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Abstract

Defeasible inference is a mode of reasoning in
which an inference (X is a bird, therefore X
flies) may be weakened or overturned in light
of new evidence (X is a penguin). Though
long recognized in classical AI and philoso-
phy, defeasible inference has not been exten-
sively studied in the context of contemporary
data-driven research on natural language infer-
ence and commonsense reasoning. We intro-
duce Defeasible NLI (abbreviated δ-NLI), a
dataset for defeasible inference in natural lan-
guage. δ-NLI contains extensions to three
existing inference datasets covering diverse
modes of reasoning: common sense, natural
language inference, and social norms. From
δ-NLI, we develop both a classification and
generation task for defeasible inference, and
demonstrate that the generation task is much
more challenging. Despite lagging human per-
formance, however, generative models trained
on this data are capable of writing sentences
that weaken or strengthen a specified inference
up to 68% of the time.

1 Introduction

Commonsense reasoning tasks are frequently for-
mulated in terms of soft inferences: what is likely
or plausibly true given some context, rather than
(or in addition to) what is necessarily true. Given
a context such as “The drinking glass fell”, it is
common sense to infer that what likely happened
next is “The drinking glass broke”. However, with
the addition of new information, this inference may
be blocked or weakened. If, for example, we sub-
sequently learn that “The glass fell onto a pile of
laundry” or that “The glass was made of durable
material”, our original expectation that the glass
will break is greatly diminished. This pattern of
reasoning, in which an initially supported inference
may subsequently be weakened or retracted in light

Two men and a dog are standing 
among rolling green hills.

They are wearing backpacks.

One man is using his binoculars.

The men are studying a tour map.

The men are holding pitchforks.

The men are facing their granary.

The dog is a sheep dog.

The men are farmers.

Premise:

Hypothesis:

Figure 1: Examples from the δ-SNLI portion of the
δ-NLI dataset. A neutral premise-hypothesis pair from
SNLI is augmented with three update sentences that
weaken the hypothesis (left, red) and three update sen-
tences that strengthen it (right, blue).

of new evidence, is known as defeasible reasoning
(Koons, 2017).

To the extent, then, that commonsense and nat-
ural language inference systems must be able to
reason about plausible or likely inferences, they
must also be able to reason about the defeasibil-
ity of those inferences. While most contemporary
resources and datasets for these tasks attempt to
directly address the former, few provide the context
to facilitate the latter mode of reasoning.

Tasks like the Recognizing Textual Entailment
(RTE) challenge (Dagan et al., 2005) or Stan-
ford Natural Language Inference (SNLI) (Bowman
et al., 2015) capture entailment relations between a
fixed context (premise) and inference (hypothesis),
but do not reveal how these relations may shift in
light of new information about the context. Simi-
larly, knowledge graphs for commonsense reason-
ing like ATOMIC (Sap et al., 2019) or ConceptNet
(Havasi et al., 2007; Speer et al., 2017) encode in-
ference rules about generic situations, but do not
elaborate on possible exceptions to the applications
of those rules.

In this work, we introduce Defeasible NLI (ab-
breviated δ-NLI, pronounced “delta-NLI”), a new
dataset to study defeasible inference in natural lan-
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Task Premise Hypothesis Type Update

Old man crafting some-
thing in his workshop. An old man is working

. strengthener The man is serious and is surrounded by workers.

δ-
S

N
L

I

weakener The man is wearing pajamas and is chuckling.

PersonX has a pool party Because PersonX wanted
to hangout with friends

strengthener It was PersonX’s birthday

δ-
A

T
O

M
IC

weakener PersonX was having a family reunion

You should help your fam-
ily with funeral expenses.

strengthener They have asked you to chip in

δ-
S

O
C

IA
L

weakener You are not financially stable to help out

Table 1: Examples of strengtheners and weakeners collected for the δ-SNLI, δ-ATOMIC, and δ-SOCIAL portions of
the Defeasible NLI dataset.

guage.1 δ-NLI is a collection of extensions to three
existing English-language inference datasets, cov-
ering a broad range phenomena: natural language
inference (SNLI (Bowman et al., 2015)), common-
sense reasoning (ATOMIC (Sap et al., 2019)), and
reasoning about social norms (SOCIAL-CHEM-101
(Forbes et al., 2020)). We refer to these subsections
of the dataset as δ-SNLI, δ-ATOMIC, and δ-SOCIAL,
respectively. We augment each resource by elicit-
ing additional contextual information (“updates”)
that either strengthen or weaken a given inference
(which we term “strengtheners” and “weakeners,”
respectively). An example is provided in Fig. 1.

From these three augmented datasets, we are
able to devise two tasks for defeasible inference:
(1) a classification task for predicting whether a
provided update sentence acts as a strengthener or
a weakener; and (2) a generation task in which a
premise-hypothesis pair are provided as input and
an update sentence that weakens or strengthens the
hypothesis must be generated as output. Through
experiments in which we fine-tune pretrained lan-
guage models for both tasks, we demonstrate that
the generative task is much more challenging than
the classification task. While system performance
approaches human-level agreement on the classi-
fication task, the gap between system and human
performance on the generative task is still consid-
erable. We perform an extensive analysis of the
failure and success modes of the generative defea-
sible inference models.

Finally, we observe that, not only is the genera-
tive task more challenging than the classification

1Data available at https://github.com/
rudinger/defeasible-nli

task, but it has an additional meaningful interpre-
tation, namely, a system’s ability to “think like a
skeptic.” That is to say, informally, a human who is
engaging in skeptical reasoning is considering the
possible weaknesses of a given claim or argument
in order to come up with examples or counterar-
guments that may undermine it; by analogy, the
generative task we introduce here requires a model
to come up with (rather than simply verify) ex-
amples of circumstances that undermine the given
hypothesis.

2 Background and Related Work

Defeasible reasoning is soft inference based on de-
fault assumptions to account for unknown facts, for
example, “Tweety is a bird” entails that “Tweety
flies”, because birds usually fly. Such a conclusion
is not deductively valid, and might be invalidated
by new information such as “Tweety is a penguin”
(Reiter, 1980; Lascarides and Asher, 1991). De-
feasible reasoning is a type of nonmonotonic logic,
as it contrasts the monotonicity property of clas-
sical logic, according to which valid inferences
cannot be defeated by adding additional informa-
tion (Kraus et al., 1990). Defeasible reasoning has
been studied in a range of fields from logic, through
linguistics and artificial intelligence.

Classical AI. In early AI, defeasible reasoning
was used as a solution to the “frame problem”:
it is impossible to list all the potential effects of
actions without describing mundane and obvious
effects (McCarthy and Hayes, 1969). McDermott
and Doyle (1980) offered a formal account of the
proof systems and model theories of nonmonotonic

https://github.com/rudinger/defeasible-nli
https://github.com/rudinger/defeasible-nli
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logics. Default logic (Reiter, 1980) was suggested
as a nonmonotonic logic that specifies a set of de-
fault assumptions, i.e., predicates that are true un-
less specified otherwise (e.g., bird(X)→ fly(X)).
In circumscription (McCarthy, 1980), defaults are
expressed in natural language (“a bird will fly if
it is not abnormal”). Pollock (1987) outlined a
system for defeasible reasoning based on several
different types of warranted inferences. Finally,
Levesque (1990) suggested a special ‘all I know is
...’ operator, e.g. “All I know is that Tweety is a
bird” entails that “Tweety flies”.

Linguistics. In semantics and pragmatics, a dis-
tinction is drawn between entailments and impli-
catures. Entailments are inferences which are nec-
essarily true, arising from the semantics of an ut-
terance (e.g., “Pat is a bachelor,” entails “Pat is
unmarried.”). Linguistic utterances also invite un-
stated pragmatic inferences, or implicatures, which
depend not only on the semantics of the utterance
but also its conversational context (Grice, 1975).
Implicatures are cancellable (defeasible), meaning
they could be revoked in light of further evidence.
For instance, the comment “that cake looks deli-
cious” might invite the inference that the speaker is
requesting a slice, until they clarify that they have a
food allergy. Building on this notion of default as-
sumptions, Lascarides and Asher (1993) proposed
to interpret discourse relations by defining defea-
sible rules based on commonsense knowledge of
typical causes and effects.

Natural Language Processing. Textual entail-
ment was defined as a softer version of seman-
tic entailment, doubly hedging it with “a human
would typically think that the hypothesis is likely
true” (see Section 3, Dagan et al., 2005). It gained
tremendous popularity again 10 years later, with
the release of the large-scale Stanford Natural Lan-
guage Inference dataset (SNLI; Bowman et al.,
2015), that facilitated training neural models, and
which was followed by several other datasets in
that nature (Williams et al., 2018; Nie et al., 2019).
But—among other criticisms of the task—it has
been shown that people generally don’t agree on
entailment annotations (Pavlick and Kwiatkowski,
2019), and new variants of the task suggested to
shift away from categorical labels to ordinal or
numeric values denoting plausibility (Zhang et al.,
2017; Sakaguchi and Van Durme, 2018; Chen et al.,
2020). In this paper we focus on the defeasibil-

ity of textual entailments, a less well-studied phe-
nomenon in this context.

3 Definition

In this paper, we employ a working definition of de-
feasible inference that may be seen as an outgrowth
of prior work. Dagan et al. (2005) introduced the
following informal definition for the Recognizing
Textual Entailment (RTE) task:

...textual entailment is defined as a direc-
tional relationship between pairs of text
expressions, denoted by T, the entailing
“Text”, and H, the entailed “Hypothesis”.
We say that T entails H if, typically, a
human reading T would infer that H is
most likely true.

Similarly, the task of Natural Language Infer-
ence (NLI) seeks to determine whether a (one-
directional) entailment relation exists between a
premise sentence and a hypothesis sentence (Mac-
Cartney, 2009; Bowman et al., 2015).

While the RTE and NLI tasks treat entailment
relations as fixed, in this work we seek to under-
stand how the introduction of new information can
dynamically and directionally affect the strength
of inference. Thus, our working definition of de-
feasible inference extends the RTE and NLI task
formulations to model the relationship between a
premise, hypothesis, and a third update sentence:

Given premise P , a hypothesisH is de-
feasible if there exists an update U (con-
sistent with P) such that a human would
find H less likely to be true after learn-
ing U . Specifically, an update U is called
a weakener if, given a premiseP and hy-
pothesis H, a human would most likely
findH less likely to be true after learning
U ; if they would findH more likely to be
true, then we call U a strengthener.

By introducing both strengtheners and weaken-
ers, we generalize from defeasibility as a one-
directional phenomenon (weakening only) to study
the bi-directional phenomenon.

4 Data Sources

We collect strengtheners and weakeners for three
different types of data sources that illustrate the
generality of the defeasible inference framework.
Table 1 shows example strengtheners and weaken-
ers collected for the various tasks, detailed below.
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Natural Language Inference

The SNLI dataset (Bowman et al., 2015) is a large-
scale human-labeled dataset created for natural lan-
guage inference. It is a collection of 570K crowd-
sourced English premise-hypothesis sentence pairs,
each hypothesis manually classified as entailment,
contradiction, or neutral with respect to its premise.
The neutral pairs are of central interest in this work.
In SNLI, neutral premise-hypothesis pairs are those
in which the hypothesis is neither entailed nor con-
tradicted by the premise (see Figure 1 for example),
leaving room for the potential for strengthening or
weakening the statement if the appropriate condi-
tions are provided. In our dataset we include 10K
neutral premise and hypothesis pairs, as well as
a small subset of instances that lacked annotation
consensus.2

Commonsense Knowledge Graph

The ATOMIC knowledge graph is a collection of
877K textual commonsense descriptions for in-
ferential knowledge (Sap et al., 2019). The data
was collected through crowdsourcing if-then knowl-
edge about events and their commonsense relations
to other events and states (relation targets). In
ATOMIC, an event involving a PersonX is linked
to multiple relation targets via relation types like
xAttr (attribute of PersonX). For example, if

“PersonX adopts a cat”, then PersonX might take a
subsequent action (xEffect; “buy cat litter”), be
seen as of a particular persona (xAttr; “as seek-
ing companionship”), or have a particular mental
state as a result (xReact; “feels loved”). While
these relations capture commonsense inferences
that are plausible or even very likely, their likeli-
hood could be dampened with additional context,
e.g., in the above case “PersonX needs a barn cat
for their mice problem”. Thus, for the purposes of
this study, we cast events as the premise and the
relation targets as the defeasible hypotheses. In
particular, we extract a total of 24K event (premise)
and relation target (hypothesis) pairs. We limit
the relation targets to six of nine relations corre-
sponding to the explicit agent or PersonX in the
event. The other three relations that concern ‘oth-
ers’, which may or may not be explicit participants
in the event, are excluded.

2Instances that were labeled ‘-’ in SNLI.

Task Split #P-H #S #W

δ-SNLI
train 9,588 44,621 44,055
dev 195 903 882
test 203 924 913

δ-ATOMIC
train 19,518 17,662 17,340
dev 2,155 1,937 1,903
test 2,327 2,091 2,047

δ-SOCIAL
train 7,893 39,675 37,341
dev 979 4,822 4,521
test 982 4,867 4,572

Table 2: Number of unique P-H pairs, strengthen-
ers (S) and weakeners (W) in each section of the
δ-NLI dataset.
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δ-SNLI
Weakener 77.2 8.9 1.0 12.9
Strength. 3.0 89.7 2.0 5.4

δ-ATOMIC
Weakener 69.0 11.1 1.9 18.1
Strength. 2.6 87.4 0.4 9.6

δ-SOCIAL
Weakener 84.6 3.6 1.6 10.2
Strength. 1.8 90.1 1.4 6.2

Figure 2: Confusion matrix of human validation. Rows:
the original update type for which updates were elicited.
Columns: the update type that workers categorized
them into during the validation step. Cells: percent
of assignment into each category. “None” indicates no
agreement between the annotators.

Statements of Social Norms

The SOCIAL-CHEM-101 dataset of social norms
(henceforth, Social Norms) compiles a collection
of 292K crowdsourced natural language statements
about commonsense social judgments made given
everyday situations (Forbes et al., 2020). These
statements represent generic commonsense hy-
potheses about social behaviors and their accept-
ability that are held as norms in a society. However,
such normative judgments can also be strengthened
or weakened given appropriate context. For exam-
ple, a norm like “It is good to respect your parents”
might be weakened in certain contexts (e.g., “Your
parents are abusive and hurtful towards you”) and
strengthened in others (e.g., “Your parents want
what’s right for you”). In other words, we consider
this set of norms of social behavior as hypotheses
capable of being strengthened or weakened. For
our dataset, we randomly extract 10K statements
of social norms.
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5 Data Collection

Our data collection is performed via crowdsourcing
(§5.1) and consists of two steps: update sentence
elicitation (§5.2) and validation (§5.3).

5.1 Crowdsourcing

We carry out both the elicitation and validation
steps via crowdsourcing in Amazon Mechanical
Turk. To ensure the quality of our annotations, we
have workers take a paid qualification test to assess
their ability to follow instructions and to produce
reasonable strengtheners and weakeners. The qual-
ification test contains 6 manually selected premise-
hypothesis pairs from SNLI that range from easy
to difficult hypotheses to defeat. We then manually
evaluate their responses for quality and adherence
to the guidelines.

The 230 workers that provided acceptable up-
dates (both strengtheners and weakeners) to a min-
imum of four test questions were selected to par-
ticipate in the data collection tasks. Based on the
feedback received from our worker pool, we up-
dated the instructions with further clarifications and
examples as necessary. Workers were paid over $15
per hour on average for all annotation tasks.

5.2 Update Sentence Elicitation

To collect update sentences for data sourced from
SNLI and ATOMIC, we provide workers with a
premise-hypothesis pair as prompt for which they
are required to generate two free-text sentences:
a strengthener and a weakener that will increase
or decrease, respectively, the likelihood of the hy-
pothesis being true. For the collection of updates
for the Social Norms data, the workers are given
the hypothesis and asked to provide two free-text
sentences: a strengthener that supports the socio-
normative assumption made in the hypothesis (“es-
pecially if...”) and a weakener that undermines
such assumption (“unless...”). Each elicitation HIT
is performed by five workers.

In both cases, we provide the workers with the
option to specify that a hypothesis cannot be up-
dated. In order to prevent workers from creating in-
correct or trivial updates, we require that the update
does not contradict the premise, repeat or rephrase
any of the premise or hypothesis, or simply negate
the hypothesis.3 We also instruct workers to avoid
writing sentences that involve making stereotyped

3See supplementary material for the complete HIT tem-
plate.

Task Inputs RoBERTa Human Maj.

δ-SNLI
(P ,H, U) 81.6 83.6 50.3
(∅,H, U) 79.7
(∅,∅, U) 65.1

δ-ATOMIC
(P ,H, U) 78.3 78.2 50.5
(∅,H, U) 77.7
(∅,∅, U) 65.2

δ-SOCIAL
(∅,H, U) 86.2 87.6 51.6
(∅,∅, U) 71.6

Table 3: Accuracy (%) on the test set of each classifica-
tion task.

or prejudicial assumptions about people based on
their identities (see §8 for additional information).

5.3 Validation

In order to evaluate the validity of human annota-
tions, we ask crowd workers to rate the collected
strengtheners and weakeners with respect to the
original premise-hypothesis pairs. The rating is
on a 5-point Likert scale ranging from “weakens a
lot” to “strengthens a lot” with a middle response
category of “neutral” for those updates that have
no update effect. Each validation HIT is anno-
tated by three workers. The annotations yielded
inter-annotator agreement with Krippendorff’s α =
0.62, 0.67, 0.69 for SNLI, ATOMIC and Social
Norms, respectively (Krippendorff, 1980).

Figure 2 shows the results of the validation step.
As evident, workers in the validation step success-
fully identified the intended update type of elicited
updates, indicating the high quality of the elicited
updates. In general, strengtheners showed higher
agreement than weakeners.

The size of each dataset is given in Table 2. We
assign instances into train, development, and test
sets based on their split in the original datasets.

6 Defeasible Inference Tasks

We formulate two tasks: a discriminative defeasible
inference task (§6.1) and a generative defeasible
inference task (§6.2).

6.1 Defeasible Inference as Classification

We pose a binary classification task for defea-
sible inference: given a hypothesis H, an op-
tional premise P , and an update U , the goal
is to determine the update type, i.e., whether
U weakens or strengthens H. That is, given an
input tuple (P,H,U), output a label in the set
{STRENGTHENER,WEAKENER}.
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To establish baseline performance, we fine-
tune the transformer pretrained language model
RoBERTa-base (Liu et al., 2019), which performs
well in classification tasks, with a standard cross
entropy loss, using the Transformers library (Wolf
et al., 2019). We concatenate the sentences P ,H,
and U (separated by a special token) as input to
RoBERTa, and select the best training run over five
trials, run for two epochs each. Further training
details are provided in the appendix. Following the
hypothesis-only baseline suggested by Poliak et al.
(2018), we also report the performance of versions
of the model with partial inputs, i.e., (∅,H,U) or
(∅,∅,U).

Results. Table 3 displays the classification ac-
curacy on each task. For the models which have
access to the full input (P,H,U), accuracy is very
close to human performance on each dataset. This
suggests that discriminating between strengtheners
and weakeners is a comparatively easy task for a
strong pretrained language model like RoBERTa.
For this reason, we primarily focus on the much
more challenging task of generating strengthen-
ers and weakeners, as described in the following
subsection.

A partial explanation for the easiness of the clas-
sification task is due to annotation artifacts (Guru-
rangan et al., 2018; Poliak et al., 2018; Tsuchiya,
2018), which are a known limitation of some text
datasets directly elicited from human annotators.
(See §8 for a full discussion of these limitations.)
To check, we train a baseline with access to only the
update as input. While this baseline performs 15 to
20 points above the uninformed majority baselines
(indicating the presence of annotation artifacts), it
is still 13 to 15 points below the fully-informed
models.

Interestingly, removing only the premise (but not
hypothesis) from the input only slightly decreases
overall accuracy. This suggests most of the neces-
sary signal is present in the hypothesis and update.
See §7 for further discussion.

6.2 Generative Defeasible Inference

In the generative defeasible task, given a hypothe-
sisH, an optional premiseP , and a required update
type (weakener or strengthener), the goal is to gen-
erate an update U that satisfies this constraint, i.e.,
weakens or strengthensH.

We report the performance of several strong base-
lines, namely fine-tuning pre-trained transformer-

Task LM Ppl. BLEU ROUGE Human
Eval.

δ-
S

N
L

I

T5-large 2.51 11.48 25.03
Bart-large 2.46 17.03 27.91 38.22
GPT2-S 5.18 12.61 26.35
GPT2-XL 3.84 15.66 27.78 64.44
GPT2-XLH-only 4.81 14.82 27.19 53.51

Human 83.46

δ-
A

T
O

M
IC T5-large 4.58 0.89 12.13

Bart-large 2.04 4.13 20.40 30.21
GPT2-S 3.21 3.74 18.14
GPT2-XL 2.20 4.77 21.89 61.89
GPT2-XL H-only 3.23 5.59 21.65 60.25

Human 78.31

δ-
S

O
C

IA
L T5-large 2.69 4.33 14.94

Bart-large 2.09 10.65 18.43 34.49
GPT2-S 2.53 9.56 16.97
GPT2-XL 2.11 12.16 18.77 68.15

Human 86.60

Table 4: Automatic and human evaluation results
on the test set, for the generative models. The in-
put for each task was [premise] p [hypo] h
[type] ([hypo] h [type] for Social Norms and
for the hypothesis-only models), where [type] ∈
{[strengthener], [weakener]}, and p and h
are the premise and hypothesis tokens, respectively.
Note that the perplexities of the encoder-decoder mod-
els are not comparable to those of the standard LM
models, since the latter compute the loss over the en-
tire sequence, while the former compute the loss only
over the output sequence. All models score well below
human performance.

based language models (LM). Specifically, we
study two types of models: (1) encoder-decoder
models such as Bart and T5 (Lewis et al., 2019;
Raffel et al., 2019), which initialize the state of
the transformer by reading the input, and learn to
generate the output; and (2) standard LMs such
as GPT and GPT2 (Radford et al., 2018, 2019),
which are trained with the LM objective to predict
the next word. We use the Transformers package
(Wolf et al., 2019) and train each model for a sin-
gle epoch with a batch size of 64. Further training
details are provided in the appendix.

Automatic Evaluation. We follow the common
practice of reporting automated generation eval-
uation metrics. We report the perplexity on the
test set, as is often used to measure the perfor-
mance of a language model.4 In addition, we
generated predictions for the test set using beam
search with 5 beams, and evaluated them using stan-
dard n-gram based metrics: the precision-oriented
BLEU-4 score (Papineni et al., 2002), which con-
siders n-grams up to n = 4, and the recall-oriented

4Micro and macro perplexities were identical.
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Premise Hypothesis Type Generated Update

1© A man just roaming on the streets during night. A man is roaming the streets at night, drunk. S The man has a beer in his hand
— It is rude to point out their weight problem. W You are a nutritionist

2© PersonX pays PersonX’s debt Because PersonX wanted to be debt free W PersonX is in debt to the IRS
— It is rude to refuse help. S You are in an emergency

3© — It is wrong to kill an animal. S You are trying to save the life of a child.

4© Old man crafting something in his workshop. An old man is working at his home workshop. W The man is in his garage.

5© PersonX is on a fishing trip PersonX then takes time. W PersonX is on a fishing trip.

6© Child squirting paint onto a piece of spin-art. The child has paint all over their hands. S The child’s hands are covered in paint.

7© PersonX picks PersonY up at the airport Before, PersonX needed to get ready W PersonX is driving PersonY to the airport

8© PersonX looks at one another PersonX is seen as threatening S PersonX is holding a gun

9© — You should be respectful of people who just
had a baby.

S The baby is your first child.

Table 5: Examples of generations with update type (W = weakener, S = strengthener), across tasks and models,
that fall into each of the nine analysis categories 1© – 9© described in §7.

Task Model 1© 2© 3© 4© 5© 6© 7© 8© 9©

δ-SNLI
GPT2-XL 54.2 25.0 0.00 0.00 0.00 0.00 16.7 0.00 4.20
Bart-large 25.0 29.2 4.17 12.5 0.00 29.2 0.00 0.00 0.00
Overall 39.6 27.1 2.08 6.30 0.00 14.6 8.33 2.08 0.00

δ-ATOMIC
GPT2-XL 36.0 16.0 4.00 4.00 4.00 4.00 20.0 8.00 4.00
Bart-large 24.0 20.0 8.00 12.0 20.0 4.00 4.00 4.00 4.00
Overall 28.6 18.4 6.12 8.16 12.2 4.00 12.2 6.12 4.08

δ-SOCIAL

GPT2-XL 56.0 8.00 8.00 8.00 4.00 0.00 4.00 0.00 12.0
Bart-large 32.0 24.0 8.00 24.0 0.00 4.00 0.00 0.00 8.00
Overall 44.0 16.0 8.00 16.0 2.00 2.00 2.00 4.00 6.00

Table 6: Percentage distribution of generated updates
over the analysis categories 1© – 9© (described in §7),
for each combination of task and model.

ROUGE-L score (Lin, 2004), which considers the
longest common subsequences.

Table 4 presents the automatic evaluation results.
We observe that the model preferences are consis-
tent among BLEU and ROUGE. The GPT2-XL
models perform best for δ-ATOMIC and the social
norms dataset, and only slightly worse than the
best model (Bart-large) on δ-SNLI. The model size
does not have a major impact on performance, with
GPT2-S performing moderately worse than GPT2-
XL. The T5 model had the lowest performance
across tasks in terms of BLEU and ROUGE.

Human Evaluation. Automatic metrics penal-
ize models for lexical variability and often do not
correlate with human judgements (Novikova et al.,
2017). Thus, our main evaluation is human eval-
uation. The goal of the human evaluation is to
determine the effectiveness of the models at gener-
ating weakeners and strengtheners, focusing on the
best model in each category, namely GPT2-XL and
Bart-large. We used the same crowdsourcing setup
as the validation step in §5.3, and asked workers to

rate the generated strengtheners and weakeners on
a 5-point Likert scale.

Table 4 shows the human evaluation for Bart-
large and GPT2-XL, in terms of accuracy score (e.g.
a generated weakener was considered “correct” if
the workers judged it as a weakener). As opposed
to the automatic evaluation, in which these two
models were comparable, here the outputs from
GPT2-XL were judged as substantially better than
Bart, but even so leaving room for improvement.
Across models, strengtheners were not only eas-
ily agreed upon (§ 5.3) but also easier to predict
than weakeners. In addition, the gap between the
accuracy on strengtheners versus weakeners was
narrower for GPT2-XL (17%) than for Bart (34%).

When applicable, we also report the performance
of a hypothesis-only variant of the best-performing
model (GPT2-XL H-only in Table 4), for which
the input consists of the hypothesis and the update
type, excluding the premise. While this baseline
performs similarly to the full model in terms of au-
tomatic metrics, the human evaluation reveals that
the H-only δ-SNLI model substantially underper-
forms the full model, suggesting that the generative
model is making productive use of the premise in
δ-SNLI; in the case of δ-ATOMIC, the disparity be-
tween theH-only and full models is much smaller.

7 Analysis of Generated Updates

In order to analyze the quality of the generated
updates, we sampled 150 instances from the devel-
opment set (25 for each combination of task and
model), and categorized their top prediction into
the following categories, exemplified in Table 5.
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1© Good: a strengthener that strengthens the hy-
pothesis or a weakener that weakened the hy-
pothesis. For instance, it is rude to discuss
people’s weight problems, unless you are their
nutritionist, then it is socially acceptable.

2© Neutral: the update neither strengthened nor
weakened the hypothesis. For example, the
fact that the the debt is to the IRS doesn’t
change our perception about the extent that
PersonX wants to become debt free.

3© Weakener instead of strengthener: the gen-
erated strengthener weakened the hypothesis.

4© Strengthener instead of weakener: the gen-
erated weakener strengthened the hypothesis.

5© Restating the premise: updates that roughly
repeated the premise.

6© Restating the hypothesis: updates that
roughly repeated the hypothesis.

7© Contradicting the premise: the generated
update (implicitly or explicitly) contradicted
the premise. For instance, when the premise
mentions picking up someone at the airport,
but the update talks about driving them there.

8© Premise or hypothesis are nonsensical:
stemming from annotation errors in the origi-
nal datasets.

9© Update is nonsensical or other: updates that
are nonsensical.

Table 6 displays the percent of categories in each
task and model. The results reconfirm the findings
from the human evaluation in §6.2, with GPT2-XL
leading with good generations with more than half
of its generations for δ-SNLI and δ-SOCIAL judged
as good. The Bart models suffer from various types
of errors.

Dual-purpose updates. In addition, we looked
into instances from the development where a single
model generated an identical sentence as both a
strengthener and weakener (for a given premise-
hypothesis pair). Ideally, such instances should be
rare, as a sentence may increase or decrease the
likelihood of a hypothesis, but not both. In prac-
tice, we found such overlaps to be a very common
failure mode. For a given premise-hypothesis in-
put, we measure the frequency with which each

model generates an identical sentence across the
top five sampled strengtheners and top five sampled
weakeners. The percentage of inputs resulting in
such overlaps was extremely high for the Bart mod-
els: 96.53%, 97.53%, and 99.48% for δ-ATOMIC,
δ-SOCIAL, and δ-SNLI, respectively (among 1900,
979, and 194 instances). The corresponding rates
for the GPT2 models were much lower (although
non-negligible): 48.42%, 33.91%, and 33.91%, re-
spectively.

Is the Premise Necessary? In the classification
task, we observe that models trained without ac-
cess to the premise perform nearly as well as those
trained with access to the full context (premise, hy-
pothesis, update). This raises the interesting ques-
tion of what role the premise plays in defeasible nat-
ural language inference. It is possible that in many
cases, the premise is not as crucial as one might
expect. Recall the classic example of defeasible
reasoning: “Tweety is a bird” (premise), therefore
“Tweety flies” (hypothesis), however “Tweety is a
penguin” (update), and thus Tweety does not fly. In
this case, it is evident that, while the premise was
necessary to originally derive the hypothesis, the
update alone is sufficient to conclude the hypothe-
sis no longer holds.5 In fact, the premise is entailed
by the update, and perhaps even discernible from
the hypothesis.

However, we should not conclude the premise is
unnecessary in all cases. In the generative task, re-
moving the premise makes only a slight difference
in performance for δ-ATOMIC (∆1.64%) but a sub-
stantial difference for δ-SNLI (∆10.93%) (perhaps
due to more specific contexts in SNLI). Because all
generative models lag human performance, how-
ever, it may simply be a property of current models
that they are unable to effectively leverage infor-
mation from the premise; to match human perfor-
mance, they may need to leverage this information.

For further analysis, we took outputs from the
GPT2-XLH-only model on SNLI and ask human
evaluators to assess the outputs under two condi-
tions: (1) annotator observing only the hypothesis,
and (2) annotator observing both the premise and
hypothesis. In 47.8% of cases, the output was la-
beled correct in both conditions; 34.1% of cases

5The question of the importance of the premise is perhaps
relevant to another question that arose in earlier studies of
defeasible inference, namely the role of human memory, and
whether a belief could be defeated with new evidence if the
holder of that belief did not recall the reason for it (Pollock,
1987).
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were labeled incorrect in both conditions. Interest-
ingly, in 12.4% of cases, the output was labeled
correct in condition (1) and incorrect in condition
(2). This finding points to a proportion of cases
where the model would need to integrate informa-
tion from the premise to generate valid strengthen-
ers and weakeners.

8 Limitations of Elicitation

To collect the strengthener and weakener sentences
in this work, we elicited sentences from crowd-
source workers. Elicitation as a method of text
data collection has a number of known flaws. In
particular, (1) annotators may use label-dependent
heuristics or strategies to produce sentences that
introduce superficial correlations between text fea-
tures and labels (Poliak et al., 2018; Gururangan
et al., 2018; Tsuchiya, 2018); (2) elicitation may
result in repeated responses of salient answers that
are a small subset of all possible valid answers
(McRae et al., 2005); and (3) elicited responses
may contain implicit judgments or stereotypic asso-
ciations about gender, race, and age, among others
(Rudinger et al., 2017).

To avoid the first issue of annotation artifacts, we
focus primarily on the generative task formulation,
which is less susceptible to this problem. Regard-
ing the second issue of coverage (or recall), we note
that in this work we are concerned with whether it
is possible for models to generate any correct weak-
eners or strengtheners in the first place; evaluating
their ability to generate more exhaustively is a chal-
lenge we leave for future work. To address the third
concern, we explicitly ask annotators to avoid such
stereotyped associations in their responses. (See
supplement for details.) This is an imperfect but ex-
pedient solution and for this reason we caution that
the collected data is intended at this stage for scien-
tific purposes only. Furthermore, we note that the
elicited strengtheners and weakeners about social
norms are subjective and, often, culturally depen-
dent. This data should therefore be understood
as descriptive of social norms (and their inherent
subjectivity), rather than prescriptive of them.

9 Conclusion and Future Work

To the best of our knowledge, this is the first work
to attempt merging long-standing ideas in AI about
defeasible reasoning with contemporary formula-
tions of natural language inference and common-
sense reasoning tasks. We do this by crowdsourc-

ing extensions to three existing inference datasets
with enriched contexts that exemplify cases in
which an inference is strengthened or weakened.
From the collected data, we formulate a classifi-
cation task and a generation task for defeasible
inference in natural language. After demonstrating
that the classification task is easily solved by state-
of-the-art pretrained language models, we focus
instead on the generative task of creating strength-
eners or weakeners for a given premise-hypothesis
pair, which we liken to “thinking like a skeptic.”
We demonstrate that fine-tuned language models
successfully generate good-quality weakeners and
strengtheners in 61-68% of cases.

Machine reasoning about the plausibility of in-
ferences (Wang et al., 2018), let alone plausibility
under different circumstances, is considered an un-
solved problem and an obstacle to developing ma-
chine commonsense (Davis and Marcus, 2015). An
inference engine with such capabilities may poten-
tially be useful for various applications that require
reassessing conclusions under changing conditions,
such as processing legal texts (Hage, 2005) and
mining arguments (Bilu and Slonim, 2016). In
knowledge base completion, a “closed world” or
default assumptions require the ability to defeat
such assumptions given the appropriate counter
evidence. Such ability was built into the Cyc infer-
ence engine (Lenat, 1995), but was largely absent
from modern knowledge bases.

Yet, a number of challenges remain for future
work. In our qualitative analysis of generated out-
puts (§7), we identify a number of systematic er-
ror types that future modeling efforts may seek
to address. While this work addresses the quality
and accuracy of generated outputs, we leave the
more challenging task of evaluating the coverage
(recall) of those outputs to future work. Finally,
joint modeling between defeasible inference and
related reasoning tasks such as abductive reasoning
(Peirce, 1960; Bhagavatula et al., 2019) and coun-
terfactual reasoning (Goodman, 1947; Qin et al.,
2019; Tandon et al., 2019) is a potentially fruitful
line of inquiry.
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A Model Hyperparameters

Classification Task All models for the classifi-
cation task were trained on a single NVIDIA Tesla
P100 GPU on a Google Cloud instance. All mod-
els were fine-tuned with RoBERTa-base, which has
115M parameters. Best accuracy of five runs on the
development set is reported in Table 7.

Task Inputs RoBERTa

δ-SNLI
(P ,H, U) 83.3
(∅,H, U) 81.1
(∅,∅, U) 64.3

δ-ATOMIC
(P ,H, U) 78.6
(∅,H, U) 77.8
(∅,∅, U) 65.7

δ-SOCIAL
(∅,H, U) 85.7
(∅,∅, U) 72.0

Table 7: Accuracy (%) on the dev set of each classifica-
tion baseline.

Generation Task All models were trained on a
single NVIDIA Quadro RTX 8000 GPU. Runtime
ranged between 5 minutes (GPT2-S on ATOMIC)
to 3.5 hours (GPT2-XL on SNLI). The number of
parameters ranges from 117M (GPT2-S) to 1.558B
(GPT2-XL). Table 8 shows the generative models’
performance on the dev set.

Task LM Macro
Ppl.

Micro
Ppl.

BLEU-
4

ROUGE-
L

δ-SNLI

GPT2-S 3.594 3.599 13.110 27.192
GPT2-XL 2.838 2.842 17.963 29.234
T5-large 8.617 8.632 12.849 25.962
Bart-large 12.721 12.766 18.289 28.666

δ-ATOMIC

GPT2-S 3.178 3.178 3.739 18.232
GPT2-XL 2.189 2.189 4.595 21.345
T5-large 7.8 7.8 0.872 12.165
Bart-large 10.174 10.174 4.083 20.335

δ-SOCIAL

GPT2-S 2.637 2.637 9.779 17.449
GPT2-XL 2.176 2.176 12.648 19.616
T5-large 5.754 5.755 4.486 15.123
Bart-large 6.142 6.142 11.628 19.350

Table 8: Automatic evaluation results on the dev set,
for the generative models.

B Crowdsourcing Task

Figures 3 and 4 display the full instructions shown
to the crowdsourcing workers for the δ-SNLI and
δ-ATOMIC update elicitation and for the social
norms update elicitation, respectively.
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SUMMARY
For this task, given a PREMISE and a HYPOTHESIS you will:

Write a WEAKENER in one sentence.
Write a STRENGTHENER in one sentence.

EXPLANATION
You will be presented with two sentences, called a PREMISE and a HYPOTHESIS, respectively.

The PREMISE sentence describes a real-world situation and is always assumed to be true.
The HYPOTHESIS sentence describes an assumption or inference that we might make about that situation having

read the premise.
In most cases, the hypothesis statement is very likely to be true given the premise; however, it is not necessarily

guaranteed to be true.

You will provide additional information about the situation that might WEAKEN or STRENGTHEN the hypothesis.
A WEAKENER is a statement that weakens the hypothesis;
it makes us much less likely to believe the hypothesis is true.
=⇒ TIP: Start by thinking of a situation where the PREMISE is true but the HYPOTHESIS is wrong.
A STRENGTHENER is a statement that strengthens the hypothesis;
it makes us much more likely to believe the hypothesis is true.
=⇒ TIP: start by thinking of a situation where both the PREMISE and the HYPOTHESIS are true.

EXAMPLES (omitted)

RULES
DO write in complete sentences.
DO use the “impossible” checkbox when appropriate! The use may be rare, but we do expect some.
For weakeners:

DO NOT contradict the premise
DO NOT simply negate the hypothesis
DO NOT directly contradict the hypothesis

For strengtheners:
DO NOT contradict the premise
DO NOT repeat or rephrase the contents of the hypothesis

IMPORTANT FINAL NOTE
The sentences you write here will be used in experiments to teach Artificial Intelligence (AI) systems how to make
nuanced inferences about real-world situations usually involving people. It is important that these AI systems treat all
people fairly, regardless of their race, ethnicity, religion, gender, sexuality, ability, or other aspects of personal identity.
Therefore, when you perform this task, please bear this in mind.

Please AVOID writing sentences that involve making stereotyped or prejudicial assumptions about people
based on their identities.
(Examples omitted)

If you absolutely cannot think of a strengthener or weakener that does not violate this guideline, then please select the
“impossible” checkbox, followed by the appropriate selection. This option should be used very sparingly.

Figure 3: HIT Template for update elicitation for the δ-SNLI and δ-ATOMIC data.
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SUMMARY
For this task, given a GENERALIZATION about a socially normative behavior or judgement:

Write an UNDERMINING CONTEXT in one sentence.
Write a SUPPORTING CONTEXT in one sentence.

EXPLANATION
You will be presented with one sentence, called a GENERALIZATION.

A GENERALIZATION is a statement that speaks of a socially normative behavior. In other words, it is a
generalizing statement about how we expect people to behave in society.

You will provide additional contexts about the situation that might UNDERMINE or SUPPORT the generalization.
An UNDERMINING context provides a situation that weakens the generalization;
it makes the generalization less relevant or effective.
=⇒ THINK: “This generalization is makes sense unless ”
A SUPPORTING provides a situation that strengthens the generalization;
it makes the generalization more relevant or effective.
=⇒ THINK: “This generalization is makes sense especially if ”

EXAMPLES (omitted)

RULES
DO write in complete sentences.
DO use the “impossible” checkbox when appropriate! The use may be rare, but we do expect some.
For undermining context:

DO NOT contradict or negate the generalization
DO provide a real world situation that will weaken the generalization

For supporter:
DO NOT agree to or repeat the generalization
DO provide a real world situation that will strengthen the generalization

IMPORTANT FINAL NOTE
The sentences you write here will be used in experiments to teach Artificial Intelligence (AI) systems how to make
nuanced inferences about real-world situations usually involving people. It is important that these AI systems treat all
people fairly, regardless of their race, ethnicity, religion, gender, sexuality, ability, or other aspects of personal identity.
Therefore, when you perform this task, please bear this in mind.

Please AVOID writing sentences that involve making stereotyped or prejudicial assumptions about people
based on their identities.
(Examples omitted)

If you absolutely cannot think of a strengthener or weakener that does not violate this guideline, then please select the
“impossible” checkbox, followed by the appropriate selection. This option should be used very sparingly.

Figure 4: HIT Template for update elicitation for the δ-SOCIAL data.


