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Abstract

The computing cost of transformer self-
attention often necessitates breaking long doc-
uments to fit in pretrained models in docu-
ment ranking tasks. In this paper, we de-
sign Query-Directed Sparse attention that in-
duces IR-axiomatic structures in transformer
self-attention. Our model, QDS-Transformer,
enforces the principle properties desired in
ranking: local contextualization, hierarchi-
cal representation, and query-oriented prox-
imity matching, while it also enjoys effi-
ciency from sparsity. Experiments on one
fully supervised and three few-shot TREC
document ranking benchmarks demonstrate
the consistent and robust advantage of QDS-
Transformer over previous approaches, as they
either retrofit long documents into BERT or
use sparse attention without emphasizing IR
principles. We further quantify the computing
complexity and demonstrates that our sparse
attention with TVM implementation is twice
more efficient that the fully-connected self-
attention. All source codes, trained model,
and predictions of this work are available
at https://github.com/hallogameboy/

QDS-Transformer.

1 Introduction
Pre-trained Transformers such as BERT (Devlin
et al., 2019) effectively transfer language under-
standing to better relevance estimation in many
search ranking tasks (Nogueira and Cho, 2019;
Nogueira et al., 2019; Yang et al., 2019). Nev-
ertheless, the effectiveness comes at the quadratic
cost O(n2) in computing complexity corresponds
to the text length n, prohibiting its direct appli-
cation to long documents. Prior work adopts
quick workarounds such as document truncation
or splitting-and-pooling to retrofit the document
ranking task to pretrained transformers. Whilst
there have been successes with careful architecture

Figure 1: An example illustration of the attention mech-
anism used in Query-Directed Sparse Transformer.

design, those bandit-solutions inevitably introduce
information loss and create complicated system
pipelines.

Intuitively, effective document ranking does not
require fully connected self-attention between all
query and document terms. The relevance match-
ing between queries and documents often takes
place at text segments as opposed to individual
tokens (Callan, 1994; Jiang et al., 2019), suggest-
ing that a document term may not need informa-
tion thousands of words away (Metzler and Croft,
2005; Child et al., 2019), and that not all document
terms are useful to calculate the relevance to the
query (Xiong et al., 2017). The fully connected at-
tention matrix includes many unlikely connections
that create efficiency debt in computing, inference
time, parameter size, and training convergence.

This paper presents Query-Directed Sparse
Transformer (QDS-Transformer) for long docu-
ment ranking. In contrast to retrofitted solutions,
QDS-Transformer fundamentally considers the de-
sirable properties for assessing relevance by focus-
ing on attention paths that matter. Using sparse
local attention (Child et al., 2019), our model re-
moves unnecessary connections between distant

https://github.com/hallogameboy/QDS-Transformer
https://github.com/hallogameboy/QDS-Transformer
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document tokens. Using global attention upon
sentence boundaries, our model further incorpo-
rates the hierarchical structures within documents.
Last but not the least, we use global attention
on all query terms that direct the focus to the
relevance matches between query-document term
pairs. These three attention patterns in our Query-
Directed Sparse attention, as illustrated in Figure 1,
permit global dissemination of IR-axiomatic infor-
mation while keeping computation compact and
essential.

In our experiments with TREC Deep Learning
Track (Craswell et al., 2020) and three more few-
shot document ranking benchmarks (Zhang et al.,
2020), QDS-Transformer consistently improves
the standard retrofitting BERT ranking baselines
(e.g., max-pooling on paragraphs) by 5% NDCG.
It also shows gains over more recent transformer
architectures that induces various sparse structures,
including Sparse Transformer, Longformer, and
Transformer-XH, as they were not designed to
incorporate the essential information required in
document ranking. In the meantime, we also
thoroughly quantify the efficiency improvement
from our query-directed sparsity, showing that with
TVM support (Chen et al., 2018), different sparse
attention patterns lead to variant training and infer-
ence speed up, and in general QDS-Transformer
enjoys 200%+ speed up compared to vanilla BERT
on long documents.

Our visualization also shows interesting learned
attention patterns in QDS-Transformer. Similar to
the observation on BERT in NLP pipeline (Tenney
et al., 2019), in lower QDS-Transformer levels, the
attention focuses more on learning the local inter-
actions and document hierarchies, while in higher
layers the model focuses more on relevance match-
ing with the query terms. We also show examples
that QDS attention may center on the sole sentence
that directly answers the query, or may span across
several sentences that cover different aspects of the
query, depending on the scope of the intent; this
brings the advantage of better interpretability based
on sparse attention.

2 Related Work
Neural models have demonstrated significant ad-
vances across various ranking tasks (Guo et al.,
2019). Early approaches investigated diverse ways
to capture relevance between queries and docu-
ments (Guo et al., 2016; Xiong et al., 2017; Dai
et al., 2018; Hui et al., 2017). And recently the

state-of-the-art in many text ranking tasks has been
taken by BERT or other pretrained language mod-
els (Devlin et al., 2019; Nogueira et al., 2019;
Nogueira and Cho, 2019; Dai and Callan, 2019;
Yang et al., 2019; Craswell et al., 2020), when suf-
ficient relevance labels are available for fine-tuning
(e.g., on MS MARCO (Bajaj et al., 2016)).

The improved effectiveness comes with the cost
of computing efficiency with deep pretrained trans-
formers, especially on long documents. This stim-
ulates studies investigating ways to retrofit long
documents to BERT’s maximum sequence length
limits (512). A vanilla strategy is to truncate or
split the documents: Dai and Callan (2019) applied
BERT ranking on each passage segmented from
the document independently and explored differ-
ent ways to combine the passage ranking scores,
using the score of the first passage (BERT-FirstP),
the best passage (BERT-MaxP) (also studied in
Yan et al. (2020)), or the sum of all passage scores
(BERT-SumP).

More sophisticated approaches have also been
developed to introduce structures to transformer
attentions. Transformer-XL employs recurrence
on a sequence of text pieces (Dai et al., 2019),
Transformer-XH (Zhao et al., 2020) models a
group of text sequences by linking them with eX-
tra Hop attention paths, and Transformer Kernel
Long (TKL) (Hofstätter et al., 2020) uses a slid-
ing window over the document terms and matches
them with the query terms using matching ker-
nels (Xiong et al., 2017).

On the efficiency front, Kitaev et al. (2020) pro-
posed Reformer that employed locality-sensitive
hashing and reversible residual layers to improve
the efficiency of Transformers. Child et al.
(2019) introduced sparse transformers to reduce
the quadratic complexity to O(L

√
L) by applying

sparse factorizations to the attention matrix, mak-
ing the use of self-attention possible for extremely
long sequences. Subsequent work (Sukhbaatar
et al., 2019; Correia et al., 2019) leverage a similar
idea in a more adaptive way. Combining local win-
dowed attention with a task motivated global atten-
tion, Beltagy et al. (2020) presented Longformer
with an attention mechanism that scales linearly
with sequence length.

3 Preliminaries on Document Ranking
Given a query q and a set of candidate documents
D = {d}, the document ranking task is to pro-
duce the ranking score f(q, d) for each candidate
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Figure 2: The overall schema of our proposed QDS-Transformer.

document based on their relevance to the query.
BERT Ranker. The standard way to leverage pre-
trained BERT in document ranking is to concate-
nate the query and the document into one text se-
quence, feed it into BERT layers, and then use
a linear layer on top of the last layer’s [CLS] to-
ken (Nogueira and Cho, 2019):

f(q, d) = Linear(BERT([CLS] ◦ q ◦ [SEP] ◦ d)).
This BERT ranker can be fine-tuned using rele-
vance labels on (q, d) pairs, as simple as a classifi-
cation task, and has achieved strong performances
in various text ranking benchmarks (Bajaj et al.,
2016; Craswell et al., 2020).
Transformer Layer. More specifically, let
{t0, t1, ..., ti, ..., tn} be the tokens in the concate-
nated q-d sequence, with query tokens t1:|q| ∈ q
and document tokens t|q|+1:n ∈ |d|, considering
special tokens being part of q or d. The l-th trans-
former layer in BERT takes the hidden represen-
tations of previous layer (H l−1), which is embed-
ding for l = 1, and produces a new H l as fol-
lows (Vaswani et al., 2017).

H l =WF (Ĥ l), (1)

Ĥ l = A ·M · V T , (2)

A = 1, (3)

M = softmax(
Q ·KT

√
dk

), (4)

(QT ;KT ;V T ) = (W q;W k;W v) ·H l−1. (5)

It first passes the previous representations through
the self-attention mechanism, using three projec-
tions (Eqn. 5), and then calculates the attention
matrix between all token pairs using their query-
key similarity (Eqn. 4, as in single-head formation).

The attention matrixM then is used to fuse all other
tokens’ representation V , to obtain the updated rep-
resentation for each position (Eqn. 2). In the end,
another feed-foreword layer is used to obtain the
final representation of this layer H l (Eqn. 1).

The matrix A is the n2 “adjencency” matrix in
which each entry is one if there is an attention path
between corresponding positions: Aij = 1 means
ti queries the value of tj using the key of tj . In
standard transformer and BERT, the attention paths
are fully connected thus A = 1.
Computation Complexity. In each of the BERT
layers, all the feed-forward operations (Eqn. 1 and
5) are applied to each individual token, leading
to linear complexity w.r.t. text length n and the
square of the hidden dimension size dim. The self-
attention operation in Eqn. 2 and 4 calculates the
attention strengths upon all token pairs, leading to
squared complexity w.r.t text length but linear of
the hidden dimension size.

The complexity of one transformer layer in
BERT thus includes two components:

O(dim2n)︸ ︷︷ ︸
Feedforward

+O(n2dim)︸ ︷︷ ︸
Self-Attention

. (6)

The hidden dimension size (dim) is 768 in BERT
Base and 1024 in BERT Large (Devlin et al., 2019).
When the text sequence is longer than 1000 or 2000
tokens, which is often the case in document rank-
ing (Craswell et al., 2020), the self-attention part
becomes the main bottleneck in both computation
and GPU memory. This leads to various retrofitted
solutions that adapted the document ranking tasks
to standard BERT which takes at most 512 tokens
per sequence (Dai and Callan, 2019; Yang et al.,
2019; Yan et al., 2020; Nogueira et al., 2019).
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4 QDS-Transformer
Recent research has shown that with sufficient train-
ing and fully-connected self-attention, BERT learns
attention patterns that capture meaningful struc-
tures in language (Clark et al., 2019) or for specific
tasks (Zhao et al., 2020). However, this is not yet
the case in long document ranking as computing
becomes the bottleneck.

This section first presents how we overcome this
bottleneck by injecting IR-specific inductive bias
as sparse attention patterns. Then we discuss the
efficient implementation of sparse attention.

4.1 Query-Directed Sparse Attention
Mathematically, inducing sparsity in self-attention
is to modify the attention adjacency matrix A by
only keeping connections that are meaningful for
the task. For document retrieval, we include two
groups of informative connections as sparse adja-
cency matrices: local attention and query-directed
global attention.

4.1.1 Local Attention
Intuitively, it is unlikely that a token needs to see an-
other token thousands of positions away to learn its
contextual representation, especially in the lower
transformer layers which are more about syntactic
and less about long-range dependencies (Tenney
et al., 2019). We follow this intuition used in the
Sparse Transformer (Child et al., 2019) and define
the following local attention paths:

Alocal[i, j] = 1, iff |i− j| ≤ w/2. (7)

It only allows a token to see another token in each
transformer layer if the two are w/2 position away,
with w the window size. The local attention serves
as the backbone for many sparse transformer vari-
ations as it provides the basic local contextual in-
formation (Correia et al., 2019; Sukhbaatar et al.,
2019; Beltagy et al., 2020).

4.1.2 Query-Directed Global Attention
The local attention itself does not fully capture the
relevance matches between the query and docu-
ments. We introduce several query-directed atten-
tion patterns to incorporate inductive biases widely
used in document representation and ranking.
Hierarchical Document Structures. A common
intuition in document representation is to leverage
the hierarchical structures within documents, for
example, words, sentences, paragraphs, and sec-
tions, and compose them into hierarchical attention

networks (Yang et al., 2016). We use a two-level
word-sentence-document hierarchy and inject this
hierarchical structure by adding fully connected
attention paths to all the sentences.

Specifically, we first prepend a special token
[SOS] (start-of-sentence) to each sentence in the
document, and form the following attention con-
nections:

Asent[i, j] = 1, iff tj = [SOS]. (8)

Matching with the Query. For retrieval tasks, ar-
guably the most important principle is to capture
the semantic matching between queries and docu-
ments. Inducing this information is as simple as
adding dedicated attention paths on query terms:

Aquery[i, j] = 1, iff ti ∈ q. (9)

It allows each token to see all query terms so as to
learn query-dependent representations.

4.2 Summary
The three attention patterns together form the
query-directed attention in QDS-Transformer:

AQDS = Alocal ∪Asent ∪Aquery ∪A[CLS]. (10)

We also add the global attention between all other
tokens and [CLS]. Keeping everything else stan-
dard in BERT and using this query-directed sparse
attention (AQDS) in place of the fully-connected
self-attention (A), we obtain our QDS-Transformer
architecture as illustrated in Figure 2.

Interestingly, QDS-Transformer also resembles
various effective IR-Axioms developed in past
decades. For example, in QDS attention, a query
term mainly focuses on the [SOS] token through
ASent, while the [SOS] token recaps the proxim-
ity (Callan, 1994) matches locally around it through
ALocal. The local attention in the query part also
resembles the effective phrase matches (Metzler
and Croft, 2005) as the query term representations
are contextualized using other query terms through
ALocal.

4.3 Efficient Sparsity Implementation
Our query-directed sparse attention reduces the
self-attention complexity from O(n2dim) to O(n ·
dim · (w+ |q|+ |s|)), where the local window size
w and query length |q| are constant to document
length, and the number of sentences is orders of
magnitude smaller.

However, to implement this sparsity efficiently
on GPU is not that straightforward. Naively using
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Ad-hoc Few-shot (avg. over 5 folds)
TREC19 DL RB04 CW09-B CW12-B13

Train queries 367,013 150 120 60
Train qrels 384,597 186,846 28,278 17,343
Dev queries 5,193 50 40 20
Dev qrels 519,300 62,282 9,426 5,781
Test queries 43 50 40 20
Test qrels 16,258 62,282 9,426 5,781

Table 1: The statistics of the experimental datasets.

for-loops or masking the adjacency matrix A may
result in even worse efficiency than the full self-
attention in common deep learning frameworks.
An efficient implementation of sparse operations
often requires customized CUDA kernels, which
are inconvenient and require expertise in low-level
GPU operations (Child et al., 2019). Inspired by
Longformer (Beltagy et al., 2020), we address this
issue by implementing QDS-Transformer with Ten-
sor Virtual Machine (TVM) (Chen et al., 2018).
Precisely, we implement custom CUDA kernels
using TVM to dynamically compile our attention
map AQDS into efficiency-optimized CUDA codes.

5 Experimental Methodologies
This section discusses our experimental settings.
TREC 2019 Deep Learning Track Benchmark.
We evaluate QDS-Transformer based on the doc-
ument ranking task from this recent TREC bench-
mark (Craswell et al., 2020), specifically using
the reranking subtask to rerank top-100 BM25 re-
trieved documents. The official evaluation metric
is NDCG@10 on the test set. We also report MAP
on test and MRR@10 on the development set.
Few-shot Document Ranking Benchmarks.
We then evaluate the generalization ability
of QDS-Transformer in the few-shot set-
ting (Zhang et al., 2020) using TREC datasets
Robust04 (RB04), ClueWeb09-B (CW09), and
ClueWeb12-B13 (CW12), in which labels are
much fewer than DL track. Our experimental
settings are consistent with prior work (Zhang
et al., 2020) in using the“MS MARCO Human
Labels”. Specifically, neural rankers trained with
MARCO labels are used as feature extractors to
enrich TREC documents, which are then tested
with five-fold cross-validation (Dai et al., 2018).

Table 1 summarizes the statistics of four datasets.
We describe more details about datasets and exper-
imental settings in Appendix A.1.
Baselines. Our baselines include multiple neural
IR models and the best official TREC runs of single
models. The main baselines cover:

• Relying on BERT models, RoBERTa (FirstP)
only considers the first paragraph, while
RoBERTa (MaxP) encodes short paragraphs with
BERT and combines them with a max-pooling
layer (Dai and Callan, 2019).

• Transformer-XH (Zhao et al., 2020) retrofits data
pipelines to create independent sentences which
are fed into BERT models, and aggregates them
with an extra-hop attention layer.

• TK (Hofstätter et al., 2020) and TKL (Hofstätter
et al., 2020) apply BERT-based kernels to esti-
mate the relevance over document tokens with
full attention.

• Sparse-Transformer (Child et al., 2019) applies
length-w sparse local attention windows without
considering query tokens.

• Longformer also uses sparse local attention and
adds global attention by prepending one special
token respectively to the query and document,
same as in their (Beltagy et al., 2020) QA setup.

For ad-hoc retrieval, we also consider CO-
PACRR (Hui et al., 2018) which employs CNNs
without using pretrained NLM (non-PLM). Note
that IDST (Yan et al., 2020) is not comparable
because it exploits external generators for docu-
ment expansion. For the few-shot learning task, we
additionally compare with SDM, RankSVM, Coor-
Ascent, and Conv-KNRM as reported in previous
studies (Xiong et al., 2017; Dai et al., 2018). More
details of the baselines can be found in Appendix B.

Implementation Details. We implement all meth-
ods with PyTorch (Paszke et al., 2019) and the Hug-
ging Face transformer library (Wolf et al., 2019),
excluding the baselines that have previously re-
ported their scores. For sparse attention, we imple-
ment it using TVM with a custom CUDA kernel in
PyTorch (Chen et al., 2018). Models are optimized
by the Adam optimizer (Kingma and Ba, 2014)
with a learning rate 10−5, (β1, β2) = (0.9, 0.999),
and a dropout rate 0.1. The dev set is used for
hyperparameter tuning to decide the best model,
which is then applied to the test set. We set the
maximum length of input sequences as 2,048. The
dimension of the dense layer Fdense(·) in relevance
estimation is 768, while the local attention window
size w is 128. All experiments are conducted on an
Nvidia DGX-1 server with 512 GB memory and
8 Tesla V100 GPUs. Each method is limited to
access only one GPU for fair comparisons.
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TREC Deep Learning Track Document Ranking

Method
Test Set Dev Set

NDCG@10 MAP MRR@10
BM25 0.488 0.234 0.252
TREC Best Models
BM25 (bm25tuned prf) 0.528 0.386 0.318
Trad (srchvrs run1) 0.561 0.349 0.306
Non-PLM (TUW19-d3-re) 0.644 0.271 0.401
BERT (bm25exp marcomb) 0.646 0.424 0.352
Baseline Models
CO-PACRR 0.550 0.231 0.284
TK 0.594 0.252 0.312
TKL 0.644 0.277 0.329
RoBERTa (FirstP) 0.588 0.233 0.278
RoBERTa (MaxP) 0.630 0.246 0.320
Sparse Attention based Models
Sparse-Transformer 0.634 0.257 0.328
Longformer-QA 0.627 0.255 0.326
Transformer-XH 0.646 0.256 0.347
QDS-Transformer 0.667 0.278 0.360

Table 2: The ad-hoc retrieval performance of our ap-
proach and baseline methods on the TREC-19 DL track
benchmark. Note that those baselines with higher MAP
scores are all full retrieval and benefited from addi-
tional data engineering like query expansion.

6 Evaluation Results
This section evaluates QDS-Transformer in its ef-
fectiveness, attention patterns, and efficiency. We
also analyze the learned query-directed attention
weights and show case studies.

6.1 Retrieval Effectiveness
Table 2 summarizes the retrieval effectiveness on
the TREC-19 DL benchmark. Table 3 shows the
few-shot performance on the three TREC datasets.

QDS-Transformer consistently outperforms
baseline methods on all datasets in both experimen-
tal settings. Note that the higher MAP scores from
some methods in TREC-19 DL is because they
have better first stage retrieval and are not using the
same reranking setting. QDS-Transformer outper-
forms the best BERT-based TREC run by 3.25%
in NDCG@10 and is more effective than the con-
current sliding window approach, TKL. Moreover,
QDS-Transformer outperforms RoBERTa (MaxP),
which is the standard retrofitted method for BERT,
by 6% in NDGG@10 while also being a unified
framework.

Compared with Sparse Transformers and
Longformer-QA, QDS-Transformer provides more
than 5% improvement in nearly all datasets. The
best baseline is Transformer-XH, which creates
structural sparsity by breaking a document into
segments and introduces effective eXtra-hop at-
tentions to jointly model the relevance of those

Method RB04 CW09 CW12
NDCG ERR NDCG ERR NDCG ERR

Classical IR; Cross Validated
SDM 0.427 0.117 0.277 0.138 0.108 0.091
RankSVM 0.420 n.a. 0.289 n.a. 0.121 0.092
Coor-Ascent 0.427 n.a. 0.295 n.a. 0.121 0.095
Neural IR; Trained on MS MARCO and then Cross Validated.
Conv-KNRM 0.427 0.117 0.287 0.160 0.112 0.092
RoBERTa (FirstP) 0.437 0.110 0.262 0.161 0.111 0.086
RoBERTa (MaxP) 0.439 0.114 0.264 0.162 0.092 0.074
Sparse-Transformer 0.449 0.119 0.274 0.173 0.119 0.094
Longformer-QA 0.448 0.113 0.276 0.179 0.111 0.085
Transformer-XH 0.450 0.123 0.283 0.179 0.107 0.080
QDS-Transformer 0.457 0.126 0.308 0.191 0.131 0.112

Table 3: The few-shot learning retrieval performance of
different methods on three benchmark datasets. NDCG
and ERR are at cut-off 20.

Method
Attention TREC-19 DL Track
Q Sent NDCG@10 MAP

RoBERTa (MaxP) 3 7 0.630 0.246
Sparse Transformer 7 7 0.634 0.257
LongFormer-QA 7 7 0.627 0.255
Transformer-XH 3 3 0.646 0.256
QDS-Transformer (S) 7 3 0.633 0.244
QDS-Transformer (Q) 3 7 0.658 0.263
QDS-Transformer 3 3 0.667 0.278

Table 4: The retrieval performance of different models
on the TREC-19 DL track benchmark dataset with dif-
ferent global attention patterns. Q and S indicate the
usage of query and sentence global attention. Note that
QDS-Transformer with no global attention is equiva-
lent to Sparse-Transformer.

segments. While these methods show competitive
effectiveness especially with our TVM implemen-
tation, QDS-Transformer is consistently more ac-
curate through the query-directed sparse attention
patterns in all evaluation settings.

6.2 Effectiveness of Attention Patterns
This experiment studies the contribution of our
query-directed sparse attention patterns to QDS-
Transformer’s effectiveness.

Table 4 shows the ablation results of the three
attention patterns in TREC-19 DL benchmark: lo-
cal attention only (Alocal, Sparse Transformer), hi-
erarchical attention on sentence only (Asent, QDS-
Transformer (S)), and query-oriented attention only
(Aquery, QDS-Transformer (Q)). All three sparse
attention patterns contribute. As expected, query-
oriented attention is most effective to capture the
relevance match between query and documents.
Note that the RoBERTa (MaxP) and Transformer-
XH also attend to queries, but the attention is more
localized as the document is broke into separated
text pieces and the query is concatenated with each
of them. In comparison, QDS-Transformer mimics
the proximity matches and captures the global hier-
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Method Length Sparsity
ms per q-d

Train Infer
RoBERTa 1024 100% 391 100
RoBERTa 2048 100% 799 205
RoBERTa (FirstP) 512 100% 138 17
RoBERTa (MaxP) 4*512 25% 305 55
Transformer-XH 4*512 25% 309 54
QDS-Transformer (128) 512 30.84% 218 45
QDS-Transformer (128) 1024 18.72% 249 52
QDS-Transformer (128) 2048 8.97% 321 92
Longformer-QA (128) 2048 4.70% 166 45
Sparse-Transformer (128) 2048 4.56% 154 40
QDS-Transformer (32) 2048 6.70% 201 50
QDS-Transformer (64) 2048 8.97% 309 86
QDS-Transformer (128) 2048 13.53% 321 92
QDS-Transformer (256) 2048 22.64% 475 127
QDS-Transformer (512) 2048 40.88% 512 160
QDS-Transformer (1024) 2048 77.34% 629 195
QDS-Transformer (Q) 2048 5.10% 316 108
QDS-Transformer (S) 2048 8.57% 322 105
Without TVM Implementation
Sparse-Transformer (128) 2048 4.56% 251 62
QDS-Transformer (128) 2048 13.53% 390 103

Table 5: Efficiency Quantification. The local attention
window size is shown in parentheses. Q and S indicate
the usage of only query and sentence attention. Sparsity
is compared with fully attention at same text length.

archical structures in the document using dedicated
attention from query terms to sentences.

Figure 3 depicts the change in retrieval effec-
tiveness by varying the local attention window
size. Both NDCG@10 and MAP@10 grow at a
steady pace starting from a window size of 32 and
peak at 128, but no additional gain is observed
with bigger window sizes. The information from
a term 512 tokens away does not provide many
signals in relevance matching and is safely pruned
in QDS-Transformer. Note that the dip at attention
size 1024 is because our model is initialized from
RoBERTa which is only pretrained on 512 tokens.

6.3 Model Efficiency

This experiment benchmarks the efficiency of dif-
ferent sparse attention patterns. Their training and
inference time (ms per query-document pair, or
MSpP) is shown in Table 5.

RoBERTa on 2048 tokens is prohibitive; we only
measured its time with random parameters as we
were not able to actually train it. Retrofitting was a
natural choice to leverage pretrained models.

Sparsity helps. Sparse-Transformer (128) is
much faster than MaxP. Interestingly, its attention
matrix with only 4.56% non-zero entries leads to
on par efficiency with retrofitted solutions and also
only 5 times faster compared to full attention; this
is due to the required cost involved in feed-forward.
This effect is also reflected in the efficiency of QDS-
Transformer with different local window sizes.

Different sparsity patterns dramatically influence
the optimization of TVM. Intuitively, patterns with
more regular shape would be easier to optimize
than more customized connections in TVM. For ex-
ample, the skipping patterns along sentence bound-
ary in QDS-Transformer (S) seems more forgiving
than the query-oriented attentions (Q). Compar-
ing efficiency with and without our TVM imple-
mentation, the diagonal sparse shape in Sparse-
Transformer is much better optimized.

How to better utilize the advantage from sparsity
and structural inductive biases is perhaps a nec-
essary future research direction in an era where
models with fewer than one billion parameters are
no longer considered large (Brown et al., 2020).
Making progress in this direction may need more
close collaborations between experts in application,
modeling, and infrastructure.
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Q1: 1037798 (who is robert gray) Q2: 1110199 (what is wifi vs bluetooth)
docid: D3533931 docid: D1325409
Heads 1,2,4,6,9,10,11,12: Head 01: Bluetooth’s low power consumption make it useful where power is limited.
Robert Gray (title) Head 02: Wi-Fi appliances are often plugged into wall outlets to operate.
Heads 3,5,7,8:
Robert Gray, (born May 10, 1755,
Tiverton, R.I. died summer 1806, at
sea near eastern U.S. coast), captain of
the first U.S. ship to circumnavigate
the globe and explorer of the
Columbia River.

Head 07: The extremely low power requirements of the latest Bluetooth 4.0 standard allows wire-
less connectivity to be added to devices powered only by watch batteries.
Head 09: A Wi-Fi enabled network relies on a hub.
Head 10: The advantages of using bluetooth from existing technology.
Head 11: Wi-Fi is more suited to data-intensive activities such as streaming high-definition
movies, while Bluetooth is better suited to tasks such as transferring keyboard strokes to a computer.
Head 12: The greater power of Wi-Fi network also means it can move data more quickly than
Bluetooth network.

Table 6: Case study of two queries on the sentences with the highest attention weights in the last transformer layer
over different heads for the [CLS] token.

Q3: 1112341 (what is the daily life of thai people)
Query Token Sentence with the highest attention weight in the document D1641978
life Children are expected to show great respect for their parents, and they maintain close ties, even well into adulthood .
thai Culture of Thailand (title)

Table 7: Case study of the query 1112341 on the sentences in the document D1641978 with the highest attention
weights among all heads from two query tokens. Note that we use attention weights in the third transformer layer.

6.4 Learned Attention Weights
This experiment analyzes the learned attention
weights in QDS-Transformer, using the approach
developed by Clark et al. (2019).

Figure 4 illustrates the average maximum atten-
tion weights of the three attention patterns used in
our model. Interestingly, the model tends to implic-
itly conduct hierarchical attention learning (Yang
et al., 2016), where lower layers focus on learning
structures and pay more attention to [SOS] tokens,
while higher layers emphasize the relevance by at-
tending to queries more. Attention on both types of
tokens is consistently stronger than on the [CLS]
token. The model is capturing the inductive biases
emphasized by our sparse attention structures.

Figure 5 shows the average entropy of the atten-
tion weight distribution. Intuitively, lower layer
attention tends to have high entropy and thus a
very broad view over many words, to create con-
textualized representations. The entropy of query
and [SOS] are in general lower, as they focus on
capturing information needs and document struc-
tures. The entropy of all three types of tokens rises
again in the last layer, implying that they may try
to aggregate representation for the whole input.

6.5 Case Study on Learned Attention Weights
Table 6 shows a case study of sentences with the
highest attention weight from [CLS] in the last
layer for two example queries. For factoid query
Q1, all heads center on precise sentences that can
directly answer the query. For Q2 that is on the
exploratory side, different attention heads exhibit
diverse patterns focusing on partial evidence that

can provide a broader understanding collectively.
Table 7 depicts the other case study on learned

attention weights of sentences from query tokens.
We adopt the third transformer layer, where sen-
tences obtain more attention as shown in Figure 4,
to emphasize significant sentences for query to-
kens. The results show query-directed attention can
capture sentences with different topics matched to
individual query tokens, thereby comprehending
sophisticated document structure.

These findings suggest that QDS-Transformer
has an interesting potential to be applied to not
only retrieval but also the question-answering task
in NLP, providing a generic and effective frame-
work, while also being interpretable with its the
sparse structural attention connectivity. We further
provide an additional case study in Appendix C.

7 Conclusions
QDS-Transformer improves the efficiency and ef-
fectiveness of pretrained transformers in long docu-
ment ranking using sparse attention structures. The
sparsity is designed to capture the principal prop-
erties (IR-Axioms) that are crucial for relevance
modeling: local contextualization, document struc-
tures, and query-focused matching. In four TREC
document ranking tasks with variant settings, QDS-
Transformer consistently outperforms competitive
baselines that retrofit to BERT or use sparse atten-
tion not designed for document ranking.

Our experiments demonstrate the promising fu-
ture of joint optimization of structural domain
knowledge and efficiency from sparsity, while its
current form is somewhat at the infancy stage. Our
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analyses also indicate the potential of better inter-
pretability from sparse structures and more unified
models for IR and QA.
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Appendix
A Experimental Details
In this section, we clarify the details about experi-
mental datasets and experimental settings.

A.1 Experimental Datasets
TREC-19 DL Track Dataset. For ad-hoc re-
trieval, we adopt the TREC-19 DL track bench-
mark as the experimental dataset with training, dev,
and test sets. Training and dev sets consist of large-
scale human relevance assessments derived from
the MS MARCO collection (Bajaj et al., 2016)
with no negative labels and sparse positive labels
for each query while relevance judgments in the
test sets are annotated by NIST judges.
Few-shot Document Ranking Benchmarks. For
few-shot learning, three retrieval benchmark
datasets are utilized in our experiments, includ-
ing Robust04, ClueWeb09-B, and ClueWeb12-B13.
Robust04 provides 249 queries from TREC Robust
track 2014 with relevance labels. ClueWeb09-B
includes of 200 queries with relevance labels from
TREC Web Track 2009-2012. ClueWeb12-B13
consists of 100 queries from TREC Web Track
2013-2014 with relevance labels.

Note that Table 1 in the paper summarizes the
statistics of four experimental datasets. Datasets of
all benchmarks are publicly available. The TREC-
19 DL track provides all dataset on its offical web-
site1. The queries and relevance assessments of
three few-shot document ranking datasets can be
found at the TREC website2 while document col-
locations are also publicly available on the corre-
sponding sites345.

A.2 Experimental Settings
Ad-hoc Retrieval. Experiments follow the pro-
tocol of the TREC-19 deep learning track. Each
method is trained with the training set. The model
parameters can be further fine-tuned with the dev
set and the MRR@10 metric. The fine-tuned model
is finally applied to the test set for evaluation. Fol-
lowing the official metrics, MRR@10 is used in
dev set runs as labels are incomplete and shallow,
while the test set is comprehensively evaluated us-
ing NDCG@10 and MAP@10.

1https://microsoft.github.io/TREC-2019-Deep-Learning/
2https://trec.nist.gov/
3RB04: https://trec.nist.gov/data/qa/T8 QAdata/disks4 5.html
4CW09: http://lemurproject.org/clueweb09/
5CW12: https://lemurproject.org/clueweb12/

Method #Params Method #Params
RoBERTa (FirstP) 124M RoBERTa (MaxP) 124M

Sparse-Transformer 149M Longformer-QA 149M
Transformer-XH 128M QDS-Transformer 149M

Table 8: Number of parameters for methods.

Few-shot Document Ranking. All experimental
settings for few-shot learning are consistent with
the“MS MARCO Human Labels” setting in pre-
vious studies (Zhang et al., 2020). Each method
first trains a neural ranker on MARCO training
labels, which are identical as in the TREC DL
track. The latent representations of trained models
are then considered as features for a Coor-Ascent
ranker for low-label datasets using five-fold cross-
validation (Dai and Callan, 2019; Dai et al., 2018)
to rerank top-100 SDM retrieved results (Metzler
and Croft, 2007). Standard metrics NDCG@20
and ERR@20 are used to compare the different
approaches. The results are reported by taking the
average of each test fold from the total 5 folds,
wherein the rest 4 folds in each round are used as
training and dev queries.
Hyperparameter Settings and Search. We adopt
the pretrained model for sparse attention (Beltagy
et al., 2020) and fix all of the hidden dimension
numbers as 768 and the number of transformer
layers as 12. BERT-based models use RoBERTa
as pretrained models (Liu et al., 2019). To hy-
perparameter tuning, we search the local attention
window size w in {32, 64, 128, 256, 512, 1024}
with the dev set and determine w = 128. Models
are optimized by the Adam optimizer (Kingma and
Ba, 2014) with a learning rate 10−5, (β1, β2) =
(0.9, 0.999), and a dropout rate 0.1. Under the
hyperparameter settings, the parameter numbers
of our implemented methods are shown in Ta-
ble 8 summarizing the sizes of parameters based
on model.parameters() in PyTorch.

A.3 Evaluation Scripts
All evaluation measures are computed by the offi-
cial scripts. For ad-hoc retreival, we use trec eval6

as the standard tool in the TREC community for
evaluating ad-hoc retreival runs. This is also the
official setting of the TREC-19 deep learning track.
For few-shot document ranking, we use graded rele-
vance assessment script (gdeval)7 as the evaluation
script measuring NDCG and ERR. Note that this
setting is consistent with previous studies (Zhang
et al., 2020; Dai and Callan, 2019).

6https://github.com/usnistgov/trec eval
7https://trec.nist.gov/data/web/10/gdeval.pl
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Sentence in the document D2944963 for Q4: 833860 (what is the most popular food in switzerland) Top Query Token
Top 10 Swiss foods with recipes (title) switzerland
You certainly won’t go hungry in Switzerland. food
You spear small cubes of bread onto long-stemmed forks and dip them into the hot cheese (taking care not to lose
the bread in the fondue).

food

Jamie Oliver has this easy cheese fondue recipe, and this five-star recipe has good reviews. popular

Table 9: Case study of the query 833860 with the query tokens with the highest attention weights in the 10-th
transformer layer among all heads from the [SOS] tokens of sentences in the document D2944963.

B Baseline Methods
In this section, we introduce each baseline method.
TREC Best Runs.

• bm25tuned prf (Yang and Lin, 2019) fine-
tunes the BM25 parameters with pseudo rel-
evance feedback as the best BM25 based
method in official runs.

• srchvrs run1 is marked as the best traditional
ranking method among official runs (Craswell
et al., 2020).

• TUW19-d3-re (Hofstätter et al., 2019) as the
best method without using non-pretrained lan-
guage models (non-PLM) in official runs uti-
lizes a transformer to encode both of the query
and the document, thereby measuring interac-
tions between terms and scoring the relevance.

• bm25 expmarcomb (Akkalyoncu Yilmaz
et al., 2019) combines sentence-level and
document-level relevance scores with a pre-
trained BERT model.

Classical IR Methods.
• SDM (Metzler and Croft, 2005) as a sequen-

tial dependence model conducts ranking based
on the theory of probabilistic graphical mod-
els. We obtain ranking results of SDM from
previous studies (Dai and Callan, 2019). SDM
is not only treated as a baseline method but
also providing the candidate documents for
reranking in the few-shot learning task.

• Coor-Ascent (Metzler and Croft, 2007) is a
linear feature-based model for ranking. It
is also considered as the trainer in few-shot
learning with representations from methods.

Neural IR Methods.
• CO-PACRR (Hui et al., 2018) utilizes CNNs

to model query-document similarity matrices
and provide a score using a max-pooling layer.

• Conv-KNRM (Dai et al., 2018) applies
CNNs to independently encode the query and
the document. The encoded representations
are then integrated by a cross-matching layer,
thereby deriving relevance scores.

Transformer-based Methods.
• TK (Hofstätter et al., 2020) and

TKL (Hofstätter et al., 2020) apply
transformers to independently model the
query and document, thereby measuring term
interactions at the embedding level.

• RoBERTa (FirstP) and RoBERTa
(MaxP) (Dai and Callan, 2019) adapt
long-form documents by considering the first
paragraph and combining RoBERTa outputs
with max-pooling over paragraphs. Note that
each paragraph is also attached with query
tokens before being fed into the model.

• Transformer-XH (Zhao et al., 2020) encodes
each sentence independently and considers
their relations with an extra-hop attention
layer. Note each sentence is also attached
with query tokens as the model input.

• Sparse-Transformer (Child et al., 2019) sim-
ply uses sparse local attention to tackle the
efficiency issue of transformers.

• Longformer-QA (Beltagy et al., 2020) ex-
tends Sparse-Transformer by attaching two
global attention tokens to the query and the
document as their settings for question answer-
ing. Note that their global attention would not
consider document structural information.

C Additional Study on Attention Weights

In addition to attention from the classification token
[CLS] and query tokens as shown in Section 6.5,
here we analyze the attention from sentences. Ta-
ble 9 shows the query tokens with the highest atten-
tion weights in the 10-th transformer layer among
all head from the [SOS] tokens of sentences. Note
that the 10-th transformer layer indicates higher im-
portance of query tokens as shown in Figre 4. The
results show that QDS-Transformer is capable of
directing sentences to the tokens with matched top-
ics, thereby understanding sophisticated document
structure with different topics.


