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Abstract

Structured prediction is often approached by
training a locally normalized model with max-
imum likelihood and decoding approximately
with beam search. This approach leads to
mismatches as, during training, the model is
not exposed to its mistakes and does not use
beam search. Beam-aware training aims to ad-
dress these problems, but unfortunately, it is
not yet widely used due to a lack of under-
standing about how it impacts performance,
when it is most useful, and whether it is sta-
ble. Recently, Negrinho et al. (2018) pro-
posed a meta-algorithm that captures beam-
aware training algorithms and suggests new
ones, but unfortunately did not provide empir-
ical results. In this paper, we begin an em-
pirical investigation: we train the supertag-
ging model of Vaswani et al. (2016) and a
simpler model with instantiations of the meta-
algorithm. We explore the influence of various
design choices and make recommendations for
choosing them. We observe that beam-aware
training improves performance for both mod-
els, with large improvements for the simpler
model which must effectively manage uncer-
tainty during decoding. Our results suggest
that a model must be learned with search to
maximize its effectiveness.

1 Introduction

Structured prediction often relies on models that
train on maximum likelihood and use beam search
for approximate decoding. This procedure leads
to two significant mismatches between the training
and testing settings: the model is trained on oracle
trajectories and therefore does not learn about its
own mistakes; the model is trained without beam
search and therefore does not learn how to use the
beam effectively for search.

Previous algorithms have addressed one or
the other of these mismatches. For example,

DAgger (Ross et al., 2011) and scheduled sam-
pling (Bengio et al., 2015) use the learned model
to visit non-oracle states at training time, but do
not use beam search (i.e., they keep a single hy-
pothesis). Early update (Collins and Roark, 2004),
LaSO (Daumé and Marcu, 2005), and BSO (Wise-
man and Rush, 2016) are trained with beam search,
but do not expose the model to beams without a
gold hypothesis (i.e., they either stop or reset to
beams with a gold hypothesis).

Recently, Negrinho et al. (2018) proposed a
meta-algorithm that instantiates beam-aware al-
gorithms as a result of choices for the surrogate
loss (i.e., which training loss to incur at each vis-
ited beam) and data collection strategy (i.e., which
beams to visit during training). A specific instanti-
ation of their meta-algorithm addresses both mis-
matches by relying on an insight on how to induce
training losses for beams without the gold hypothe-
sis: for any beam, its lowest cost neighbor should
be scored sufficiently high to be kept in the suc-
cessor beam. To induce these training losses it is
sufficient to be able to compute the best neighbor of
any state (often called a dynamic oracle (Goldberg
and Nivre, 2012)). Unfortunately, Negrinho et al.
(2018) do not provide empirical results, leaving
open questions such as whether instances can be
trained robustly, when is beam-aware training most
useful, and what is the impact on performance of
the design choices.

Contributions We empirically study beam-
aware algorithms instantiated through the meta-
algorithm of Negrinho et al. (2018). We tackle su-
pertagging as it is a sequence labelling task with an
easy-to-compute dynamic oracle and a moderately-
sized label set (approximately 1000) which may
require more effective search. We examine two su-
pertagging models (one from Vaswani et al. (2016)
and a simplified version designed to be heavily
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reliant on search) and train them with instantia-
tions of the meta-algorithm. We explore how de-
sign choices influence performance, and give rec-
ommendations based on our empirical findings.
For example, we find that perceptron losses per-
form consistently worse than margin and log losses.
We observe that beam-aware training can have a
large impact on performance, particularly when the
model must use the beam to manage uncertainty
during prediction. Code for reproducing all results
in this paper is available at https://github.com/
negrinho/beam_learn_supertagging.

2 Background on learning to search and
beam-aware methods

For convenience, we reuse notation introduced
in Negrinho et al. (2018) to describe their meta-
algorithm and its components (e.g., scoring func-
tion, surrogate loss, and data collection strategy).
See Figure 1 and Figure 2 for an overview of the
notation. When relevant, we instantiate notation for
left-to-right sequence labelling under the Hamming
cost, which supertagging is a special case of.

Input and output spaces Given an input struc-
ture x 2 X , the output structure y 2 Yx, is gener-
ated through a sequence of incremental decisions.
An example x 2 X induces a tree Gx = (Vx, Ex)
encoding the sequential generation of elements in
Yx, where Vx is the set of nodes and Ex is the set of
edges. The leaves of Gx correspond to elements of
Yx and the internal nodes correspond to incomplete
outputs. For left-to-right sequence labelling, for
a sequence x 2 X , each decision assigns a label
to the current position of x and the nodes of tree
encode labelled prefixes of x, with terminal nodes
encoding complete labellings of x.

Cost functions Given a golden pair (x, y) 2 X⇥
Y , the cost function cx,y : Yx ! R measures
how bad the prediction ŷ 2 Yx is relative to the
target output structure y 2 Yx. Using cx,y : Yx !
R, we define a cost function c⇤x,y : Vx ! R for
partial outputs by assigning to each node v 2 Vx

the cost of its best reachable complete output, i.e.,
c⇤x,y(v) = minv02Tv cx,y(v

0), where Tv ✓ Yx is
the set of complete outputs reachable from v. For
a left-to-right search space for sequence labelling,
if cx,y : Yx ! R is Hamming cost, the optimal
completion cost c⇤x,y : Yx ! R is the number of
mistakes in the prefix as the optimal completion
matches the remaining suffix of the target output.

Dynamic oracles An oracle state is one for
which the target output structure can be reached.
Often optimal actions can only be computed for
oracle states. Dynamic oracles compute optimal
actions even for non-oracle states. Evaluations of
c⇤x,y : Vx ! R for arbitrary states allows us to in-
duce the dynamic oracle—at a state v 2 Vx, the op-
timal action is to transition to the neighbor v0 2 Nv

with the lowest completion cost. For sequence la-
belling, this picks the transition that assigns the
correct label. For other tasks and metrics, more
complex dynamic oracles may exist, e.g., in depen-
dency parsing (Goldberg and Nivre, 2012, 2013).
For notational brevity, from now on, we omit the
dependency of the search spaces and cost function
on x 2 X , y 2 Y , or both.

Beam search space Given a search space G =
(V,E), the beam search space Gk = (Vk, Ek) is
induced by choosing a beam size k 2 N and a
strategy for generating the successor beam out of
the current beam and its neighbors. In this paper,
we expand all the elements in the beam and score
the neighbors simultaneously. The highest scoring
k neighbors are used to form the successor beam.
For k = 1, we recover the greedy search space G.

Beam cost functions The natural cost function
c⇤ : Vk ! R for Gk is created from the element-
wise cost function on G, and assigns to each beam
the cost of its best element, i.e., for b 2 Vk, c⇤(b) =
minv2b c⇤(v). For a transition (b, b0) 2 Ek, we
define the transition cost c(b, b0) = c⇤(b0)� c⇤(b),
where b0 2 Nb, i.e., b0 can be formed from the
neighbors of the elements in b. A cost increase
happens when c(b, b0) > 0, i.e., the best complete
output reachable in b is no longer reachable in b0.

Policies Policies operate in beam search space
Gk and are induced through a learned scoring func-
tion s(·, ✓) : V ! R which scores elements in
the original space G. A policy ⇡ : Vk ! �(Vk),
i.e., mapping states (i.e., beams) to distributions
over next states. We only use deterministic policies
where the successor beam is computed by sorting
the neighbors in decreasing order of score and tak-
ing the top k.

Scoring function In the non-beam-aware case,
the scoring function arises from the way proba-
bilities of complete sequences are computed with
the locally normalized model, namely p(y|x, ✓) =Qh

j=1 p(yi|y1:i�1, x, ✓), where we assume that all

https://github.com/negrinho/beam_learn_supertagging
https://github.com/negrinho/beam_learn_supertagging


4536

v01

v02

v03

v04

v05

v1

v2

v3

v03

v02

v01

v01 s(v01, ✓) = 0.3 c⇤(v01) = 2 �̂(1) = 3 �⇤(1) = 4

v02 s(v02, ✓) = 0.5 c⇤(v02) = 2 �̂(2) = 2 �⇤(2) = 3

v03 s(v03, ✓) = 1.9 c⇤(v03) = 1 �̂(3) = 1 �⇤(3) = 2

v04 s(v04, ✓) = 0.2 c⇤(v04) = 0 �̂(4) = 4 �⇤(4) = 1

v05 s(v05, ✓) = 0.1 c⇤(v05) = 3 �̂(5) = 5 �⇤(5) = 5

b Ab s 2 Rn c 2 Rn �̂ : [n] ! [n] �⇤ : [n] ! [n] b0

Figure 1: Beam b has neighborhood Ab, where k = |b| = |b0| = 3 and n = |Ab| = 5. Edges from elements in b
to elements in Ab encode neighborhood relationships, e.g., v3 has a single neighbor v05. Permutation �̂ : [n] ! [n]
sorts hypotheses in decreasing order of score, and permutation �⇤ : [n] ! [n] sorts them in increasing order of
cost, i.e, v0�⇤(1) is the lowest cost neighbor and v0�̂(1) is the highest scoring neighbor. The successor beam b0 keeps
the neighbor states in Ab with highest score according to vector s, or equivalently highest rank according to �̂.

P
`(✓, b1:h)

b1 b2 . . . bh�1 bh

`(✓, b1) `(✓, b2) `(✓, bh�1)

b2 ⇠ ⇡0(b1) b3 ⇠ ⇡0(b2) bh�1 ⇠ ⇡0(bh�2) bh ⇠ ⇡0(bh�1)

Figure 2: Sampling a trajectory through the beam search space at training time. A loss `(bi, ✓) is incurred at each
visited beam bi, i 2 [h � 1], resulting in total accumulated loss `(b1:h, ✓) for beam trajectory b1:h. The terminal
beam bh corresponds to a complete output y(bh) 2 Y . Transitions between beams are sampled according to a data
collection policy ⇡0 : Vk ! �(Vk). We consider ⇡0 induced by a scoring function s(·, ✓) : V ! R or cost function
c⇤ : V ! R. Parameters ✓ parametrize the scoring function of the model. Losses `(bi, ✓) are low if the scores of
the neighbors of bi comfortably keep the lowest cost elements in the successor beam (see Section 3.2), and high
otherwise. See Figure 1 for the notation to describe the surrogate loss `(bi, ✓) at each beam bi.

outputs for x 2 X have h steps. For sequence
labelling, h is the length of the sentence. The
resulting scoring function s(·, ✓) : V ! R is
s(v, ✓) =

Pj
i=1 log p(yi|y1:i�1, x, ✓), where v =

y1:j and j 2 [h]. Similarly, the scoring function
that we learn in the beam-aware case is s(v, ✓) =Pj

i=1 s̃(v, ✓), where x has been omitted, v = y1:j ,
and s̃(·, ✓) : V ! R is the learned incremental
scoring function. In Section 4.6, we observe that
this cumulative version performs uniformly better
than the non-cumulative one.

3 Meta-algorithm for learning beam
search policies

We refer the reader to Negrinho et al. (2018) for
a discussion of how specific choices for the meta-
algorithm recover algorithms from the literature.

3.1 Data collection strategies
The data collection strategy determines which
beams are visited at training time (see Figure 2).

Strategies that use the learned model differ on how
they compute the successor beam b0 2 Nb when
s(·, ✓) leads to a beam without the gold hypothesis,
i.e., c(b, b0) > 0, where b0 = {v�̂(1), . . . , v�̂(k)} ⇢
Ab and Ab = {v1, . . . , vn} = [v2bNv. We ex-
plore several data collection strategies:

stop If the successor beam does not contain
the gold hypothesis, stop collecting the trajec-
tory. Structured perceptron training with early up-
date (Collins and Roark, 2004) use this strategy.

reset If the successor beam does not contain the
gold hypothesis, reset to a beam with only the gold
hypothesis1. LaSO (Daumé and Marcu, 2005) use
this strategy. For k = 1, we recover teacher forcing
as only the oracle hypothesis is kept in the beam.

1Any beam with the gold hypothesis would be valid, e.g.,
the top k� 1 according to the scores plus the gold hypothesis,
which we call reset (multiple)
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continue Ignore cost increases, always using the
successor beam. DAgger (Ross et al., 2011) take
this strategy, but does not use beam search. Ne-
grinho et al. (2018) suggest this for beam-aware
training but do not provide empirical results.

reset (multiple) Similar to reset, but keep k �
1 hypothesis from the transition, i.e., b0 =
{v�⇤(1), v�̂(1), . . . v�̂(k�1)}. We might expect this
data collection strategy to be closer to continue as
a large fraction of the elements of the successor
beam are induced by the learned model.

oracle Always transition to the beam induced by
�⇤ : [n] ! [n], i.e., the one obtained by sorting the
costs in increasing order. For k = 1, this recovers
teacher forcing. In Section 4.4, we observe that
oracle dramatically degrades performance due to
increased exposure bias with increased k.

3.2 Surrogate losses
Surrogate losses encode that the scores produced
by the model for the neighbors must score the best
neighbor sufficiently high for it to be kept com-
fortably in the successor beam. For k = 1, many
of these losses reduce to losses used in non-beam-
aware training. Given scores s 2 Rn and costs c 2
Rn over neighbors in Ab = {v1, . . . , vn}, we de-
fine permutations �̂ : [n] ! [n] and �⇤ : [n] ! [n]
that sort the elements in Ab in decreasing order of
scores and increasing order of costs, respectively,
i.e., s�̂(1) � . . . � s�̂(n) and c�⇤(1)  . . .  s�⇤(n).
See Figure 1 for a description of the notation used
to describe surrogate losses. Our experiments com-
pare the following surrogate losses:

perceptron (first) Penalize failing to score the
best neighbor at the top of the beam (regardless of
it falling out of the beam or not).

`(s, c) = max
�
0, s�̂(1) � s�⇤(1)

�
.

perceptron (last) If this loss is positive at a
beam, the successor beam induced by the scores
does not contain the golden hypothesis.

`(s, c) = max
�
0, s�̂(k) � s�⇤(1)

�
.

margin (last) Penalize margin violations of the
best neighbor of the hypothesis in the current beam.
Compares the correct neighbor s�⇤(1) with the
neighbor v�̂(k) last in the beam.

`(s, c) = max
�
0, s�̂(k) � s�⇤(1) + 1

�

cost-sensitive margin (last) Same as margin

(last) but weighted by the cost difference of the
pair. Wiseman and Rush (2016) use this loss.

`(s, c) = c�̂(k),�⇤(1)max(0, s�̂(k) � s�⇤(1) + 1),

where c�̂(k),�⇤(1) = c�̂(k) � c�⇤(1).

log loss (neighbors) Normalizes over all ele-
ments in Ab. For beam size k = 1, it reduces
to the usual log loss.

`(s, c) = �s�⇤(1) + log

 
nX

i=1

exp(si)

!

log loss (beam) Normalizes only over the top k
neighbors of a beam according to the scores s.

`(s, c) = �s�⇤(1) + log

 
X

i2I
exp(si)

!
,

where I = {�⇤(1), �̂(1), . . . , �̂(k)}. The normal-
ization is only over the golden hypothesis v�⇤(1)

and the elements included in the beam. Andor et al.
(2016) use this loss.

3.3 Training
The meta-algorithm of Negrinho et al. (2018) is
instantiated by choosing a surrogate loss, data col-
lection strategy, and beam size. Training proceeds
by sampling an example (x, y) 2 X ⇥ Y from the
training set. A trajectory through the beam search
space Gk is collected using the chosen data collec-
tion strategy. A surrogate loss is induced at each
non-terminal beam in the trajectory (see Figure 2).
Parameter updates are computed based on the gra-
dient of the sum of the losses of the visited beams.

4 Experiments

We explore different configurations of the design
choices of the meta-algorithm to understand their
impact on training behavior and performance.

4.1 Task details
We train our models for supertagging, a sequence
labelling where accuracy is the performance metric
of interest. Supertagging is a good task for ex-
ploring beam-aware training, as contrary to other
sequence labelling datasets such as named-entity
recognition (Tjong Kim Sang and De Meulder,
2003), chunking (Sang and Buchholz, 2000), and
part-of-speech tagging (Marcus et al., 1993), has
a moderate number of labels and therefore it is
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Figure 3: High-level structure of the two models used in the experiments. The model on the left is from Vaswani
et al. (2016). The model on the right is a simplification of the one on the left, namely, it does not have an encoding
of the complete sentence at the start of prediction.

likely to require effective search to achieve high
performances. We used the standard splits for
CCGBank (Hockenmaier and Steedman, 2007): the
training and development sets have, respectively,
39604 and 1913 examples. Models were trained
on the training set and used the development set
to compute validation accuracy at the end of each
epoch to keep the best model. As we are perform-
ing an empirical study, similarly to Vaswani et al.
(2016), we report validation accuracies. Each con-
figuration is ran three times with different random
seeds and the mean and standard deviation are re-
ported. We replace the words that appear at most
once in the training set by UNK. By contrast, no
tokenization was done for the training supertags.

4.2 Model details

We have implemented the model of Vaswani et al.
(2016) and a simpler model designed by removing
some of its components. The two main differences
between our implementation and theirs are that
we do not use pretrained embeddings (we train the
embeddings from scratch) and we use the gold POS
tags (they use only the pretrained embeddings).

Main model For the model of Vaswani et al.
(2016) (see Figure 3, left), we use 64, 16, and 64 for
the dimensions of the word, part-of-speech, and su-
pertag embeddings, respectively. All LSTMs (for-
ward, backward, and LM) have hidden dimension
256. We refer the reader to Vaswani et al. (2016)
for the exact description of the model. Briefly,
embeddings for the words and part-of-speech tags
are concatenated and fed to a bi-directional LSTM,
the outputs of both directions are then fed into a

combiner (dimension-preserving linear transforma-
tions applied independently to both inputs, added
together, and passed through a ReLU non-linearity).
The output of the combiner and the output of the
LM LSTM (which tracks the supertag prefix up to
a prediction point) is then passed to another com-
biner that generates scores over supertags.

Simplified model We also consider a simplified
model that drops the bi-LSTM encoder and the
corresponding combiner (see Figure 3, right). The
concatenated embeddings are fed directly into the
second combiner with the LM LSTM output. Val-
ues for the hyperparameters are the same when
possible. This model must leverage the beam ef-
fectively as it does not encode the sentence with
a bi-LSTM. Instead, only the embeddings for the
current position are available, giving a larger role
to the LM LSTM over supertags. While supertag-
ging can be tackled with a stronger model, this
restriction is relevant for real-time tasks, e.g., the
complete input might not be known upfront.

Training details Models are trained for 16
epochs with SGD with batch size 1 and cosine
learning rate schedule (Loshchilov and Hutter,
2016), starting at 10�1 and ending at 10�5. No
weight decay or dropout was used. Training ex-
amples are shuffled after each epoch. Results are
reported for the model with the best validation per-
formance across all epochs. We use 16 epochs for
all models for simplicity and fairness. This num-
ber was sufficient, e.g., we replicated Table 2 by
training with 32 epochs and observed minor perfor-
mance differences (see Table 6).
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1 2 4 8

oracle/reset 93.780.12 93.810.11 93.820.10 93.820.10
continue 94.040.07 94.050.07 94.050.07 94.060.07
stop 93.860.09 93.900.07 93.900.07 93.910.07

oracle/reset 73.200.31 76.550.24 77.420.27 77.540.22
continue 81.990.04 82.300.03 82.370.08 82.410.08
stop 74.350.23 77.060.14 77.730.13 77.820.09

Table 1: Development accuracies for models trained
with different data collection strategies in a non-beam-
aware way (i.e., k = 1) and decoded with beam search
with varying beam size. continue performs best, show-
ing the importance of exposing the model to its mis-
takes. Differences are larger for the simplified model.

4.3 Non-beam-aware training

We first train the models with k = 1 and then use
beam search to decode. Crucially, the model does
not train with a beam and therefore does not learn
to use it effectively. We vary the data collection
strategy. The results are presented in Table 1 and
should be used as a reference when reading the
other tables to evaluate the impact of beam-aware
training. Tables are formatted such that the first
and second horizontal halves contain the results for
the main model and simplified model, respectively.
Each position contains the mean and the standard
deviation of running that configuration three times.
We use this format in all tables presented.

The continue data collection strategy (i.e., DAg-
ger for k = 1) results in better models than training
on the oracle trajectories. Beam search results in
small gains for these settings. In this experiment,
training with oracle is the same as training with
reset as the beam always contains only the oracle
hypothesis. The performance differences are small
for the main model but much larger for the simpli-
fied model, underscoring the importance of beam
search when there is greater uncertainty about pre-
dictions. For the stronger model, the encoding
of the left and right contexts with the bi-LSTM
provides enough information at each position to
predict greedily, i.e., without search. This differ-
ence appears consistently in all experiments, with
larger gains for the weaker model.

The gains achieved by the main model by decod-
ing with beam search post-training are very small
(from 0.02 to 0.05). This suggests that training the
model in a non-beam-aware fashion and then us-
ing beam search does not guarantee improvements.
The model must be learned with search to improve
on these results. For the simpler model, larger im-

1 2 4 8

oracle 94.100.08 92.980.07 91.660.22 85.950.79
reset 94.200.11 94.340.06 94.330.01 94.420.04
reset (mult.) 94.150.07 93.980.08 94.060.06 94.160.05
continue 94.150.02 94.350.05 94.370.04 94.330.04
stop 93.950.09 94.110.05 94.240.07 94.250.06

oracle 75.090.17 80.670.40 78.691.27 47.381.79
reset 75.060.16 87.210.14 91.240.02 92.460.09
reset (mult.) 75.040.18 86.190.12 90.760.11 92.160.03
continue 82.010.06 89.170.08 91.800.12 92.690.01
stop 75.080.54 87.160.08 90.980.13 92.180.06

Table 2: Development accuracies for beam-aware train-
ing with varying data collection strategies.

provements are observed (from 0.42 to 4.34). De-
spite the gains with beam search for reset and stop,
they are not sufficient to beat the greedy model
trained on its own trajectories, yielding 81.99 for
continue with k = 1 versus 77.54 for oracle and
77.82 for reset, both with k = 8. These results
show the importance of the data collection strategy,
even when the model is not trained in a beam-aware
fashion. These gains are eclipsed by beam-aware
training, namely, compare Table 1 with Table 2.
See Figure 4 for the evolution of the validation and
training accuracies with epochs.

4.4 Comparing data collection strategies

We train both models using the log loss (neigh-

bors), described in Section 3.2, and vary the data
collection strategy, described in Section 3.1, and
beam size. Results are presented in Table 2 Con-
trary to Section 4.3, these models are trained to
use beam search rather than it being an artifact
of approximate decoding. Beam-aware training
under oracle worsens performance with increas-
ing beam size (due to increasing exposure bias).
During training, the model learns to pick the best
neighbors for beams containing only close to op-
timal hypotheses, which are likely very different
from the beams encountered when decoding. The
results for the simplified model are similar—with
increasing beam size, performance first improves
but then degrades. For the main model, we observe
modest but consistent improvements with larger
beam sizes across all data collection strategies ex-
cept oracle. By comparing the results with those in
the first row of Table 1, we see that we improve on
the model trained with maximum likelihood and
decoded with beam search.

The data collection strategy has a larger impact
on performance for the simplified model. continue
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Figure 4: Validation and training accuracies for non-beam-aware training (i.e., k = 1) with different data collection
strategies for the main (left half) and simplified (right half) models. continue achieves higher accuracies.

Figure 5: Validation and training accuracies for beam-aware training with different data collection strategies and
beam sizes for the main (left half) and simplified (right half) models. Larger beam sizes achieve higher perfor-
mances while overfitting less, and are crucial for the simplified model to achieve higher training and validation
accuracies. For smaller beams continue performs better than reset. All models can be trained stably from scratch.
Three runs were aggregated by showing the mean and the standard deviation for each epoch.

1 2 4 8

percep. (first) 92.810.06 93.220.04 93.440.02 93.520.06
percep. (last) 92.840.11 93.570.06 93.860.09 93.770.04
m. (last) 94.100.07 94.290.07 94.270.03 94.430.04
cost-s. m. (last) 93.980.03 94.320.10 94.370.03 94.330.13
log loss (beam) 92.290.07 92.090.11 94.240.08 94.320.02
log loss (neig.) 94.220.00 94.290.03 94.270.06 94.380.01

percep. (first) 77.620.14 86.320.05 89.830.05 91.000.07
percep. (last) 77.670.07 87.620.03 90.820.16 91.980.11
m. (last) 81.750.04 88.800.02 91.910.05 92.810.05
cost-s. m. (last) 81.760.05 88.920.06 91.810.03 92.810.03
log loss (beam) 77.500.07 88.250.08 91.460.06 92.560.11
log loss (neig.) 81.940.02 89.010.10 91.750.03 92.600.03

Table 3: Development accuracies for the loss functions
in Section 3.2.

achieves the best performance. Compare these per-
formances with those for the simplified model in Ta-
ble 1. For larger beams, the improvements achieved
by beam-aware training are much larger than those
achieved by non-beam-aware ones. For example,
92.69 versus 82.41 for continue with k = 8, where
in the first case it is trained in a beam-aware man-
ner (k = 8 for both training and decoding), while
in the second case, beam search is used only dur-
ing decoding (k = 1 during training but k = 8
during decoding). This shows the importance of
training with beam search and exposing the model
to its mistakes. Without beam-aware training, the
model is unable to learn to use the beam effectively.
Check Figure 5 for the evolution of the training
and validation accuracies with training epoch for

beam-aware training.

4.5 Comparing surrogate losses
We train both models with continue and vary the
surrogate loss and beam size. Results are presented
in Table 3.2. Perceptron losses (e.g., perceptron

(first) and perceptron (last)) performed worse than
their margin-based counterparts (e.g., margin (last)

and cost-sensitive margin (last)). log loss (beam)

yields poor performances for small beam sizes (e..g,
k = 1 and k = 2). This is expected due to small
contrastive sets (i.e., at most k + 1 elements are
used in log loss (beam)). For larger beams, the
results are comparable with log loss (neighbors).

4.6 Additional design choices
Score accumulation The scoring function was
introduced as a sum of prefix terms. A natural alter-
native is to produce the score for a neighbor with-
out adding it to a running sum, i.e., s(y1:j , ✓) =

s̃(y1:j , ✓) rather than s(y1:j , ✓) =
Pj

i=1 s̃(y1:i, ✓).
Surprisingly, score accumulation performs uni-
formly better across all configurations. For the
main model, beam-aware training degraded perfor-
mance with increasing beam size. For the simpli-
fied model, beam-aware training improved on the
results in Table 1, but gains were smaller than those
with score accumulation. We observed that the LM
LSTM failed to keep track of differences earlier
in the supertag sequence, leading to similar scores
over their neighbors. Accumulating the scores is a
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simple memory mechanism that does not require
the LM LSTM to learn to propagate long-range
information. This performance gap may not exist
for models that access information more directly
(e.g., transformers (Vaswani et al., 2017) and other
attention-based models (Bahdanau et al., 2014)).
See the appendix for Table 4 which compares con-
figurations with and without score accumulation.
Performance differences range from 1 to 5 absolute
percentage points.

Update on all beams The meta-algorithm of Ne-
grinho et al. (2018) suggests inducing losses on
every visited beam as there is always a correct
action captured by appropriately scoring the neigh-
bors. This leads to updating the parameters on
every beam. By contrast, other beam-aware work
updates only on beams where the transition leads
to increased cost (e.g., Daumé and Marcu (2005)
and Andor et al. (2016)). We observe that always
updating leads to improved performance, similar
to the results in Table 3 for perceptron losses. We
therefore recommend inducing losses on every vis-
ited beam. See the appendix for Table 5, which
compares configurations trained with and without
updating on every beam.

5 Related work

Related work uses either imitation learning (often
called learning to search when applied to structured
prediction) or beam-aware training. Learning to
search (Daumé et al., 2009; Chang et al., 2015;
Goldberg and Nivre, 2012; Bengio et al., 2015; Ne-
grinho et al., 2018) is a popular approach for struc-
tured prediction. This literature is closely related to
imitation learning (Ross and Bagnell, 2010; Ross
et al., 2011; Ross and Bagnell, 2014). Ross et al.
(2011) addresses exposure bias by collecting data
with the learned policy at training time. Collins
and Roark (2004) proposes a structured perceptron
variant that trains with beam search, updating the
model parameters when the correct hypothesis falls
out of the beam. Huang et al. (2012) introduces a
theoretical framework to analyze the convergence
of early update. Zhang and Clark (2008) develops a
beam-aware algorithm for dependency parsing that
uses early update and dynamic oracles. Goldberg
and Nivre (2012, 2013) introduce dynamic oracles
for dependency parsing. Ballesteros et al. (2016)
observes that exposing the model to mistakes dur-
ing training improves a dependency parser. Ben-
gio et al. (2015) makes a similar observation and

present results on image captioning, constituency
parsing, and speech recognition. Beam-aware train-
ing has also been used for speech recognition (Col-
lobert et al., 2019; Baskar et al., 2019). Andor et al.
(2016) proposes an early update style algorithm
for learning models with a beam, but use a log
loss rather than a perceptron loss as in Collins and
Roark (2004). Parameters are updated when the
golden hypothesis falls out of the beam or when
the model terminates with the golden hypothesis
in the beam. Wiseman and Rush (2016) use a sim-
ilar algorithm to Andor et al. (2016) but they use
a margin-based loss and reset to a beam with the
golden hypothesis when it falls out of the beam.
Edunov et al. (2017) use beam search to find a con-
trastive set to define sequence-level losses. Goyal
et al. (2018, 2019) propose a beam-aware training
algorithm that relies on a continuous approximation
of beam search. Negrinho et al. (2018) introduces
a meta-algorithm that instantiates beam-aware al-
gorithms based on choices for beam size, surrogate
loss function, and data collection strategy. They
propose a DAgger-like algorithm for beam search.

6 Conclusions

Maximum likelihood training of locally normalized
models with beam search decoding is the default
approach for structured prediction. Unfortunately,
it suffers from exposure bias and does not learn
to use the beam effectively. Beam-aware training
promises to address some of these issues, but is
not yet widely used due to being poorly under-
stood. In this work, we explored instantiations of
the meta-algorithm of Negrinho et al. (2018) to
understand how design choices affect performance.
We show that beam-aware training is most use-
ful when substantial uncertainty must be managed
during prediction. We make recommendations for
instantiating beam-aware algorithms based on the
meta-algorithm, such as inducing losses at every
beam, using log losses (rather than perceptron-style
ones), and preferring the continue data collection
strategy (or reset if necessary). We hope that this
work provides evidence that beam-aware training
can greatly impact performance and be trained sta-
bly, leading to their wider adoption.
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