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Abstract

In this paper, we propose a simple and ef-
fective technique to allow for efficient self-
supervised learning with bi-directional Trans-
formers. Our approach is motivated by recent
studies demonstrating that self-attention pat-
terns in trained models contain a majority of
non-linguistic regularities. We propose a com-
putationally efficient auxiliary loss function to
guide attention heads to conform to such pat-
terns. Our method is agnostic to the actual pre-
training objective and results in faster conver-
gence of models as well as better performance
on downstream tasks compared to the base-
lines, achieving state of the art results in low-
resource settings. Surprisingly, we also find
that linguistic properties of attention heads are
not necessarily correlated with language mod-
eling performance.1

1 Introduction

Recent advances in self-supervised pre-
training (Radford et al., 2018; Devlin et al.,
2018a; Liu et al., 2019) have resulted in im-
pressive downstream performance on several
NLP tasks (Wang et al., 2018, 2019). However,
this has led to the development of enormous
models, which often require days of training on
non-commodity hardware (e.g. TPUs) (Kaplan
et al., 2020). Furthermore, studies have shown
that it is quite challenging to successfully train
these large Transformer models (Vaswani et al.,
2017), requiring complicated learning schemes
and extensive hyperparameter tuning (Xiong et al.,
2020; Raffel et al., 2019; Popel and Bojar, 2018).

Despite these expensive training regimes, re-
cent studies have found that once trained, these
bi-directional language models exhibit simple pat-
terns of self-attention without much linguistic back-
ing (Voita et al., 2019; Raganato and Tiedemann,

1Code: https://github.com/ameet-1997/AttentionGuidance
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Figure 1: Attention patterns of our model (left) and
the default RoBERTa model (right) after 0% (top), 1%
(middle) and 100% (bottom) of pre-training. Induc-
ing simple patterns (left) using an auxiliary loss leads
to benefits in convergence speed, downstream perfor-
mance, and robustness to hyperparameters.

2018). For example, 40% of heads in a pre-trained
BERT model (Devlin et al., 2018a) simply pay at-
tention to delimiters added by the tokenizer (e.g.
[CLS] or [SEP]) (Kovaleva et al., 2019). Since
these attention patterns are independent of linguis-
tic phenomena, a natural question arises: can Trans-
former models be guided towards such attention
patterns without requiring extensive training?

In this paper, we propose an attention guid-
ance (AG) mechanism for self-attention modules
in Transformer architectures to enable faster, more
efficient, and robust self-supervised learning. Our
approach is simple and agnostic to the training ob-
jective. Specifically, we introduce an auxiliary loss
function to guide the self-attention heads in each
layer towards a set of pre-determined patterns (e.g.
Figure 1 (Vig, 2019)). These patterns encourage
the formation of both global (e.g. attend to [CLS],
[SEP] tokens) and local (e.g. attend to [Next],
[Prev] token) structures in the model.

Through several experiments, we show that our
approach enables training large Transformer mod-
els considerably faster — for example, we can
train a 16-layer RoBERTa model with SOTA per-
formance on a low-resource domain in just two

https://github.com/ameet-1997/AttentionGuidance
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days using four GPUs, while excluding our loss
leads to slow or no convergence. Our method also
achieves competitive performance with BERT (De-
vlin et al., 2018a) on three English natural lan-
guage understanding tasks, and outperforms the
baseline masked language modeling (MLM) mod-
els on eleven out of twelve settings considered.

Further, we also show that our initialization is
agnostic to the training objective by demonstrating
gains on the replaced token detection objective pro-
posed by ELECTRA (Clark et al., 2020) and on
machine translation with Transformers. Finally, we
provide an analysis of the attention heads learned
using our method. Surprisingly, contrary to recent
studies (Clark et al., 2019; Lin et al., 2019), we find
that it is possible to train models that perform well
on language modeling without learning a single
attention head that models coreferences.

To summarize, our main contributions are:

• We propose a simple auxiliary loss for self-
attention heads that enables large models to
converge quickly on commodity hardware.

• We demonstrate the effectiveness of our auxil-
iary loss on different languages, model sizes,
and training objectives.

• We provide evidence that the linguistic perfor-
mance of individual attention heads is not a
necessary condition for good language model-
ing (LM) or downstream task performance.

2 Related Work

Improving efficiency of LMs The high compu-
tational costs of BERT-style models have acceler-
ated research on developing efficient contextual lan-
guage models. Clark et al. (2020) used a GAN-like
setup to predict if each word in the input sequence
is corrupted by a generator (another pre-trained
LM). They show that their method is more sample
efficient than the standard MLM objective. Other
studies have explicitly focused on making the self-
attention modules more efficient. Reformer (Ki-
taev et al., 2020) and Sparse Transformer (Child
et al., 2019) introduce locality-sensitive hashing
and sparse factorizations to reduce the quadratic
complexity of dot-product attention, while Long-
former (Beltagy et al., 2020) uses local-windowed
and task motivated global attention to scale the
memory usage of self-attention modules linearly.

Analyzing Self-Attention Recent papers
have analyzed the attention patterns in trained
Transformer-based LMs. Some studies hypothe-
size that multiple attention heads capture linguistic
phenomena like co-reference links and dependency
arcs (Clark et al., 2019; Htut et al., 2019). How-
ever, other studies show that pruning those heads
leads to minimal performance degradation on
downstream tasks (Kovaleva et al., 2019; Michel
et al., 2019). Others note that there are recurring
patterns in attention distributions corresponding to
different attention heads (hereon, heads), which
are not language or task-dependent (Voita et al.,
2019; Raganato and Tiedemann, 2018). While our
study also questions the role of heads for language
modeling and downstream performance, we focus
on making modifications to the LM pre-training
and not on analyzing published pre-trained models.

Constraining Self-Attention Qiu et al. (2019)
enforce local constraints on the attention patterns
to reduce computation and build deeper models
with longer contexts. The studies that are perhaps
most similar to ours explore fixed attention patterns
for machine translation (You et al., 2020; Raganato
et al., 2020). You et al. (2020) replace all atten-
tion heads in the encoder with hard-coded Gaus-
sian distributions centered around the position of
each token while observing a minimal reduction in
BLEU scores. Raganato et al. (2020) substitute all
but one head with fixed attention patterns in each
encoder layer and note little performance degrada-
tion. Both these studies enforce hard constraints
on the self-attention and try to match baselines in
terms of speed and performance. Our approach is
complementary – our attention guidance loss is a
form of soft regularization and outperforms base-
line models both in terms of convergence speed
and quantitative metrics.

3 Approach

3.1 Prelude: The surprising effectiveness of
non-linguistic attention

Several recent studies (Clark et al., 2019; Kovaleva
et al., 2019) have demonstrated that Transformers
trained with the masked language modeling (MLM)
objective exhibit simple self-attention patterns (e.g.,
attending to delimiter tokens). These patterns
(e.g. Figure 2) are consistent across models pre-
trained on different languages, or fine-tuned on
various downstream tasks (Kovaleva et al., 2019).
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Pre-trained (PT) Model SST-2 MRPC QNLI

No PT (Kovaleva et al., 2019) 0.80 0.81/0.68 0.49

Chinese PT (Devlin, 2020) 0.86 0.86/0.81 0.83
French PT (Martin et al., 2019) 0.88 0.88/0.84 0.85

English PT (Devlin et al., 2018a) 0.93 0.89/0.84 0.91

Table 1: Models pre-trained even with French and
Chinese data perform significantly better than no pre-
training on English downstream tasks.

Since these patterns are not linguistically moti-
vated, we hypothesize that pre-training a model
serves the dual purpose of lending linguistic and
non-linguistic structure. To test the impact of the
latter, we finetune CamemBERT (Martin et al.,
2019) (a model pre-trained on the French part of
OSCAR corpus (Suárez et al., 2019)), and BERT-
Base Chinese (Devlin, 2020) (a model pre-trained
on Chinese Wikipedia articles), on three English
downstream tasks (Socher et al., 2013; Rajpurkar
et al., 2016; Dolan and Brockett, 2005). We also
compare with a randomly initialized Transformer,
which is finetuned on downstream tasks without
any pre-training (Kovaleva et al., 2019).

Surprisingly, the results in Table 1 show that
despite both models having mismatched tokens
and being trained on languages with linguistic con-
structs that are different from those of English, their
performance is significantly better than a model
with no pre-training. This corroborates the idea
that the non-linguistic structure in attention heads
is beneficial for learning, and inducing it explicitly
may lead to faster training and better performance.

3.2 Our method: Attention guidance for
Transformers

We first formally define the masked language mod-
eling (MLM) setup with Transformers (Vaswani
et al., 2017) and then describe our attention guid-
ance mechanism.

MLM with Transformers Transformers used
for sequence-to-sequence prediction tasks are
trained on a dataset D of pairs of sequences x and
corresponding labels y. In the case of masked
language modeling (MLM), the input sequence
x1, x2, . . . , xn of length n consists of individual
tokens and the output labels y1, y2, . . . , yn are the
same as the input sequence, i.e., yi = xi. A fraction
k of the input tokens, chosen randomly, are masked,
i.e., replaced with a <MASK> token. Assume that
these masked indices are collected together in a

set C. The MLM objective then is a cross-entropy
loss on the predictions y′j made by the model at the
masked locations j ∈ C, and is used to optimize all
the parameters of the model, θ by minimizing:

LMLM (x,y) = −
∑
j∈C

logP (yj |x; θ)

The Transformer architecture for MLM consists
of ` layers with h self-attention heads per layer. Let
the input activations to layer k of this model be sk,
with |sk| = n. Naturally, s1 = s = x. For every
position p ∈ [1, n] in its output, each attention head
in layer k induces a probability distribution over
all positions in the input sk. Let a single head’s
attention activations (as described in Equation 1 of
(Vaswani et al., 2017)), which is a function of s, be
denoted by the following:

H(s) = softmax
(
QK>√
dk

)
∈ Rn×n, (1)

where Q and K are the query and key matrices
respectively, and dk is the dimensionality of the
queries or keys. Further, let H(s)[p, q] (a scalar)
denote the attention that token p in the head’s out-
put layer pays to token q in the head’s input layer.
We drop the dependence on s in the following sec-
tions for notational convenience.

Guiding attention heads To guide an attention
head, we impose a mean squared error (MSE) loss
on H using a pre-defined pattern P(s) ≡ P ∈
Rn×n, where || · ||F is the Frobenius norm:

Lattn (H,P) = ||H−P||2F (2)

Specifically, we consider two types of patterns:

• Global attention patterns that focus their at-
tention on specific global positions like the
first token of the sequence ([First]), punc-
tuations like the period token ([Period]),
or on delimiters like [CLS] or [SEP] added
by the tokenizer ([Delim]). As an example,

P[First][p, q] =

{
1 if q = 1

0 otherwise

• Local attention patterns that focus either on
the next or the previous token (e.g. [Next],
[Prev]). As an example,

P[Next][p, q] =


1 if q = p+ 1
1
n if p = n

0 otherwise
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Figure 2 displays example P matrices for the
different patterns we use. Note that the first and
the last rows in [Prev] and [Next] patterns
respectively are set to uniform distributions.

Overall loss function We apply the attention
loss in Equation 2 to each head in each layer to
obtain the overall attention guidance (AG) loss:

LAG(x) =
∑̀
k=1

h∑
j=1

Lattn (Hkj ,Pkj)× 1(k, j),

(3)
where 1(k, j) denotes an indicator function which
is 1 only if the jth head in layer k is being guided.

In general, this loss allows for arbitrary choices
of patterns for each Pkj . However, to simplify
matters in our experiments, we guide a particular
head number to the same pattern across all layers,
i.e., P·j is the same for all layers. We utilize the
gradients from this loss to update all the parameters
of the model (including the feedforward and input
embedding layers). It is worth noting that this loss
only depends on the input x and not on labels y.

Finally, we combine our attention guidance (AG)
loss with the MLM loss to get our overall optimiza-
tion objective:

L(θ) = E(x,y)∼D [LMLM (x,y) + αt · LAG(x)]
(4)

where αt is a hyperparameter. In practice, we find
that LAG converges faster than LMLM , so we lin-
early decay αt from an initial value α0 to 0 as the
training progresses (details in Section 4).

4 Experimental Setup

We demonstrate the effectiveness of our attention
guidance loss through several empirical studies.
Specifically, we 1) report convergence results on
masked language modeling, 2) evaluate trained lan-
guage models on downstream tasks, and 3) analyze
the learned attention representations using probes.
For 1) and 2) above, we perform experiments on
both high-resource and low-resource settings.

4.1 Datasets

We use the following datasets spanning three dif-
ferent languages (details in Table 2):

1. English: To train language models, we use
a 2.1 billion token corpus from English
Wikipedia. We download and pre-process
articles according to Shoeybi et al. (2019).

Lang. LM training Downstream task

Train Valid Task # instances Eval. Metric

English 2116M 1%
MNLI 393k Accuracy
QNLI 105k Accuracy
QQP 364k F-1

Filipino 36M 10% SC 10k Accuracy
Oromo 4.6M 3% NER 1k F-1

Table 2: Dataset statistics for LM training and
downstream tasks on English, Filipino, and Oromo.
SC=Sentiment Classification. Filipino and Oromo are
low-resource languages.

For downstream evaluation, we choose three
tasks: QQP2, MNLI (Williams et al., 2017),
and QNLI (Rajpurkar et al., 2016)

2. Filipino: We use a 36 million token corpus of
Wikipedia text collected by Cruz and Cheng
(2020) to train language models, and the ac-
companying binary sentiment classification
task to evaluate downstream performance.

3. Oromo: Our smallest corpus contains 4.6 mil-
lion tokens ((Strassel and Tracey, 2016)). We
use the accompanying named entity tags for
NER, which is our downstream task.

These cover a range of dataset sizes — from high-
resource (English) to low-resource (Oromo).

4.2 Evaluation
Evaluation metrics for the different tasks:

1. Language modeling: We report the training
and validation MLM losses. Even though our
attention guided models are trained with an
auxiliary loss, we report only the MLM loss
for direct comparison with the corresponding
baseline. We also report the average training
loss to compare models’ convergence rates.

2. English downstream tasks: Accuracy for
MNLI and QNLI, and F-1 score for QQP.3

3. Filipino Sentiment Classification: Since the
dataset for Filipino is balanced, we use binary
classification accuracy.

4. Oromo NER: Following Wang et al. (2020),
we perform 10-fold cross-validation and use
the F-1 scores aggregated over 9 tag classes.

2https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

3We report the test scores obtained by submitting to
https://gluebenchmark.com (Wang et al., 2018)

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://gluebenchmark.com
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Figure 2: Example attention patterns used in our AG models for the sentence “<s> Welcome to EMNLP . < /s>”.
Note that the first three patterns ([Next], [Prev], [First]) do not even depend on the input sentence.

4.3 Models and Training
To make comparisons across different settings easy,
we choose RoBERTa (Liu et al., 2019) as the base
architecture for all our experiments. We train vari-
ants with 8, 12, and 16 layers following the con-
figurations given in the original paper (Liu et al.,
2019) on all 3 languages, which gives us a total of
9 settings. Since the current SOTA model for Fil-
ipino (Cruz and Cheng, 2019) is a BERT model, we
train our Filipino models with both the MLM and
next sentence prediction loss. Details of the model
hyperparameters are provided in Appendix A.8.
For each model, we compare its learning with
and without our AG loss. We denote the attention
guided models by RoBERTa-AG and the unmod-
ified versions by RoBERTa-MLM. For notational
convenience, RoBERTa-X-MLM and RoBERTa-
X-AG represent RoBERTa models with X layers.

Comparison with state-of-the-art (SOTA)
While we train all variants of our models with
and without AG loss, and only these results are
strictly comparable, we also compare with SOTA
models for reference. These are E-MBERT (Wang
et al., 2020), a recent extension of multilingual
BERT (Devlin et al., 2018b) which performs
well on low-resource languages, for Oromo,
BERT (Cruz and Cheng, 2020) for Filipino, and
RoBERTaBASE (Liu et al., 2019) for English4.

4.4 Attention patterns
We consider the following patterns P (section 3)
for guiding the self-attention heads:

1. [Next] attends to the next token.

2. [Prev] attends to the previous token.

3. [First] attends to the first token in the se-
quence.

4MNLI-m and MNLI-mm scores are reported as the same
in table 4 because they are not reported separately in (Liu et al.,
2019). QQP scores reported are for RoBERTaLarge because the
F-1 score is not reported for RoBERTaBase

4. [Delim] attends to delimiter tokens like
<s>, </s>, [CLS] and [SEP] added by
the model’s tokenizer.

5. [Period] attends to the period (‘.’) token.

Only the [Delim] and [Period] patterns de-
pend on the input because the corresponding tokens
vary in position with the input. All other patterns
are static and have a low memory footprint. Mathe-
matical specifications of these patterns are provided
in appendix A.2, and Figure 2 illustrates them.

4.5 Implementation details

Basic MLM models: We tune the learning rate
from the set {1e-5, 5e-5, 1e-4}, the dropout in self-
attention from the set {0.0, 0.1}, and the number
of warmup steps from the set {0, 1000, 10000}.
AG models: For our AG models, we guide a frac-
tion λ ∈ {14 ,

2
4 ,

3
4 , 1} of heads in each layer. We

choose α0 (equation 4) from the set {1, 10, 100}
such that the scales of the MLM loss and auxiliary
loss are comparable at the beginning of training.

Best performing hyperparameters:
RoBERTa-MLM is very sensitive to the
learning rate and the number of warmup steps, and
the best performing hyperparameters are reported
in appendix A.8. On the other hand, we find that
RoBERTa-AG is very robust and does not need
much tuning. A learning rate of 1e-4, λ = 0.5, and
0 warmup steps work well for all the experiments.
α = 10 is used for our 12,16 layer models, and
α = 100 for smaller models. We fit the largest
batch size possible for each model. We perform
an ablation study and find that the [Next] and
[Prev] patterns are most important, followed by
[First](section 5.3). Hence, one head each is
modified with the [Next] and [Prev] patterns,
and (λh− 2) heads are modified with [First].

Compute Time and Hardware Unlike state-of-
the-art models, we emphasize that our studies are
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performed on a smaller computational budget, both
with respect to wall clock time and hardware. Our
English models are trained for 10 epochs, with
a cap of 4 days, on 8 NVIDIA Tesla P40 GPUs,
and Filipino and Oromo models for 40 epochs
with a cap of 2 days on 4 NVIDIA Tesla P40
GPUs. We emphasize that the RoBERTa-MLM
and RoBERTa-AG variants in an experiment are
trained on the same number of epochs. We also
pre-train both RoBERTa-12-MLM and RoBERTa-
12-AG for longer and on TPUs to show that the
trends hold even when using specialized hardware
and more compute time (appendix A.4).

5 Results

5.1 Language Modeling

Faster convergence Table 3 provides an
overview of our results on language modeling.
As seen from the average loss, we observe that
the AG loss greatly helps improve the speed of
convergence on all model sizes and domains.
Figure 3 shows the train loss curves for two model
sizes trained on English, where the losses for AG
models almost instantaneously drop, whereas the
MLM models have an extended period where the
losses don’t reduce. The gains are particularly
notable for larger models like RoBERTa-12 and
RoBERTa-16, where careful hyperparameter
tuning is required for guaranteeing convergence
if AG loss is not used. In contrast, using our
auxiliary loss allows for fast convergence with
standard out-of-the-box hyperparameters. For
example, after just a day’s training, the MLM loss
for RoBERTa-16-AG has decreased from 11 to 2.5,
whereas RoBERTa-16-MLM’s is still at 6.5.
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Figure 3: MLM Loss Curves for first 150k steps when
training on English Wikipedia. Our AG models begin
to converge instantly, while the MLM models have an
extended plateau

Final loss values Not only do the AG models
converge faster, but their final train and validation
losses are also lower than their MLM counterparts
on 8 out of 9 settings (table 3). This is facilitated
by AG models’ fast initial convergence coupled
with robustness to hyperparameters, allowing us
to use larger learning rates and no warmup period.
On 5 of the 9 settings, namely 12,16 layer models
on Filipino and Oromo, and the 16 layer model on
English, only our AG model can converge. We also
provide a hypothesis about the usefulness of AG
loss in appendix A.3.

5.2 Downstream performance

We evaluate all the models’ downstream perfor-
mance to verify if better language modeling corre-
sponds to better language understanding.

English Our AG models outperform their MLM
counterparts on 11 out of the 12 settings (Table
4), with 7 comparisons being statistically signif-
icant (p < .05, paired t-test). We emphasize
that the scores are not directly comparable to
RoBERTaBASE, which is trained on 10 times more
data, up to 8 times more epochs, and on several
GPUs. Having experimentally shown the useful-
ness of AG loss in optimizing the MLM objective,
we believe that training our models on more data
and compute is bound to match or outperform the
MLM counterparts.

Filipino As shown in table 4, our AG models
outperform the MLM variants on all model sizes.
Additionally, our best performing model beats the
current SOTA (Cruz and Cheng, 2019) by almost 1
point, even though the latter was trained on a TPU
and for longer wall-clock time.

Oromo Our AG models continue to have an edge
even in sparse data domains. Though Oromo has
only 0.2% of the pre-training data when compared
to English, which makes it prone to overfitting, it
is interesting to note that larger models continue
to outperform smaller ones on downstream tasks.
Our models are competitive with E-MBERT (Wang
et al., 2020), which is a BERT model leveraging
resources from over 104 other languages. We hope
that our competitive results on both Filipino and
Oromo when using as little as 4 GPUs encourages
more NLP research in low-resource languages.
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Language Loss RoBERTa-8 RoBERTa-12 RoBERTa-16

MLM AG MLM AG MLM AG

English
Train 1.75 1.74 1.86 1.73 6.40 1.81

Validation 2.41 2.43 2.47 2.29 7.28 2.46
Average 2.48 2.09 2.56 2.07 6.67 2.24

Filipino
Train 3.10 0.74 5.04 0.66 5.18 0.63

Validation 3.22 0.99 5.06 0.97 5.05 0.82
Average 4.95 1.20 5.24 1.16 5.28 1.11

Oromo
Train 3.44 3.31 6.24 3.23 6.51 3.34

Validation 4.06 3.93 6.74 3.88 6.93 3.92
Average 5.15 4.52 6.75 4.52 6.95 4.62

Table 3: Train, validation, and average train MLM loss on all three languages. Even after 4 days of training
(section 4.5), our AG models outperform MLM models on all but one settings. Comparisons are columnwise.

Language Task RoBERTa-8 RoBERTa-12 RoBERTa-16 SOTA

MLM AG MLM AG MLM AG Model Score

English

MNLI-m 78.8 79.1 78.9 79.0 69.7 79.6+

RoBERTaBASE (Liu et al., 2019)

87.6?

MNLI-mm 77.6 77.7 77.6 78.9+ 68.8 78.7+ 87.6?

QNLI 84.3 84.6 86.1 86.8 72.0 84.4+ 92.8?

QQP 69.1 68.3+ 68.4 68.9+ 58.2 68.5+ 74.3?

Filipono Sentiment 74.1 75.6?+ 74.1 74.6 74.1 75.5+ BERT (Cruz and Cheng, 2020) 74.8

Oromo NER 64.6 66.7+ 51.5 67.9+ 53.5 67.2+ E-MBERT (Wang et al., 2020) 72.8?

Table 4: Evaluation on downstream tasks. Our AG models outperform their MLM counterparts on all but one
settings (entries marked with ‘+‘ are significant with p < .05, paired t-test). Comparisons are column-wise.
SOTA=state-of-the-art published numbers (marked ?) with similar model types on each task. The SOTA models
are trained on more compute and data and are not directly comparable to our models.

5.3 Ablation study with attention patterns

As mentioned in section 3.2, we introduce five
different attention patterns for guiding our mod-
els using the AG loss. To select the best per-
forming patterns, we use the leave-one-out strat-
egy, in which we omit patterns and record the in-
creases in loss (after 100,000 steps) when com-
pared to a model with all patterns included. The
patterns which cause a large increase in loss when
omitted are naturally more important. The in-
creases in loss are recorded in Table 5, which
shows that [Next,Prev] patterns are most im-
portant, followed by [First] and [Period],
while [Delim] isn’t very useful. Furthermore,
unlike [Period], the [First] pattern’s guid-
ance matrix P (section 3.2) is fixed, making it more
computationally efficient to use. Hence, we guide
one head each with [Next,Prev] patterns, and
(λh− 2) heads with the [First] pattern.

Pattern(s) omitted Change in loss

[Next,Prev] 2.99→ 7.74
[First] 2.99→ 3.02
[Period] 2.99→ 3.03
[Delim] 2.99→ 2.99

Table 5: Ablation study for choosing the best perform-
ing attention patterns to use for guidance (AG loss).
The entry x → y means that the loss after omitting
the respective pattern increased from x to y. We see
that [Next],[Prev] are most important followed
by [First] and [Period].

5.4 Attention Guidance for ELECTRA

ELECTRA (Clark et al., 2020) is an efficient model
which uses replaced token detection as the pre-
training task. It comprises training a discrimina-
tor and a generator, in which the generator ran-
domly changes k% of tokens in an input sequence
to plausible alternatives, and the discriminator has
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Loss ELECTRA ELECTRA-AG

Final 0.27 0.10
Average 0.32 0.15

Table 6: Training loss and average training loss over
two epochs for ELECTRA discriminator. Adding AG
loss reduces both the final and average training loss

to identify if a token was modified or not. The
generator learns using the MLM objective, and
the discriminator, which is used for downstream
tasks, uses the logistic loss. We use an ELECTRA
variant in which the generator is a unigram LM,
and compare the performance when AG loss is
added. The results after training ELECTRA-12
and ELECTRA-12-AG for 2 epochs on BooksCor-
pus (Zhu et al., 2015) are presented in Table 6. Like
with RoBERTa, we report only the discriminator’s
logistic loss even though our model is trained on
an auxiliary loss. The AG model shows gains in
convergence without any ELECTRA specific hy-
perparameter tuning.

5.5 Attention Guidance for Machine
Translation

Models We also experiment with adding our AG
loss to Machine Translation (MT) models that use
Transformers for both the encoder and decoder.
We compare with the BASE Transformer (Vaswani
et al., 2017) and a recently proposed hard-coded
Gaussian model (You et al., 2020), which fixes
all the attention heads in the encoder and decoder
to pre-determined Gaussian distributions centered
around nearby tokens. While the latter’s attention
patterns are similar to our local attention patterns,
they are hard-coded and not an auxiliary loss. Fol-
lowing (You et al., 2020), the cross-attention in
our MT model is not guided. Using a held-out
set, we search for the best combination of AG
patterns (Figure 2) for both the encoder and de-
coder. We find this to be one head each guided
with the [Next,Prev] pattern in the encoder,
and no heads being guided in the decoder. Global
patterns (like attending to [First]) seem to be
detrimental to performance in MT.

Results We perform experiments on IWSLT16
En-De (Cettolo et al., 2016) and WMT14 En-De
datasets, and report train negative log-likelihood
(NLL), validation NLL, average train NLL (to com-
pare convergence speed), and the BLEU score on

Dataset Loss/Metric BASE Hard-coded AG

IWSLT

Train NLL 1.18 1.30 1.18
Average NLL 1.88 1.92 1.84
Validation NLL 2.25 2.26 2.22
BLEU 24.52 24.42 24.42

WMT

Train NLL 1.77 1.94 1.75
Average NLL 2.07 2.23 2.05
Validation NLL 1.61 1.73 1.60
BLEU 26.24 25.50 23.34

Table 7: Comparing the train, average train, and vali-
dation negative log-likelihood (NLL) loss, and also the
BLEU scores for BASE (standard Transformer), Hard-
Coded (You et al., 2020), and AG (our model). AG
model has the lowest NLL losses and its BLEU scores
are comparable to the other models.

the test set. All models are trained for 100, 000
steps. Similar to LM pre-training, we observe that
our model has the lowest train, validation, and aver-
age NLL for both the datasets, showing that guiding
attention heads helps even with MT. Furthermore,
the AG model’s BLEU scores are comparable to
the scores of BASE and hard-coded Gaussian. We
note that our AG patterns are tailored for language-
modeling, and MT models could benefit from a
more extensive search over possible patterns.

5.6 Probing analysis

Motivated by recent studies (Clark et al., 2019; Lin
et al., 2019; Manning et al., 2020) which posit that
individual attention heads can encode linguistic
information, we analyze attention patterns in the
self-attention heads of our models. Specifically,
we search for heads that can individually perform
coreference resolution.

Method We use the probe described in (Clark
et al., 2019), which evaluates attention heads on
antecedent selection accuracy. A sentence (e.g.
“The CEO led her company to success”) is input
to the model, and each head is scored on its ability
to identify antecedents, e.g. a score of 1 if the
token ‘her’ attends most to a token in ‘The CEO’.
We aggregate the scores over all the coreferent
mention-antecedent pairs in the dataset and report
the accuracy of each model’s best performing head.
We also include the scores of a randomly initialized
RoBERTa model for comparison. We leave further
details to Clark et al. (2019).

Datasets Following Clark et al. (2019), we eval-
uate our models on the CoNLL-2012 dataset (Prad-
han et al., 2012). We also evaluate on a synthetic
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Model MLM loss CoNLL-2012 Synthetic

(valid) ALL NOMINAL PRONOMINAL PROPER ALL

Rule-Based - 0.66 0.48 0.72 0.73 -
Randomly Initialized 11.0 0.50 0.41 0.47 0.60 26.6

BERTBASE (Devlin et al., 2018a) - 0.70 0.64 0.68 0.76 0.97
RoBERTaBASE (Liu et al., 2019) - 0.74 0.71 0.74 0.76 0.99

RoBERTa-MLM 2.47 0.68 0.58 0.69 0.73 0.87
RoBERTa-AG (λ = 1/2) 2.29 0.28 0.21 0.32 0.29 0.84
RoBERTa-AG (λ = 1) 2.31 0.21 0.13 0.21 0.28 0.00

Table 8: Probing analysis to measure coreference resolution accuracies of the best performing attention head from
each model on CoNLL-2012 (Clark et al., 2019) and synthetic (Lin et al., 2019) datasets. Interestingly, our AG
models (last two rows) can be better at language modeling (lower MLM loss) without having a single head that is
good at coreference. (ALL=overall mean scores, Bold=lowest)

dataset of 10000 samples from Lin et al. (2019) and
follow their method of adding a distractor sentence
(e.g. adding “The people were happy” after “The
CEO led her company to success”) which serves to
introduce spurious entities. We ensure that the an-
tecedent is not the word directly before the corefer-
ent mention so that a trivial baseline which always
chooses the previous word gets a score of 0.

Discussion We discuss results reported in Ta-
ble 8. We observe the same trends on both the
CoNLL-2012 dataset and the synthetic dataset and
discuss the former in detail. In line with Clark
et al. (2019)’s observation, BERT and RoBERTa
have heads which achieve the highest accuracies.
Even though RoBERTa-MLM (section 4.3) is
trained on significantly lesser compute and data,
its performance is comparable to BERT and bet-
ter than the Rule-based baseline. But interestingly,
both RoBERTa-AG (λ = 1/2) and RoBERTa-AG
(λ = 1), which have half and all their heads guided
respectively, perform significantly worse than both
the baseline and a randomly initialized (untrained)
model. Surprisingly, this is true even though the
validation loss for both RoBERTa-AG (λ = 1/2)
and RoBERTa-AG (λ = 1) is lower (better) than
RoBERTa-MLM’s. The performance degradation
in RoBERTa-AG models is because half/all the
heads pay most of their attention to a predefined
pattern, thus rendering them unable to pay atten-
tion to the antecedent. This provides evidence that
language modeling performance is not necessarily
correlated with the performance of individual heads
on linguistic tasks, and that attention patterns of
the heads are not necessarily directly interpretable.
This observation is in line with a recent study (Brun-
ner et al., 2020) that questions the interpretability

of attention distributions.
The trends on the synthetic dataset (Table 8)

are similar where BERT and RoBERTa have a
head that achieves close to perfect accuracy, and
RoBERTa-MLM has a head whose accuracy is sig-
nificantly better than that of a randomly initialized
model. However, RoBERTa-AG (λ = 1) performs
poorly (an accuracy of 0) even though its validation
MLM loss is lower (better) than RoBERTa-MLM’s.

6 Conclusion

In this study, we introduce the simple yet effective
Attention Guidance (AG) loss, which speeds up
convergence and improves performance on various
domains and model sizes. Adding this loss also
makes Transformers robust to hyperparameters like
learning rate, warmup steps, and dropout. Our
experiments also show its usefulness in multiple
pre-training objectives. The gains are particularly
strong on larger models, enabling their usage in
low-compute scenarios and low-resource domains.
Our analysis of the relation of AG loss and MLM
loss shows the usefulness of our method, and we
hope that this paper can serve as a starting point
for future works aiming to exploit and question
self-attention in Transformers.
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