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Abstract

Named Entity Recognition (NER) is deeply

explored and widely used in various tasks.

Usually, some entity mentions are nested in

other entities, which leads to the nested NER

problem. Leading region based models face

both the efficiency and effectiveness challenge

due to the high subsequence enumeration com-

plexity. To tackle these challenges, we pro-

pose a hierarchical region learning framework

to automatically generate a tree hierarchy of

candidate regions with nearly linear complex-

ity and incorporate structure information into

the region representation for better classifi-

cation. Experiments on benchmark datasets

ACE-2005, GENIA and JNLPBA demonstrate

competitive or better results than state-of-the-

art baselines.

1 Introduction

As a fundamental information extraction task,

Named Entity Recognition (NER) is widely used

in various downstream tasks, such as entity linking

and entity search. Most studies assigns a label to

each token of the sequence for the flat NER prob-

lem (Lample et al., 2016). However, it is common

that entities are embedded in other entities in many

domains (Kim et al., 2003; Ringland et al., 2019).

Example from ACE-2005 dataset shown in Fig. 1

illustrates that the top-level PER entity includes a

nested entity with ORG label. How to recognize

all entities recursively from innermost to outermost

is referred to as the Nested NER problem.

Figure 1: Illustration of nested entities and constituent

parsing tree

∗ Corresponding author.

Existing approaches mainly solve the nested

NER problem by classifying all candidate sub-

sequences (a.k.a regions). The key to region

based methods lies in candidate region detection.

one kind is the brute force method (Sohrab and

Miwa, 2018) to enumerate all possible O(n2) sub-

sequences for each sentence with n words. The

other kind (Zheng et al., 2019) is to generate and

classify candidate regions in a two-stage paradigm,

often leading to cascaded errors. Thus region

based methods face efficiency and effectiveness

challenges.

To tackle these challenges, we propose a

Hierarchical Region learning framework, referred

to as HiRe. First, inspired by constituent parsing

tree as the top of Fig. 1 and its neural syntactic

distance (Shen et al., 2018), we introduce the co-

herence measure between adjacent regions. Then

we generate a region tree for each sentence by merg-

ing two adjacent regions recursively based on this

region coherence measure in a bottom-up manner.

Finally, hierarchical regions are classified based on

the boundary and merging word representation. We

train the hierarchical region generation and classifi-

cation tasks simultaneously.

Experimental results on three benchmark

datasets ACE-2005, GENIA and JNLPBA demon-

strate that HiRe shows the competitive or better

performance than baselines. HiRe generates only

O(n) candidate regions about 77.9% less than the

brute-force method and achieves 98.1% true region

recall in the GENIA dataset, a good trade-off be-

tween efficiency and effectiveness.

2 Related Work

Given a sentence of n words (w1, . . . , wn), the

nested named entity recognition task aims at iden-

tifying all the entities especially when one entity

subsequence (wi, . . . , wj), i < j contains others

(wp, . . . , wq), i ≤ p < q ≤ j. According to re-

duced different problems, existing nested NER
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models mainly fall into three categories.

Sequence labeling models assign multiple la-

bels to each word assuming that one word may

belong to multiple entities, such as linearization

method (Straková et al., 2019) and layered CRF (Ju

et al., 2018).

Structured label classification models capture

the label relationship of a sentence for better perfor-

mance. (Lu and Roth, 2015; Wang and Lu, 2018)

proposed hyper-graphs models to describe the label

relationship, and either human designed or latent

features were adopted for classification.

Region based models were summarized by (Lin

et al., 2019) as obtaining all possible regions

and assigning labels to regions. The key to re-

gion classification models is how to obtain candi-

date regions from a sentence. One is the brute-

force method (Sohrab and Miwa, 2018; Xia et al.,

2019), which enumerates all subsequences of a sen-

tence for classification with high time complexity.

The other is to formulate the task as a two-stage

paradigm. (Zheng et al., 2019; Tan et al., 2020) de-

tected a small set of candidate regions with high ef-

ficiency, but only about 80% entities could be found

in the first stage, making a performance bottleneck.

Some studies (Finkel and Manning, 2009) lever-

aged the external knowledge, such as constituent

parsing tree, to guide the first step, which achieved

impressive performance but suffered from the cu-

bic time complexity and error propagation from

external tools. Most methods above represented

the region as the average or weighted sum of word

representations, ignoring the region structure.

3 Methods

To tackle efficiency and effectiveness challenges in

region based methods, we propose a Hierarchical

Region learning framework for nested NER prob-

lem, namely HiRe in Fig. 2.

3.1 Overall Architecture

Specifically, we first obtain word representations

through the encoder layer. Then, we introduce a

word coherence measure based on word represen-

tations through word coherence layer. Next, region

coherence measure is derived from the word coher-

ence, two adjacent regions are recursively merged

based on this measure, and a tree of regions is

generated for each sentence. Finally, we use a rank-

ing loss of region boundaries for region generation

task and cross entropy loss of labeling candidate

regions for entity recognition task in a multi-task

framework.

Encoder

Word Coherence

Region Coherence

Hierarchical Region

Region Classification

1w 2w 3w 4w

1 2 PER
w w 1 2 3 ORG

ww w

CE Loss

Ranking 
Loss

POS 
Tagger

Figure 2: Architecture of HiRe.

Encoder Layer. Consider the i-th word wi

in a sentence with n words, we represent it by

concatenating their word embedding xwi , part-of-

speech(POS) embedding xpi and character-level

embedding xci together. The character-level em-

beddings are generated by a convolutional neural

network module with the same setting as (Yang

et al., 2018) to capture the orthographic and mor-

phological features of the word. Then, we em-

ploy a bi-directional LSTM to obtain the long-term

context-aware representation as:

xti = [xwi ;x
p
i ;x

c
i ], (1)

−→
h i = LSTM(xti,

−→
h i−1), (2)

←−
h i = LSTM(xti,

←−
h i+1), (3)

hi = [
−→
h i;

←−
h i], (4)

Word Coherence. Word context representa-

tions {ht}n−1
t=0 are fed to the convolutional ker-

nel with window size 2 to obtain the local fea-

ture between adjacent words g0, g2, ...gn−2 =
CONV (h0, h1, . . . , hn−1). Then these features

are input into a 2-layers feed-forward network

(FFN) to obtain the word coherence measure

{dt}n−2
t=0 , where dt indicates the affinity between

word wt and wt+1. The higher this measure, the

more coherent adjacent words.

Region Coherence. A subsequence of the sen-

tence composed of consecutive words is called a

region denoted as Ri,j = (wi, . . . , wj). Based on

the word coherence measure, we define the region

coherence based on adjacent words between two
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adjacent regions in Eq.(5). It indicates how likely

two adjacent regions are to be a whole.

d(Ri,j ,Rj+1,k) = dj , i ≤ j < k, (5)

Hierarchical Region Generation. Based on

region coherence measure, we build the region

hierarchy from bottom to up recursively as fol-

lows. At 1-st level for initialization, each word

is treated as a region and the leaf node in

this tree. At t-th level, two regions Ri,k and

Rk+1,j will be merged into Ri,j at the merging

point k if d(Ri,k,Rk+1,j) > d(Rp,i−1,Ri,k) and

d(Ri,k,Rk+1,j) > d(Rk+1,j ,Rj+1,q). Ri,j will

be used at the following levels instead of Ri,k and

Rk+1,j . Because each k has one chance to be the

merging point, this merging operation will be re-

peated at most n− 1 times. The process will gener-

ate about O(n) candidate regions. Fig. 3 illustrates

this generation process of the example sentence

from Fig. 1, where blocks with the same color are

of the same region. Practically, it is not essen-

tial to generate the whole tree with the restraint of

maximum entity length, which further reduces the

number of candidate regions.

id id id id id

iwiwiw

id

iwwiiwiw

Figure 3: Hierarchical Region Generation for Fig. 1,

where wi+l represents the (i + l)-th word in the se-

quence. The blue histograms on the bottom represent

the coherence scores, and the blocks with the same

color in each layer indicate they have been merged into

a region.

Region Classification. Here a region is com-

posed of two sub-regions. For a region Ri,j with

its merging point k generated by the above steps,

we adopt gk as the representation of its sub-regions

Ri,k and Rk+1,j . To make the classifier more sensi-

tive to entity boundaries, both boundary and merg-

ing word representations are concatenated as region

Ri,j’s representation v[i,j] = [hi; gk;hj ], namely

hierarchical region representation. If i = j, we set

v[i,i] to [hi;hi;hi]. Next, a 2-layer feed-forward

network is to predict the probability that region

Ri,j belongs to entity category c as Eq.(6).

p(c|Ri,j) = Softmax(FFN(v[i,j])) (6)

3.2 Learning and Inference
We train both the hierarchical region generation and

classification tasks simultaneously in a multi-task

framework as Eq.(7).

L = αLregion + (1− α)Llabel (7)

For the hierarchical region generation task, we

propose to optimize the pairwise ranking loss

Lregion in Eq.(8) to emphasize the partial order

between inner and boundary word coherence in-

stead of their values. The predicted partial order is

determined by the learned boundary and inner word

coherence scores. The loss function is reduced to

each region difference between the predicted and

ground truth region hierarchy.

However, The ground truth partial order is un-

available in datasets. To solve this problem, we

generate the ground truth coherence scores based

on the rule that the boundary word wi−1 and wj

coherence is always smaller than the inner word

{wt}j−1
t=i coherence for each ground truth entity re-

gion Ri,j . Considered the hierarchy of entity, we

define the ground truth word coherence as a log-

arithmic function of length. Specifically, Ground

truth boundary word coherences d̄i−1 and d̄j are

defined as −(�log2(j − i+2)�+1). Ground truth

inner word coherence {d̄m}j−1
m=i are randomly gen-

erated from [−1,−�log2(j − i + 2)�]. Predicted

word coherences {dt}jt=i−1 are derived through

above layers.

∑

∀Ri,j

∑

l = i − 1, j
m ∈ [i, j − 1]

[1− sign(d̄l − d̄m)(dl − dm)]+

(8)

For the region classification task, the cross en-

tropy loss function Llabel is utilized with a softmax

classifier based on the probabilities in Eq.(6).

4 Experiments

To investigate the effectiveness and efficiency of

our proposed method, we conduct comprehensive

experiments on three benchmark NER datasets.

4.1 Experimental Setting
NER datasets with some nested entities are re-

ferred to as nested NER datasets, while NER
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Model ACE-2005 GENIA

P R F P R F

Layered-CRF (Ju et al., 2018)♦ 74.2 70.3 72.2 78.5 71.3 74.7

Segm. HG (Wang and Lu, 2018)�[POS] 76.8 72.3 74.5 77.0 73.3 75.1

Exhaustive (Sohrab and Miwa, 2018) 5 - - - 74.6 68.2 71.2

ARNs (Lin et al., 2019)[POS] 76.2 73.6 74.9 75.8 73.9 74.8

M&L (Fisher and Vlachos, 2019) 75.1 74.1 74.6 - - -

Bound. Aware (Zheng et al., 2019) - - - 75.9 73.6 74.7

BENSC (Tan et al., 2020)[POS] 77.1 74.2 75.6 78.9 72.7 75.7

Our Model(LSTM)[POS] 78.5 74.6 76.5 77.4 73.9 75.6

Table 1: Experimental results on ACE-2005 and GENIA. ♦ represents the sequence labeling model, � repre-

sents the structure label classification model, and others are region classification models. [POS] represents these

methods use POS tags as features.

datasets without nested entities are called as flat

NER datasets. We evaluate our model on the nested

NER dataset ACE-2005 1 and GENIA2(Kim et al.,

2003), which contain 36.4% and 21.8% nested enti-

ties respectively. We follow the same dataset setup

as previous work (Wang and Lu, 2018; Lin et al.,

2019). We also conduct ablation experiments on

the flat NER dataset JNLPBA (Collier and Kim,

2004), and pre-processed data is obtained from

(Zheng et al., 2019).

HiRe was implemented by Pytorch3. Stanford

CoreNLP toolkit(Manning et al., 2014) was used

to split sentences and for POS tagging. We use

ADAM(Kingma and Ba, 2015) for optimization

with batch size 32 and learning rate 0.001. Word

embeddings are initialized with pretrained 200-

dimension Glove vectors(Pennington et al., 2014)4.

Dimensions of POS tag embedding, character em-

bedding, LSTM layer and hidden units are 50, 100,

2 and 256 respectively. The dropout ratio is 0.2
and α is 0.4. We use BERTbase for word represen-

tations and fine tune parameters with learning rate

3e−5. The maximum number of hierarchical layer

t is set as 8, 6, 6 on ACE, GENIA and JNLPBA

separately.

4.2 Effectiveness Analysis
Table 1 shows the performance comparison be-

tween HiRe and baselines on ACE-2005 and GE-

NIA datasets using Bi-LSTM as the encoder. On

ACE-2005, F1 score of HiRe achieves 76.5% and

is improved by 0.9% compared with SOTA. On GE-

NIA, its F1 score is 75.6%, which is competitive to

1https://catalog.ldc.upenn.edu/LDC2006T06
2http://www.geniaproject.org/genia-corpus/term-corpus
3https://pytorch.org/
4http://nlp.stanford.edu/data/glove.6B.zip

Model P R F

(Xia et al., 2019) 79.0 77.3 78.2

(Fisher and Vlachos, 2019) 82.7 82.1 82.4

(Tan et al., 2020) 83.8 83.9 83.9

Our Model 83.0 86.3 84.6

Table 2: Experimental results on ACE-2005 with pre-

trained language models.(Xia et al., 2019) use ELMo,

and the others use uncased BERT-Base.

baselines. The performance gain on ACE-2005 is

due to the high recall in the region generation step

and the incorporation of region structure into its

representation in region classification step. Higher

performance on ACE-2005 means that HiRe per-

forms better on datasets with more nested entities.

Considering baselines with pre-trained language

model, we replace LSTM encoder with BERTbase

in HiRe. Experimental results are listed in Table 2.

Our model significantly outperforms baselines. As

far as we know, the only reported higher F1 score

(Li et al., 2019) on ACE-2005 is obtained from

BERTlarge with three times parameter number of

BERTbase to learn and infer with low efficiency.

4.3 Efficiency Analysis

Given a sentence with n words, the brute force

method enumerates O(n2) candidate regions.

HiRe generates O(n) candidate regions. (Zheng

et al., 2019) finds candidate regions through a

token-wise classification with O(n) time complex-

ity. For sentences in GENIA, the number of candi-

5Due to different experimental settings, we reproduced
(Sohrab and Miwa, 2018) under the same setting with other
baselines and obtained performances similar to results in
(Zheng et al., 2019). The other results were taken from their
papers
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Model P R F

(Lample et al., 2016) 69.1 74.2 71.6

(Sohrab and Miwa, 2018) 69.4 73.1 71.2

(Zheng et al., 2019) - - 73.6

Our Model 72.5 75.6 74.0

Table 3: Experimental results on JNLPBA.

date regions generated by HiRe is 77.9% less than

that of the enumeration method discarding 1.3%
long entities and more than that of (Zheng et al.,

2019). However, the true recall of candidate re-

gions generated by the enumeration method and

HiRe are 98.7% and 98.1%, respectively. The re-

call of the start/end boundary generated by (Zheng

et al., 2019) is 84.3%/87.2%. In this sense, HiRe

finds a relatively smaller (20% or so) but higher

quality (true recall 98.1%) subset of all regions,

which is a good trade-off between efficiency and

effectiveness.

4.4 Ablation Study

To prove our model can also work on flat NER

task, we conduct ablation experiments on JNLPBA

dataset. We compare our model with a standard

flat NER benchmark (Lample et al., 2016) and two

nested NER methods. Our model achieves 74.0%

in F1 measure, which outperforms these baselines

showed in Table 3.

To analyze the role of Hierarchical Region

Representation, denoted as HRR in HiRe, we com-

pare performances of HiRe with and without it on

ACE-2005. HiRe without HRR employs Average

Word Representation (denoted as AWR) instead

with precision 78.3%, recall 73.7% and F1 mea-

sure 75.9%. In contrast to HiReAWR, the absolute

F1 measure improvement of HiReHRR is 0.6%. In

all, HRR plays an essential part in HiRe.

The reason lies in that the HRR treats each region

as a hierarchical structure composed of two sub-

regions rather than a flat structure as AWR does.

The hierarchical structure will put more emphasis

on some words while the flat structure treats each

word equally in AWR. For example, the minister
of the department of education composed of the
minister and of the department of education two

regions should be labeled with PER but may be

misclassified into ORG with AWR.

5 Conclusion

Leading region based approaches to nested NER

face the efficiency and effectiveness challenges.

We propose a hierarchical region framework to gen-

erate hierarchical regions and assign those regions

with hierarchical representation an entity categor-

ical label together. Experimental results demon-

strate a significant improvement of our proposed

framework in terms of efficiency and effectiveness

than SoTA baselines. In future work, how to repre-

sent hierarchical regions better will be considered.
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