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Abstract

Transfer learning is an effective technique to
improve a target recommender system with the
knowledge from a source domain. Existing
research focuses on the recommendation per-
formance of the target domain while ignores
the privacy leakage of the source domain. The
transferred knowledge, however, may unin-
tendedly leak private information of the source
domain. For example, an attacker can accu-
rately infer user demographics from their his-
torical purchase provided by a source domain
data owner. This paper addresses the above
privacy-preserving issue by learning a privacy-
aware neural representation by improving tar-
get performance while protecting source pri-
vacy. The key idea is to simulate the attacks
during the training for protecting unseen users’
privacy in the future, modeled by an adversar-
ial game, so that the transfer learning model
becomes robust to attacks. Experiments show
that the proposed PrivNet model can success-
fully disentangle the knowledge benefitting the
transfer from leaking the privacy.

1 Introduction

Recommender systems (RSs) are widely used
in everyday life ranging from Amazon product-
s (Zhou et al., 2018; Wan et al., 2020) and YouTube
videos (Gao et al., 2010; Cheng et al., 2016) to
Twitter microblogs (Huang et al., 2016) and news
feeds (Wang et al., 2018a; Ma et al., 2019b). RSs
estimate user preferences on items from their his-
torical interactions. RSs, however, cannot learn a
reliable preference model if there are too few in-
teractions in the case of new users and items, i.e.,
suffering from the data sparsity issues.

Transfer learning is an effective technique for
alleviating the issues of data sparsity by exploiting
the knowledge from related domains (Pan et al.,
2010; Liu et al., 2018). We may infer user pref-
erences on videos from their Tweet texts (Huang
and Lin, 2016), from movies to books (Li et al.,

Figure 1: t-SNE projection of transferred representa-
tions of users with (left) and without (right) training of
PrivNet on the MovieLens-Gender dataset. (see Sec-
tion 5.5.1 for details)

2009), and from news to apps (Hu et al., 2018,
2019). These behaviors across domains are differ-
ent views of the same user and may be driven by
some inherent user interests (Elkahky et al., 2015).

There is a privacy concern when the source do-
main shares their data to the target domain due
to the ever-increasing user data abuse and priva-
cy regulations (Ramakrishnan et al., 2001; Yang
et al., 2019b). Private information contains those
attributes that users do not want to disclose, such
as gender and age (Jia and Gong, 2018). They can
be used to train better recommendation models by
alleviating the data sparsity issues to build better
user profiles (Zhao et al., 2014; Cheng et al., 2016).
Previous work (Weinsberg et al., 2012; Beigi et al.,
2020) shows that an attacker can accurately infer a
user’s gender, age, and occupation from their rat-
ings, recommendation results, and a small amount
of users who reveal their demographics.

A technical challenge for protecting user privacy
in transfer learning is that the transferred knowl-
edge has dual roles: usefulness to improve target
recommendation and uselessness to infer source
user privacy. In this work, we propose a novel
model (PrivNet) to achieve the two goals by learn-
ing privacy-aware transferable knowledge such that
it is useful for improving recommendation perfor-
mance in the target domain while it is useless to
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infer private information of the source domain. The
key idea is to simulate the attack during the training
for protecting unseen users’ privacy in the future.
The privacy attacker and the recommender are nat-
urally modeled by an adversarial learning game.
The main contributions are two-fold:

• PrivNet is the first to address the privacy pro-
tection issues, i.e., protecting source user pri-
vate attributes while improving the target per-
formance, during the knowledge transfer in
neural recommendation.

• PrivNet achieves a good tradeoff between the
utility and privacy of the source information
through evaluation on real-world datasets by
comparing with strategies of adding noise (i.e.,
differential privacy) and perturbing ratings.

2 Related Work

2.1 Transfer learning in recommendation

Transfer learning in recommendation (Cantador
et al., 2015) is an effective technique to alleviate
the data sparsity issue in one domain by exploiting
the knowledge from other domains. Typical meth-
ods apply matrix factorization (Singh and Gordon,
2008; Pan et al., 2010; Yang et al., 2017b) and
representation learning (Zhang et al., 2016; Man
et al., 2017; Yang et al., 2017a; Gao et al., 2019a;
Ma et al., 2019a) on each domain and share the
user (item) factors, or learn a cluster level rating
pattern (Li et al., 2009; Yuan et al., 2019). Transfer
learning is to improve the target performance by
exploiting knowledge from auxiliary domains (Pan
and Yang, 2009; Elkahky et al., 2015; Zhang and
Yang, 2017; Chen et al., 2019; Gao et al., 2019b).
One transfer strategy (two-stage) is to initialize
a target network with transferred representations
from a pre-trained source network (Oquab et al.,
2014; Yosinski et al., 2014). Another transfer strat-
egy (end-to-end) is to transfer knowledge in a mu-
tual way such that the source and target networks
benefit from each other during the training, with ex-
amples including the cross-stitch networks (Misra
et al., 2016) and collaborative cross networks (Hu
et al., 2018). These transfer learning methods have
access to the input or representations from source
domain. Therefore, it raises a concern on priva-
cy leaks and provides an attack possibility during
knowledge transfer.

2.2 Privacy-preserving techniques

Existing privacy-preserving techniques mainly be-
long to three research threads. One thread adds
noise (e.g., differential privacy (Dwork et al.,
2006)) to the released data or the output of rec-
ommender systems (McSherry and Mironov, 2009;
Jia and Gong, 2018; Meng et al., 2018; Wang et al.,
2018b; Wang and Zhou, 2020). One thread perturbs
user profiles such as adding (or deleting/changing)
dummy items to the user history so that it hides the
user’s actual ratings (Polat and Du, 2003; Weins-
berg et al., 2012). Adding noise and perturbing
ratings may still suffer from privacy inference at-
tacks when the attacker can successfully distin-
guish the true profiles from the noisy/perturbed
ones. Furthermore, they may degrade performance
since data is corrupted. Another thread uses adver-
sary loss (Resheff et al., 2019; Beigi et al., 2020)
to formulate the privacy attacker and the recom-
mender system as an adversarial learning problem.
However, they face the data sparsity issues. A
recent work (Ravfogel et al., 2020) trains linear
classifiers to predict a protected attribute and then
remove it by projecting the representation on its
null-space. Some other work uses encryption and
federated learning so as to protect the personal data
without affecting performance (Nikolaenko et al.,
2013; Chen et al., 2018; Wang et al., 2019). They
suffer from efficiency and scalability due to high
cost of computation and communication.

3 Problem Statement

We have two domains, a source domain S and a tar-
get domain T . User sets in two domains are shared,
denoted by U (of size m = |U|). Denote item sets
in two domains by IS and IT (of size nS = |IS |
and nT = |IT |), respectively. For the target do-
main, a binary matrix RT ∈ Rm×nT describes the
user-item interactions, where the entry rui ∈ {0, 1}
equals 1 if user u has an interaction with item i and
0 otherwise. Similarly, for the source domain, we
have RS ∈ Rm×nS and the entry ruj ∈ {0, 1}. We
reserve i and j to index the target and source items,
respectively. Let Y p ∈ Rm×cp denote the p-th user
private attribute (e.g., p=‘Gender’) matrix where
each entry yu,p is the value of the p-th private infor-
mation for user u (e.g., yu,p=‘Male’) and there are
cp choices. Denote all n private attributes data by
Y = {Y p}np=1 (e.g., Gender, Age). We can define
the problem as follows:
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Figure 2: Architecture of PrivNet (a version of three
layers). It has two components: the recommender and
privacy attacker. The recommender (the left & right
parts, see Section 4.1) is a representation-based transfer
learning model where the red arrows indicate the rep-
resentations transferred from the source domain to the
target domain in a multilayer way. The privacy attacker
(the middle part, see Section 4.2) marked by an avatar
infers user privacy from the transferred representations.
PrivNet (see Section 4.3) exploits the knowledge from
the source domain with regularization from the adver-
sary loss of the attacker indicated by the dotted box.

PROBLEM: Privacy-aware transfer learning in
recommendation.

INPUT: RT ,RS ,Y .
OUTPUT: Generate a ranked list of items for

users in the target domain.
REQUIRE: An attacker is difficult to infer the

source user private attributes from the knowledge
transferred to the target domain.

ASSUMPTION: Some users Upub ⊂ U share
their private information with the public profile.

4 The Proposed Framework

The architecture of PrivNet is shown in Figure 2. It
has two components, a recommender and an attack-
er. We introduce the recommender (Section 4.1)
and present an attack against it (Section 4.2). We
propose PrivNet to protect source user privacy dur-
ing the knowledge transfer (Section 4.3).

4.1 Recommender
In this section, we introduce a novel transfer-
learning recommender which has three parts, a
source network for the source domain, a target
network for the target domain, and a knowledge
transfer unit between the two domains.

Target network The input is a pair of (user,
item) and the output is their matching degree. The

user is represented by their w-sized historical item-
s [i1, ..., iw]. First, an item embedding matrix
AT projects the discrete item indices to the d-
dimensional continuous representations: xi and
xi∗ where ∗ ∈ [1, 2, ..., w]. Second, the user rep-
resentation xu is computed by the user encoder
module based on an attention mechanism by query-
ing their historical items with the predicted item:
xu =

∑
i∗
αi∗xi∗ , where αi∗ = xTi xi∗ (normal-

ized:
∑
αi∗ = 1). Third, a multilayer perceptron

(MLP) fT parameterized by φT is used to compute
target preference score (the notation [·, ·] denotes
concatenation):

r̂ui = P (rui|u, i; θT ) = fT ([xu,xi]),

where θT = {AT , φT } is the model parameter.
Source network Similar to the three-step com-

puting process in the target network, we com-
pute the source preference score by: r̂uj =
P (ruj |u, j; θS) = fS([xu,xj ]) where θS =
{AS , φS} is the model parameter with item em-
bedding matrix AS and multilayer perceptron φS .

Transfer unit The transfer unit implements the
knowledge transfer from the source to the tar-
get domain. Since typical neural networks have
more than one layer, say L, the representations are
transferred in a multilayer way. Let x`u|# where
# ∈ {S, T} be user u’s source/target representa-
tion in the `-th layer (` = 1, 2, ..., L − 1) where
x1
u|S = [xu,xj ] and x1

u|T = [xu,xi]. The trans-
ferred representation is computed by projecting the
source representation to the space of target repre-
sentations with a translation matrix H`:

x`u|trans = H`x`u|S , (1)

With the knowledge from the source domain,
the target network learns a linear combination of
the two input activations from both networks and
then feeds these combinations as input to the suc-
cessive layer’s filter. In detail, the (` + 1)-th lay-
er’s input of the target network is computed by:
W `

Tx
`
u|T + x`u|trans where W `

T is the connection
weight matrix in the `-th layer of the target network.
The total transferred knowledge is concatenated by
all layers’s representations:

xu|trans = [x`u|trans]
L−1
`=1 . (2)

Objective The recommender minimizes the neg-
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ative logarithm likelihood:

L(θ) = −
∑

DT

logP (rui|u, i; θT )

−
∑

DS

logP (ruj |u, j; θS), (3)

where θ = {θT , θS , {H`}L−1
`=1 }, DT and DS are

target and source training examples, respectively.
We introduce how to generate them in Section 4.4.

4.2 Attacker

The recommender can fulfil the Problem 1 (see Sec-
tion 3) if there is no attacker existing. A challenge
for the recommender is that it does not know the
attacker models in advance. To address this chal-
lenge, we add an attacker component during the
training to simulate the attacks for the test. By inte-
grating a simulated attacker into the recommender,
it can deal with the unseen attacks in the future.
In this section, we introduce an attacker to infer
the user private information from the transferred
knowledge. In the next Section 4.3, we will intro-
duce an adversarial recommender by exploiting the
simulated attacker to regularize the recommenda-
tion process in order to fool the adversary so that
it can protect the privacy of unseen users in the
future.

The attacker model predicts the private user at-
tribute from their source representation sent to the
target domain:

ŷu,p = P (yu,p|xu|trans; θp) = fp(xu|trans; θp),
(4)

where ŷu,p is the predicted value of user u’s p-th
private attribute and p = 1, ..., n. fp is the pre-
diction model parameterized by θp. Note that, an
attacker can use any prediction model and here we
use an MLP due to its nonlinearity and generality.

For all n private user attributes, the attacker mod-
el minimizes the multitask loss:

L(Θ) = − 1

n

∑
p

∑
Dp

logP (yu,p|xu|trans; θp),
(5)

where Θ = {θp}np=1 and Dp is training examples
for the p-th attribute. We introduce how to generate
them in Section 4.4.

4.3 PrivNet

So far, we have introduced a recommender to ex-
ploit the knowledge from a source domain and a
privacy attacker to infer user private information

from the transferred knowledge. To fulfill the Prob-
lem 1 in Section 3, we need to achieve two goals:
improving the target recommendation and protect-
ing the source privacy. In this section, we propose
a novel model (PrivNet) by exploiting the attacker
component to regularize the recommender.

Since we have two rival objectives (i.e., target
quality and source privacy), we adopt the adversar-
ial learning technique (Goodfellow et al., 2014) to
learn a privacy-aware transfer model. The gener-
ator is a privacy attacker which tries to accurately
infer the user privacy, while the discriminator is an
recommender which learns user preferences and de-
ceives the adversary. The recommender of PrivNet
minimizes:

L̃(θ) = L(θ)− λL(Θ), (6)

where the hyperparameter λ controls the influence
from the attacker component. PrivNet seeks to im-
prove the recommendation quality (the first term
on the right-hand side) and fools the adversary by
maximizing the loss of the adversary (the second
term,). The adversary has no control over the trans-
ferred knowledge, i.e., xu|trans. Losses of the two
components are interdependent but they optimize
their own parameters. PrivNet is a general frame-
work since both the recommender and the attacker
can be easily replaced by their variants. PrivNet
reduces to privacy-agnostic transfer model when
λ = 0.

4.4 Generating Training Examples
We generate DT and DS as follows and take the
target domain as an example since the procedure is
the same for the source domain. Suppose we have a
whole item interaction history for some user u, say
[i1, i2, ..., il]. Then we generate the positive train-
ing examples by sliding over the sequence of the
history: D+

T = {([iw]c−1
w=1, ic) : c = 2, ..., l}. We

adopt the random negative sampling technique (Pan
et al., 2008) to generate the corresponding neg-
ative training examples D−T = {([iw]c−1

w=1, i
′
c) :

i′c /∈ [i1, i2, ..., il]}. As the same with (Weins-
berg et al., 2012; Beigi et al., 2020), we assume
that some users Upub ⊂ U share their private at-
tributes with the public profile. Then we have
the labelled privacy data Dpriv = {Dp}np=1 where
Dp = {(u, yu,p) : u ∈ Upub}.

4.5 Model Learning
The training process of PrivNet is illustrated in Al-
gorithm 1. Lines 1-3 are to optimize the privacy



4510

Algorithm 1: Training PrivNet.
Input: Target data DT , source data DS ,
privacy data Dpriv, hyperparameter λ
Output: PrivNet
for number of training iterations do

1. Accumulate (user, attributes) with a
mini-batch (Ub,Yb) from Dpriv

2. Feed users Ub and their history in DS

into the source network (see Sec. 4.1)
so as to generate the transferred
knowledge Xb|S
3. Update Θ using examples (Xb|S ,Yb)
via gradient descent over L(Θ).
4. Update θ using mini-batch examples
from DS and DT with adversary
loss via gradient descent over L̃(θ).

end
The gradient-based updates can use any
standard gradient-based learning rule. Deep
learning library (e.g., TensorFlow) can
automatically calculate gradients.

part related parameter, i.e., Θ in L(Θ). On line
1, it creates a mini-batch size examples from data
Dpriv. Each example contains a user and their cor-
responding private attributes (u, {yu,p}np=1). On
line 2, it feeds users and their historical items in
the source domain to the source network so as to
generate transferred knowledge xu|trans. On line 3,
the transferred knowledge and their corresponding
private attributes (xu|trans, {yu,p}np=1) are used to
train the privacy attacker component by descending
its stochastic gradient using the mini-batch exam-
ples: ∇ΘL(Θ). Line 4 is to optimize the recom-
mender part related parameter, i.e., θ by descend-
ing its stochastic gradient with adversary loss using
mini-batch examples:∇θL̃(θ).

4.6 Complexity Analysis
The parameter complexity of PrivNet is the addi-
tion of its recommender component and the privacy
component. The embedding matrices of the rec-
ommender dominate the number of parameters as
they vary with the input. As a result, the parameter
complexity of PrivNet isO(d · (nS +nT )) where d
is the embedding dimension, and nS and nT are the
number of items in the source and target domains
respectively.

The learning complexity of PrivNet divides into
two parts: the forward prediction and backward pa-
rameter update. The forward prediction of PrivNet

Data #user
Target domain Source domain Private

attribute#item #rating #item #rating

FS 29,515 28,199 357,553 28,407 467,810 G

ML 5,967 2,049 274,115 1,484 299,830 G, A

Table 1: Statistics of datasets. (G=Gender, A=Age)

is the addition of its recommender component and
two times of the privacy component since the rec-
ommender component needs the loss from the pri-
vacy component. The complexity of backward pa-
rameter update is the addition of its recommender
component and the privacy component since they
optimize their own parameters.

5 Experiments

In this section, we conduct experiments to evalu-
ate both recommendation performance and privacy
protection of PrivNet.

5.1 Dataset

We evaluate on the following real-world datasets.
Foursquare (FS) It is a public available da-

ta on user-venue checkins (Yang et al., 2019a).
The source and target domains are divided by the
checkin’s time, i.e., dealing with the covariate shift
issues where the distribution of the input variables
change between the old data and the newly collect-
ed one. The private user attribute is Gender.

MovieLens (ML) It is a public available data on
user-movie ratings (Harper and Konstan, 2016).
We reserve those ratings over three stars as positive
feedbacks. The source and target domains are di-
vided by the movie’s release year, i.e., transferring
from old movies to the new ones. The private user
attributes are Gender and Age. Following (Beigi
et al., 2020), we categorize Age into three groups:
over-45, under-35, and between 35 and 45.

The statistics are summarized in Table 1 and we
can see that all of the datasets have more than 99%
sparsity. It is expected that the transfer learning
technique is helpful to alleviate the data sparsity is-
sues in these real-world recommendation services.

5.2 Experimental Setting

5.2.1 Evaluation Metric
For privacy evaluation, we follow the protocol
in (Jia and Gong, 2018) to randomly sample 80%
of users as the training set and treat the remaining
users as the test set. The users in the training set
has publicly shown their private information while
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Hyperparameter Setting
train:valid:test 7:1:2

user representation size 80
item representation size 80

history length cutoff (#items) 10
neural collaborative filtering layers [80, 64]

attention unit layers [80, 64]
number of transfer layers 1

negative sampling ratio for training 1
test positive:negative 1:99

clip norm 5
batch size 128
bias init 0

weight init Glorot uniform
embedding init Glorot uniform

learning rate 5e-4
optimizer Adam

activation function sigmoid
total epochs (with early stopping) 50

Table 2: Setting of hyperparameters.

the users in the test set keep it private. We split a
small data from the training set as the validation
set where the ratio is train:valid:test=7:1:2. For
privacy metrics, we compute Precision, Recall, and
F1-score in a weighted1 way which are suitable for
imbalanced data distribution (Fawcett, 2006). We
report results for each private attribute. We first
calculate metrics for each label, and then compute
their average weighted by support (the number of
true instances for each label). A lower value indi-
cates better privacy protection.

For recommendation evaluation, we follow the
leave-one-out strategy in (He et al., 2017), i.e., re-
serving the latest one interaction as the test item
for each user, then randomly sampling a number of
(e.g., 99) negative items that are not interacted by
the user. We evaluate how well the recommender
can rank the test item against these negative ones.
We split a small data from the training set as the val-
idation set where the ratio is train:valid:test=7:1:2.
For recommendation metrics, we compute hit ra-
tio (HR), normalized discounted cumulative gain
(NDCG), mean reciprocal rank (MRR), and AUC
for top-K (default K = 10) item recommenda-
tion (Gao et al., 2019a). A higher value indicates
better recommendation.

5.2.2 Implementation
All methods are implemented using TensorFlow.
Parameters are initialized by default. The optimiz-

1Note, the weighted F1 values are not necessarily equal to
the harmonic mean of the corresponding Precision and Recall
values.

Methods
Knowledge

transfer
Privacy protection

(+strategy)
BPRMF (Rendle et al., 2009) 7 7

MLP (He et al., 2017) 7 7

CSN (Misra et al., 2016) 3 7

CoNet (Hu et al., 2018) 3 7

BlurMe (Weinsberg et al., 2012) 7 3 (+perturbation)
LDP (Bassily and Smith, 2015) 7 3 (+noise)
PrivNet (ours) 3 3 (+adversary)

Table 3: Categorization of comparing methods.

er is the adaptive moment estimation with learning
rate 5e-4. The size of mini-batch is 128 with neg-
ative sampling ratio 1. The embedding size is 80
while the MLP has one hidden layer with size 64.
The history size is 10. λ is 1 in Eq. (6). The noise
level is 10%. The number of dummy items are
5. The privacy related metrics are computed by
Python scikit-learn library. The setting of hyperpa-
rameters used to train our model and the baselines
is summarized in Table 2.

5.3 Baseline

We compare PrivNet with various kinds of base-
lines as summarized in Table 3.

The following methods are privacy-agnostic.
BPRMF: Bayesian personalized ranking (Rendle
et al., 2009) is a latent factors approach which learn-
s user and item factors via matrix factorization.
MLP: Multilayer perceptron (He et al., 2017) is
a neural CF approach which learns the user-item
interaction function using neural networks. CSN:
The cross-stitch network (Misra et al., 2016) is a
deep transfer learning model which couples the
two basic networks via a linear combination of ac-
tivation maps using a translation scalar. CoNet:
Collaborative cross network (Hu et al., 2018) is
a deep transfer learning method for cross-domain
recommendation which learns linear combination
of activation maps using a translation matrix.

The following methods are privacy-aware.
BlurMe: This method (Weinsberg et al., 2012)
perturbs a user’s profile by adding dummy item-
s to their history. It is a representative of the
perturbation-based technique to recommend items
while protect private attributes. LDP: Local differ-
ential privacy (Bassily and Smith, 2015) modifies
user-item ratings by adding noise to them based on
the differential privacy. It is a representative of the
noise-based technique to recommend items while
protect private attributes. Note, the original LDP
and BlurMe are single-domain models which are
also used as comparing baselines in (Beigi et al.,
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Dataset Metric BPRMF MLP CSN CoNet BlurMe LDP PrivNet

HR 36.5 47.0 52.7 53.4* 52.6 44.5 54.3
Foursquare NDCG 22.0 31.5 35.9 36.3* 35.4 29.9 36.8

MRR 17.6 31.9 35.0* 35.3 32.1 27.1 33.4

HR 53.0 77.4 82.7 77.1 85.7 85.8* 86.0
MovieLens NDCG 37.0 50.5 55.7 50.7 69.7 69.9 69.9

MRR 32.0 44.5 49.3 44.6 65.9 65.9 65.7*

Table 4: Comparison results of different methods on recommendation performance. The bold face indicates the
best result while the star mark indicates the second best.

2020). To be fair and to investigate the influence of
privacy-preserving strategies, we replace the adver-
sary strategy of PrivNet with the strategy of LDP
(adding noise) and BlurMe (perturbing ratings),
and keep the other components the same.

5.4 Result on Recommendation Performance

The results of different methods on recommenda-
tion are summarized in Table 4. A higher value
indicates better recommendation performance.

Comparing with the privacy-agnostic methods
(BPRMF, MLP, CSN, and CoNet), PrivNet is supe-
rior than them with a large margin on the Movie-
Lens dataset. This shows that PrivNet is effective
in recommendation while it protects the source pri-
vate attributes. Since these four methods represent
a wide range of typical recommendation methods
(matrix factorization, neural CF, transfer learning),
we can see that the architecture of PrivNet is a
reasonable design for recommender systems.

Comparing with the privacy-aware methods (LD-
P and BlurMe), we can see that LDP significant-
ly degrades recommendation performance with a
reduction about six to ten percentage points on
the Foursquare dataset. This shows that LDP
suffers from the noisy source information since
it harms the usefulness of the transferred knowl-
edge to the target task. For BlurMe, we can see
that BlurMe still degrades recommendation per-
formance on the Foursquare dataset, for example
with relative 4.0% performance reduction in terms
of MRR. This shows that BlurMe suffers from the
perturbed source information since it harms the use-
fulness of the transferred knowledge to the target
task.

Among the privacy-aware methods, PrivNet
achieves the best recommendation performance
in terms of all HR, NDCG, and MRR on the
Foursquare dataset, and the best in terms of HR on
the MovieLens dataset. It shows that PrivNet is bet-

Dataset Metric LDP BlurMe PrivNet

Foursquare
Precision 64.7 73.2 66.8

Recall 75.2 75.3 71.1
F1 66.0 66.7 68.1

MovieLens-G
Precision 73.4 69.4 70.9

Recall 75.4 71.7 72.5
F1 73.6 70.1 62.0

MovieLens-A
Precision 63.8 54.6 55.4

Recall 65.5 58.1 57.9
F1 61.4 54.2 46.3

Table 5: Comparison results on privacy protection. The
bold face indicates the best result (the lower the better).

ter for improving the usefulness of the transferred
knowledge by comparing with LDP and BlurMe.

In summary, PrivNet is effective in transferring
the knowledge, showing that the adversary strategy
of PrivNet achieves state-of-the-art performance
by comparing with the strategies of adding noise
(LDP) and perturbing ratings (BlurMe).

5.5 Result on Privacy Protection

The results of different methods on privacy infer-
ence are summarized in Table 5 (Note, there are no
results for the four privacy-agnostic methods). A
lower value indicates better privacy protection.

Comparing PrivNet and BlurMe, we can see that
the perturbation method by adding dummy items
still suffers from privacy inference attacks in terms
of Precision and Recall on the Foursquare dataset,
and in terms of F1 on the MovieLens dataset. The
reason may be that the attacker can effectively dis-
tinguish the true profiles from the dummy items.
That is, it can accurately learn from the true profiles
while ignore the dummy items. Comparing PrivNet
and LDP, we can see that adding noise to ratings
still suffers from privacy inference attacks in terms
of Recall on the Foursquare dataset, and in terms
of all three metrics on the MovieLens dataset. It
implies that the occurrence of a rating, regardless
of its numeric value (true or noisy), leaks the user
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privacy. That is, the binary event of excluding or
including an item in a user’s profile is a signal for
user privacy inference nearly as strong as numerical
ratings. In particular, there are 50 movies rated by
Female only (e.g., Country Life (1994)) while 350
by Male only (e.g., Time Masters (1982)). Adding
noise to these ratings may not influence the infer-
ence of Gender for these users very much.

PrivNet achieves nearly half the best results on
privacy protection in terms of three evaluation met-
rics on the two datasets. It has significantly lower
F1 scores in comparison to all baselines on the
MovieLens dataset. It is effective to hide private
information during the knowledge transfer. By sim-
ulating the attacks during the training, PrivNet is
prepared against the malicious attacks for unseen
users in the future. In summary, PrivNet is an effec-
tive source privacy-aware transfer model such that
it makes the malicious attackers more difficult to
infer the source user privacy during the knowledge
transfer, compared with the strategies of adding
noise (LDP) and perturbing ratings (BlurMe).

5.5.1 Clustering
Figure 1 shows t-SNE projections of 4,726 user-
s’ transferred representations on the MovieLens-
Gender dataset. These user vectors are computed
from the user encoder as shown in Figure 2. We
can see that the vectors are more mixed distributed
among male and female users with the training of
PrivNet. In contract, the vectors for female user-
s are clustered on the top-left corner while male
users are on the bottom-right without the training
of PrivNet (λ = 0, see Section 5.6.1). To quantify
the difference, we perform K-means clustering on
the user vectors where K=2, and calculate the V-
measure (Rosenberg and Hirschberg, 2007) which
assesses the degree of overlap between the 2 clus-
ters and the Gender groups. The measure is 0.0119
and 0.0027 respectively for without and with train-
ing of PrivNet. Note that a lower measure is better
since we do not want to the two classes to be easily
separable.

5.6 Parameter Sensitivity

In this section, we analyse the model ablation, im-
pact of privacy inference component, and impact
of public users who share their profiles.

5.6.1 Model Ablation
The key component of PrivNet is the adversary loss
used to regularize the recommender. We remove

(a) Privacy attacker. (b) Public users.

Figure 3: Impact of privacy component and public
users. (FS-G: Foursquare-Gender, ML-G: MovieLens-
Gender, ML-A: MovieLens-Age)

this component to show its necessity to protect
the private attributes by setting the λ = 0 in Eq.
(6). The results are summarized in Table 6. As
we expect, PrivNet without adversary loss is most
vulnerable to privacy attacks since it has no privacy
defense. There is a significant drop in terms of all
three privacy-related metrics without this model
component.

5.6.2 Impact of Privacy Component
We vary the λ (see Eq. (6)) of privacy componen-
t with {0, 0.1, 0.25, 0.5, 0.75, 1.0} to show the its
impact on privacy protection and recommendation
(where λ = 0 corresponds to without privacy at-
tack component, see also Table 6). Figure 3a shows
the impact on privacy protection. The privacy in-
ference generally becomes more difficult with the
increase of λ, showing that the privacy inference
component of PrivNet is a key factor for protecting
the user privacy in the source domain. In particular,
all results of λ 6= 0 are better than that of λ = 0
in hiding the private information. Privacy infer-
ence results, however, are subtle among different
private attributes and evaluation metrics. On the
Foursquare dataset, F1 decreases at first (until λ to
0.1), then it increases. On the MovieLens-Gender
dataset, the F1 score decreases at first (until λ to
0.25) and then it increases. It means that the private
information is obscured more successfully in the
beginning but less in the end. The reason may be
that the model overfits by increasing the value of
λ and leads to an inaccurate estimation of privacy
inference. On the MovieLens-Age dataset, the F1
score consistently decreases with the increase of λ.

Figure 4a shows the impact on recommendation
performance. The recommendation performance
decreases with λ increasing from 0 to 0.1 on the
MovieLens dataset, showing that increasing the
impact of privacy inference component harms the



4514

Adversary loss?
Foursquare MovieLens-Gender MovieLens-Age

Precision Recall F1 Precision Recall F1 Precision Recall F1

No 73.2 75.4 68.5 73.6 75.6 73.5 60.8 65.3 61.4
Yes 66.8 71.1 68.1 70.9 72.5 62.0 55.4 57.9 46.3

Table 6: Necessity of adversary loss to regularize the recommender (lower value better privacy protection).

(a) Privacy component (b) Public users

Figure 4: Parameter sensitivity for recommendation.

recommendation quality to some extent.

5.6.3 Impact of Public Users
We vary the percentage of public users Upub (see
Section 3) with {10, 30, 50, 70, 80, 90}. Figure 3b
shows the impact on the privacy inference. It is
surprising that the privacy inference does not be-
come more easy with the increase of public users.
On the Foursquare dataset, it infers inaccurately
until the percentage increases to 50% and then ac-
curately until to 80% in terms of F1. This shows
that the adversary strategy of PrivNet is effective
to protect unseen users’ privacy when only a small
number of users (e.g., 10%) reveal their profiles for
the training. On the MovieLens dataset, it infers
inaccurately after 50% until to 80% in terms of F1.

Figure 4b shows the impact on recommendation
performance. Since the amount of public users
controls how much knowledge is shared between
the source and target domains, the recommendation
performance improves with the increasing amount
of public users. In summary, PrivNet is favourable
in practice since it can achieve a good tradeoff on
the utility and privacy when only a small amount
of users reveal their profiles to the public.

5.7 Case Study
One advantage of PrivNet is that it can explain
which item in a user’s history matters the most for
a candidate item by using the attention weights.
Table 7 shows an example of interactions between
a user’s historical movies (No. 0∼9) and the can-
didate movie (No. 10). We can see that the latest

No. Movie Genre Attn weight

0 Chicken Run Animation, Children, Comedy 0.127
1 X-Men Action, Sci-Fi 0.069
2 Mission: Impossible Action, Adventure, Mystery 0.001
3 Titan A.E. Adventure, Animation, Sci-Fi 0.059
4 The Perfect Storm Action, Adventure, Thriller 0.056
5 Gone in 60 Seconds Action, Crime 0.053
6 Schindler’s List Drama, War 0.098
7 The Shawshank Redemption Drama 0.331
8 The Matrix Action, Sci-Fi, Thriller 0.062
9 Shakespeare in Love Comedy, Romance 0.140

10 Howards End Drama N/A

Table 7: Example: Capturing short-/long-term user
interests and high-level category relationship among
items.

movie matters a lot since the user interests may
remain the same during a short period. The old-
est movie, however, also has some impact on the
candidate movie, reflecting that the user interests
may mix with a long-term characteristic. PrivNet
can capture these subtle short-/long-term user in-
terests. Furthermore, the movie (No. 7) belonging
to the same genre as the candidate movie matters
the most. PrivNet can also capture this high-level
category relationship.

6 Conclusion

We presented an attack scenario to infer the private
user attributes from the transferred knowledge in
recommendation, raising the issues of source priva-
cy leakage beyond target performance. To protect
user privacy in the source domain, a privacy-aware
transfer model (PrivNet) is proposed beyond im-
proving the performance in the target domain. It is
effective in terms of recommendation performance
and privacy protection, achieving a good trade-off
between the utility and privacy of the transferred
knowledge. In future works, we want to relax the
assumption that the private user attributes need to
provide in advance in order to train the privacy
inference component for protecting unseen users.
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