Since
HiCE uses an external corpus [here, Wikitext-
103 (Merity et al., 2017)] as contexts for training,
we trained all the methods to compute OOV embed-
dings using a part of the pre-trained embeddings
used for training in the intrinsic evaluations whose
contexts are available in Wikitext-103. In training
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RARE-NER MULTI-NER BC2GM BC4CHEMD BC5CDR NCBI-DISEASE

ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

Single-UNK 37.4 4.0 69.0 29.6 77.5 76.1 85.0 71.1 84.8 64.0 82.7 67.3
BoS 38.6∗ 6.9∗ 68.6 28.3 77.4 76.4 84.8 70.4 84.7 59.2 81.8 66.1
KVQ-FH 38.4 6.5∗ 67.9 27.3 77.4 76.6 84.9 71.0 84.6 59.6 82.1 67.3
Simple back-off 38.5∗ 19.1∗ 67.5 40.3∗ 78.1∗ 78.1∗ 86.0∗ 76.4∗ 85.0 66.2∗ 82.7 76.2∗

This work 39.1 12.1∗ 69.5 37.9∗ 78.7∗ 79.5∗ 86.6∗ 79.2∗ 85.2∗ 72.7∗ 82.5 77.2∗

HiCE 36.4 3.4 67.6 26.8 77.0 76.0 84.7 70.8 84.3 62.9 82.8 72.1
+BoS 38.1∗ 4.7∗ 67.9∗ 27.5 77.5∗ 76.3 84.7 70.6 84.8∗ 60.2 82.5 67.3
+KVQ-FH 36.8 4.8 67.9∗ 27.3 77.6∗ 76.2 84.7 71.5 84.9∗ 62.2 82.2 66.1
+Simple back-off 36.7 17.6∗ 68.2∗ 39.5∗ 78.1∗ 78.3∗ 86.2∗ 77.0∗ 84.9∗ 66.0∗ 83.0 71.0
+This work 38.4∗ 12.4∗ 69.2∗ 37.9∗ 78.1∗ 79.4∗ 86.6∗ 79.1∗ 85.3∗ 74.1∗ 83.4 77.6∗

Table 4: Results of extrinsic evaluations of OOV embeddings for Twitter and biomedical NER; numbers indicate
best F1 among all methods with each and all resource settings, respectively. * indicates statistically significant
improvements (p < 0.05) over Single-UNK and HiCE by paired permutation test.6

ARK T-POS DCU

ALL OOV ALL OOV ALL OOV

Single-UNK 82.6 53.9 81.0 56.7 82.1 62.1
BoS 82.7 53.1 80.3 53.9 81.9 62.9
KVQ-FH 82.5 53.9 80.5 54.5 82.0 62.9
Simple back-off 84.5∗ 71.8∗ 81.5∗ 68.0∗ 82.4 71.8∗

This work 85.3∗ 74.3∗ 81.5 69.1∗ 82.9∗ 74.2∗

HiCE 81.2 54.1 80.5 57.3 81.3 61.3
+BoS 82.8∗ 53.8 80.2 53.4 81.9∗ 59.7
+KVQ-FH 82.8∗ 54.0 80.3 53.9 81.9∗ 58.9
+Simple back-off 84.5∗ 71.7∗ 81.7∗ 68.5∗ 82.1∗ 70.2∗

+This work 85.1∗ 74.7∗ 81.5∗ 69.1∗ 83.1∗ 72.6∗

Table 5: Results of extrinsic evaluations of OOV embed-
dings on Twitter POS tagging; numbers indicate best ac-
curacy among all methods with each and all resource
settings, respectively. * indicates statistically signifi-
cant improvements (p < 0.05) over Single-UNK and
HiCE by Mann-Whitney U test.

HiCE, we set the hidden size as 300, intermediate
hidden size as 600, number of self-attention layers
as 2, number of self-attention heads as 10, dropout
rate of the context encoder and multi-context ag-
gregator as 0.3, the maximum number of contexts
as 10, and the context window size as 10. With the
trained HiCE, we computed the embeddings for
OOV words from their contexts in the training/test
data of the target task and Wikitext-103.

Results
Tables 4 and 5 list the results for the two tasks.
Here, ALL shows the overall performance, and
OOV indicates the performance only on words or
entities that are absent from the training data7 and

6http://cr.fvcrc.i.nagoya-u.ac.jp/
˜sasano/test/permutation.html

7This is because the models will be able to handle words in
the training data regardless of the quality of their embeddings.

(BC2GM) inhibitor of influenzavirus neuraminidasesI-GENE .

BoS peptidases peroxidases proteinases es-
terases oxidases

O

This work neuraminidase Neuraminidase hemag-
glutinin sialidase haemagglutinin

I-GENE

(BC5CDR) during amphotercinB-Chemical B administration .

BoS amphora rhamphotheca gargantua
verticillated canorous

O

This work Amphotericin Amphoteric ampho-
tericin AmB amphoteric

B-Chemical

(BC4CHEMD) A new chromoneB-Chemical from the leaves of

BoS kairomones pheromone
pheromones Pomone neuropeptide

B-Chemical

This work chromos chromosones chromo
givesome chromosone

O

Table 6: Example outputs for biomedical NER and
nearest-neighbor known words for computed OOV em-
beddings of target OOV words.

have no GloVe embeddings. The proposed method
outperformed the baselines for OOV words, except
for RARE-NER and MULTI-NER. This result con-
firms the effectiveness of the proposed method in
computing OOV embeddings.

The proposed method exhibited additive im-
provements over HiCE. The tendency for the
surface-based methods to outperform the purely
context-based baseline HiCE suggests that the
LSTM models for the downstream tasks already
captured the contextual information.

Examples Table 6 shows examples of the system
outputs. The proposed method successfully pre-
dicted word embedding for two OOV words: “neu-
raminidases” (a plural form of “neuraminidase”)

http://cr.fvcrc.i.nagoya-u.ac.jp/~sasano/test/permutation.html
http://cr.fvcrc.i.nagoya-u.ac.jp/~sasano/test/permutation.html
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RARE-NER MULTI-NER BC2GM BC4CHEMD BC5CDR NCBI-DISEASE

ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

BERT 43.7 26.0 72.5 57.6 79.9 79.8 85.6 79.3 84.7 71.7 84.5 85.7
+BoS 44.4 29.7∗ 73.0∗ 57.2 80.2 79.1 87.0∗ 78.6 85.2∗ 71.8 85.9∗ 84.9
+KVQ-FH 43.3 25.6 72.1 56.7 80.5∗ 80.0 86.8∗ 78.3 85.4∗ 69.3 86.1∗ 82.9
+Simple back-off 42.8 28.3 73.1∗ 58.1 79.8 79.4 86.4∗ 78.3 85.4∗ 73.1 85.6∗ 81.8
+This work 44.6 23.2 73.5∗ 57.7 80.9∗ 81.2∗ 86.8∗ 79.1 85.7∗ 71.4 85.7∗ 82.0

Table 7: Results of BERT fine-tuning with and without proposed extension on Twitter and biomedical NER; *
indicates statistically significant improvements (p < 0.05) over BERT by paired permutation test.

ARK T-POS DCU

ALL OOV ALL OOV ALL OOV

BERT 92.1 88.3 90.3 87.7 90.5 85.4
+BoS 92.2 87.3 90.4 88.4 90.7 87.8
+KVQ-FH 92.4 88.4 90.8∗ 88.4 90.6 87.0
+Simple back-off 92.4 88.4 90.5 88.4 90.2 84.5
+This work 92.4 88.7 90.8∗ 88.4 90.4 85.4

Table 8: Results of fine-tuned BERT model with and
without proposed extension for Twitter POS tagging;
* indicates statistically significant improvements (p <
0.05) over BERT by Mann-Whitney U test.

and “amphotercin” (a misspelling of “ampho-
tericin”), while BoS was strongly influenced by the
subwords contained in the OOV words. As shown
in the last example, however, the proposed method
wrongly predicted “chromone” (a chemical com-
pound) as “chromosome” away from the correct
domain. This example suggests the limitations of
using a surface-based approach that does not utilize
context information.

4.3 Extrinsic evaluation: extension to BERT

To investigate the effectiveness of integrating our
OOV embeddings into the BERT, we conducted ex-
periments on the downstream tasks. We used BERT

with a token classification head on top (Wolf et al.,
2019) for POS tagging and that with a CRF layer
for NER. In the integration of surface-based em-
beddings into BERT (§ 3.3), we fixed the surface-
based embeddings and fine-tuned the WordPiece
subword embeddings and model parameters of the
BERT. We adopted Adam with a learning rate of
5× 10−5 as the optimizer, and we set the number
of epochs as 20, the batch size as 16, and other
hyper-parameters the same as Wolf et al. (2019).
To ensure that the number of tokens did not exceed
the maximum length limit of BERT,8 we only used

8Due to this limitation, several test examples are removed
from the original test data of NER except for MULTI-NER.
Thus, it is difficult to compare numbers in Table 4 and Table 7.

(RARE-NER) is that Mauro renalloI-person ?

BERT <renal|lo> O

+This work Ranallo Mathhew Prazak Bed-
narski Lesie

I-person

(BC5CDR) - bound dimethylarsenic ( DMAsB-Chemical ) ,

BERT <dime|thy|lars|eni|c> O

+This work dimethylamine dimethylated
dimethyl morpholine

B-Chemical

(BC5CDR) A phase I clinical study of the antipurineB-Chemical

BERT <anti|puri|ne> B-Chemical

+This work anti-mine antisubmarine antimy-
cotic glutethimide impetiginous

O

Table 9: Example outputs for Twitter/biomedical NER
and BERT tokenization and nearest-neighbor known
words for computed embeddings of OOV words.

sentences with 100 words or less for all datasets in
the fine-tuning of the BERT model.

Tables 7 and 8 show a comparison of the BERT

models with and without the proposed extension
in POS tagging and NER. Our extension to BERT

improved the overall performance on all datasets
except for DCU; all the improvements were signif-
icant except for RARE-NER and ARK. Although
our extension was sometimes harmful in recog-
nizing entities that have OOV words (RARE-NER,
BC4CHEMD, BC5CDR, and NCBI-DISEASE), it still
improved the overall performance. We consider
this to be because our extension helps BERT utilize
contexts with OOV words to classify known words.

Examples Table 9 shows examples of the system
outputs. The proposed method successfully pre-
dicted word embeddings for two OOV words: “re-
nallo” (a person) and “dimethylarsenic” (a chemi-
cal compound), while the BERT tokenizer tokenized
these words into short pieces, which might have
lead to the incorrect labels. As shown in the last
example of “antipurine,” however, the proposed
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method was influenced by words with common
prefixes <anti and predicted a wrong embedding
away from the context.

4.4 Extrinsic evaluation: adversarial typos

Finally, we evaluated the robustness to adversar-
ial attacks on the extension to BERT-based fine-
tuning. We considered adversarial typos on a key-
board (Pruthi et al., 2019; Sun et al., 2020) to con-
sider natural perturbations in the real world.

We describe the generation of adversarial per-
turbation via keyboard typos. First, we selected
words to be edited according to the max-grad pol-
icy (Sun et al., 2020). We computed the gradients
of a pre-trained BERT classifier at a time and se-
lected words in order of larger gradients. Second,
we explored four types of subtle character-level
edits for each word: (i) swapping two adjacent
characters in a word, (ii) removing a character in
a word, (iii) replacing a character with an adjacent
character on the keyboard, and (iv) inserting an ad-
jacent character on the keyboard before a character
in a word. We did not edit stop words or words
with less than three characters, following Pruthi
et al. (2019). To reduce the computational cost,
we limited the number of candidates of typos to
N typos randomly. In this paper, we set the hyper-
parameters as K ∈ {0, 1, 3, 5}, N = 10.

We used movie reviews from the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013), which
consists of 8544 movie reviews. With only positive
and negative reviews, we trained a BERT with a
sequence classification head on top (Wolf et al.,
2019) to generate the adversarial examples de-
scribed above. We evaluated the accuracy for the
BERT-based fine-tuning model and a word-based
LSTM model with and without embeddings com-
puted with the proposed method. For comparison,
we also evaluated a variant of our extension to BERT

that assigns a zero vector instead of embeddings
computed by the proposed method to OOV words
(+GloVe). As with the LSTM tagger in § 4.2, we
used two bidirectional LSTM layers of hidden size
200. In the training of both models, we adopted
Adam with a learning rate of 5×10−5 for the BERT

model and of 10−3 for the LSTM model, set the gra-
dient clipping as 1, the dropout rate as 0.5, the
number of epochs as 10, and the batch size as 16.

Table 10 shows the results for the sentiment clas-
sification task. K in the table indicates the num-
ber of words edited in a text, and #tokens per

K 0 1 3 5
#tokens per word 1.20 1.26 1.34 1.40

BERT 90.6 78.8 57.0 39.8
+GloVe 89.2 80.3 64.4∗ 51.8∗

+This work 89.2 79.9 66.8 53.8∗

LSTM 77.5 73.8 67.0 62.7
+GloVe 86.1∗ 80.8∗ 73.4∗ 66.7
+This work 85.8∗ 81.5∗ 75.4∗ 70.7∗

Table 10: Results of BERT model with and without
embeddings computed with the proposed method on
SST with adversarial perturbations. #tokens per
word indicates average number of tokenized subwords
in word. * indicates statistically significant improve-
ments (p < 0.05) over BERT and LSTM by Mann-
Whitney U test.

words indicates the average number of subwords
in words when the words were tokenized with the
BERT tokenizer. Although this result shows that
the BERT outperformed the other models without
any perturbations (K = 0), its performance de-
graded as K and #tokens increased, which is
consistent with (Sun et al., 2020). Moreover, the
proposed method could mitigate this performance
degradation of both BERT and LSTM models.

5 Conclusion

In this paper, inspired by two major processes for
creating words, we proposed a method for com-
puting OOV word embeddings by learning the sim-
ilarities between a target OOV word and known
words and integrated the method into BERT. We
conducted intrinsic and extrinsic evaluations, and
we confirmed that the proposed method more suc-
cessfully mimics the pre-trained word embeddings
for OOV words than existing subword-based meth-
ods that suffer from the noisiness and ambiguity
of intermediate subwords. The proposed method
boosted the performance of BERT and equipped
BERT with robustness to adversarial typos.

We will release all code to promote the repro-
ducibility of our results.9 In future work, we will
investigate better integrating our method into BERT.
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