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Abstract

There has been an increased interest in mod-
elling political discourse within the natural
language processing (NLP) community, in
tasks such as political bias and misinforma-
tion detection, among others. Metaphor-rich
and emotion-eliciting communication strate-
gies are ubiquitous in political rhetoric, accord-
ing to social science research. Yet, none of the
existing computational models of political dis-
course has incorporated these phenomena. In
this paper, we present the first joint models of
metaphor, emotion and political rhetoric, and
demonstrate that they advance performance in
three tasks: predicting political perspective of
news articles, party affiliation of politicians
and framing of policy issues.

1 Introduction

The role of metaphor and emotion in political
discourse has been investigated in fields such as
communication studies (Weeks, 2015; Mourdo and
Robertson, 2019), political science (Ferrari, 2007;
Charteris-Black, 2009) and psychology (Edwards,
1999; Bougher, 2012). Political rhetoric may rely
on metaphorical framing to shape public opinion
(Lakoff, 1991; Musolff, 2004). Framing selectively
emphasises certain aspects of an issue that promote
a particular perspective (Entman, 1993). For in-
stance, government spending on the wealthy can
be portrayed as a partnership or bailout, spending
on the middle class as simply spending or stimulus
to the economy and spending on the poor as a give-
away or a moral duty, the former corresponding to
the conservative and the latter to the liberal point
of view (Stone, 1988). Metaphor is an apt framing
device, with different metaphors used across com-
munities with distinct political views (Kdvecses,
2002; Lakoff and Wehling, 2012). At the same
time, metaphorical language has been shown to
express and elicit stronger emotion than literal lan-

guage (Citron and Goldberg, 2014; Mohammad
et al., 2016) and to provoke emotional responses in
the context of political discourse covered by main-
stream newspapers (Figar, 2014). For instance,
the phrase “immigrants are strangling the welfare
system” aims to promote fear of immigration. On
the other hand, the experienced emotions may influ-
ence the effects of news framing on public opinions
(Lecheler et al., 2015) and individual variations
in emotion regulation styles can predict different
political orientations and support for conservative
policies (Lee Cunningham et al., 2013). Metaphor
and emotion thus represent crucial tools in political
communication.

At the same time, computational modelling of
political discourse, and its specific aspects, such as
political bias in news sources (Kiesel et al., 2019),
framing of societal issues (Card et al., 2015), or pre-
diction of political affiliation from text (Iyyer et al.,
2014) have received a great deal of attention in the
NLP community. Yet, none of this research has
incorporated the notions of metaphor and emotion
in modelling political rhetoric.

We present the first joint models of metaphor,
emotion and political rhetoric, within a multi-task
learning (MTL) framework. We make use of auxil-
iary learning, i.e. training a model in more than one
task to improve the performance on a main task.
We experiment with three tasks from the political
realm, predicting (1) political perspective of a news
article; (2) party affiliation of politicians from their
social media posts; and (3) framing dimensions of
policy issues. We use metaphor and emotion de-
tection as auxiliary tasks, and investigate whether
incorporating metaphor or emotion-related features
enhances the models of political discourse. Our
results show that incorporating metaphor or emo-
tion significantly improves performance across all
tasks, emphasising the prominent role they play in
political rhetoric.
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2 Related work

Modelling political discourse encompasses a broad
spectrum of tasks, including estimating policy po-
sitions from political texts (Thomas et al., 2006;
Lowe et al., 2011), identifying features that differ-
entiate political rhetoric of opposing parties (Mon-
roe et al., 2008) or predicting political affiliation of
Twitter users (Conover et al., 2011; Pennacchiotti
and Popescu, 2011; Preotiuc-Pietro et al., 2017).
Deep neural networks have been widely used to
model political perspective, bias or affiliation at
document level: Iyyer et al. (2014) used a recurrent
neural network (RNN) to predict political affilia-
tion from US congressional speeches. Li and Gold-
wasser (2019) identified the political perspective of
news articles using a hierarchical Long Short-Term
Memory (LSTM) and modelled social media user
data with Graph Convolutional Networks (GCN).
Lastly, a recent shared task presented a multitude
of deep learning methods to detect political bias in
articles (Kiesel et al., 2019). Framing in political
discourse has gained some attention recently. Ji
and Smith (2017) trained Tree-RNNs to classify
framing of policy issues in news articles. Johnson
et al. (2017) used a weakly supervised approach to
identify tweet-level frames and used Probabilistic
Soft Logic on language and social-based features.
Hartmann et al. (2019) classified frames at a sen-
tence level using bidirectional LSTMs and GRUs
and recently Khanehzar et al. (2019) compared a
set of classifiers on frame identification in news.
Approaches predicting emotions for a given text
typically adopt a categorical model of discrete, pro-
totypical emotions, e.g. the six basic emotions of
Ekman (1992). Early computational approaches
employed vector space models (Danisman and Alp-
kocak, 2008) or shallow machine learning classi-
fiers (Alm et al., 2005; Yang et al., 2007). Exam-
ples of deep neural methods are the recurrent model
of Abdul-Mageed and Ungar (2017), who classi-
fied 24 fine-grained emotions, and the transformer-
based SentiBERT architecture of Yin et al. (2020).
Computational research on metaphor has mainly
focused on detecting metaphorical language in
text. Early research performed supervised classifi-
cation with hand-engineered lexical, syntactic and
psycholinguistic features (Tsvetkov et al., 2014;
Beigman Klebanov et al., 2016; Turney et al., 2011;
Strzalkowski et al., 2013; Bulat et al., 2017). Al-
ternative approaches perform metaphor detection
from distributional properties of words (Shutova

et al., 2010; Gutiérrez et al., 2016) or by training
deep neural models (Rei et al., 2017; Gao et al.,
2018). Dankers et al. (2019) developed a joint
model of metaphor and emotion by fine-tuning
BERT in an MTL setting.

3 Tasks and datasets

Political Perspective in News Media Political
news can be biased towards the left or right side
of the political spectrum. To model such biased
perspectives computationally, we classify articles
as left, right or centre using data from Li and Gold-
wasser (2019).! The articles are from the website
AllSides” and are annotated with their source’s bias.
The training and test sets contain 2008 and 5761
articles, respectively. We use 30% of training data
for validation.

Political Affiliation For this task, we use the
dataset of Voigt et al. (2018),> which contains pub-
lic Facebook posts from 412 US politicians. The
training, validation and test sets contain 9792, 2356
and 2458 posts, respectively. The classes are bal-
anced and each set does not share politicians with
the other sets. The task is thus to predict republican
or democrat for posts of unseen politicians.

Framing The Media Frames Corpus* (Card
et al., 2015) contains news articles discussing five
policy issues: tobacco, immigration, same-sex mar-
riage, gun-control and death penalty. There are
15 possible framing dimensions, e.g. economic,
political etc. (see Appendix A.3.1). We use the
article-level annotation to predict the framing di-
mension. Of 23,580 articles, we use 15% as the
test set, and 15% of the training data for validation.

Metaphor For metaphor detection we use the
VU Amsterdam dataset (Steen et al., 2010), which
is a subset of the British National Corpus (Leech,
1992). The dataset contains 9,017 sentences and
binary labels (literal or metaphorical) per word.
We use the data split of Gao et al. (2018), that
includes 25% of the sentences in the test set.

Emotion For emotion classification, we use a
dataset from SemEval-2018 Task 1 (Mohammad
et al., 2018), in which tweets were labelled for
eleven emotion classes or as neutral (see Ap-

"https://github.com/BillMcGrady/NewsBiasPrediction
Zhttps://www.allsides.com/unbiased-balanced-news
3https://nlp.stanford.edu/robvoigt/rtgender/
*https://github.com/dallascard/media_frames_corpus
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Figure 1: Schematics of the MTL model. The left side
shows the path for longer documents from the Politi-
cal Perspective in News Media dataset, while the right
side is the path for the rest of datasets and the auxiliary
tasks.

pendix A.3.2). We use the English portion of the
dataset (10,097 tweets) and the shared task splits.

4 Methods

We employ the Robustly optimized BERT approach
(RoBERTa-base) presented by Liu et al. (2019)
and use the implementation by Wolf et al. (2019).
RoBERTa contains twelve stacked transformer lay-
ers and assumes an input sequence to be tokenised
into subword units called Byte-Pair Encodings
(BPE). A special <s> token is inserted at the be-
ginning of the input sequence, to compute a con-
textualised sequence representation.

Our tasks are defined at three levels of the lin-
guistic hierarchy. The auxiliary tasks of metaphor
detection and emotion prediction are defined at
word and sentence level, respectively, while the
main political tasks are defined at document level.

For word-level metaphor identification, the sub-
word encodings from RoBERTa’s last layer are
processed by a linear classification layer. A word
is considered metaphorical provided that any of its
BPEs was labelled as metaphorical. We assume the
BPE from inflexions unlikely to cause a word to be
incorrectly labelled as metaphorical.

For the sentence-level emotion prediction task
and the document-level tasks of political affiliation
and framing, the <s> encoding serves as sequence
representation and is fed to a linear classification
layer. For political perspective in news articles, the
average document length exceeds the maximum
input size of RoOBERTa. We, therefore, split its

documents into sentences and collect them in a
maximum of 5 subdocuments with up to 256 sub-
words. After applying RoOBERTa to the subdocu-
ments, their <s> encodings are fed to an attention
layer yielding a document representation to be clas-
sified. A model schematic is shown in Figure 1.

All task models use the cross-entropy loss with
a sigmoid activation function. For political per-
spective detection, the loss function includes class
weights to account for class imbalance.

4.1 Multi-task learning

The MTL architecture uses hard parameter sharing
for the first eleven transformer layers. The last
layer of ROBERTRA, the classification and attention
layers are task-specific to allow for specialisation,
similar to the approach of Dankers et al. (2019).

The main political tasks are paired with the
metaphor and emotion tasks one by one. The task
losses are weighted with « for the main task and
1 — « for the auxiliary task. We include an auxiliary
warm-up period, during which o = 0.01, for some
tasks. This allows the model to initially learn the
(lower-level) auxiliary task while focusing mostly
on the main task afterwards. This approach is simi-
lar to Kiperwasser and Ballesteros (2018).

S Experiments and results

5.1 Experimental setup

The models are trained with the AdamW optimiser,
a learning rate of 1e — 5 and a batch size of 32. The
learning rate is annealed through a cosine-based
schedule and warm-up ratios of 0.2, 0.3 and 0.15
for political perspective in news media, the politi-
cal affiliation and the framing tasks, respectively.
Dropout is applied per layer with a probability of
0.3 for political affiliation and 0.1 otherwise.

The auxiliary warm-up period and « values are
estimated per main task, for metaphor (o) and
emotion (ag) separately. For political perspective
in news media, oy = 0.7, ag = 0.8, and models
were trained for 20 epochs, with early stopping.
Within political affiliation prediction, apy = ag =
0.9 and the first 5 epochs are for auxiliary warm-up.
The models were trained for 20 epochs total. For
the framing task oy = ag = 0.5, with 5 epochs
of auxiliary warm-up for metaphor. Training lasted
10 epochs at most, with early stopping.

We average results over 10 random seeds. We
perform significance testing using an approximated
permutation test and 10 thousand permutations.
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n  Document Piece Gold Label MTL, Metaphor STL

1 ...the anger simmering just below the surface in the U. S. is beginning to boil over. Right Right Centre

2 ...and DNA evidence does not match. What once was considered an airtight case, Fairness and Fairness and Leg., Constit.,
Devine said, has evaporated into nothing Equality Equality Jurisdiction

3 ...border security long have been sticking points in the immigration debate. Security Security Political
Bowing to those concerns, Presidents Bush ... & Defense & Defense

Table 1: Political perspective (1) and framing (2, 3) examples of metaphor MTL improving over STL. Underlined

are words predicted as metaphorical.

Anger Anticipation Disgust Fear Joy Love Optimism Pessimism Sadness Surprise Trust
Democrat 34.0% 42.9% 422%  23.1% 619% 73.6% 54.0% 82.5% 76.4% 75.4% 41.6%
Republican  66.0% 57.1% 578%  76.9% 38.1% 26.4% 46.0% 17.5% 23.6% 24.6% 58.4%

Table 2: Proportion of posts predicted for each emotion, using the best-performing MTL emotion model.

Framing Affiliation Perspective STL MTL, Metaphor MTL, Emotion
Li and Goldwasser (2019) Political Perspective
- HLSTM (text-based) - - 746 _ Center 874 879 885
—.GCN—HIT,STM (using social information) 917 _Left 860 863 871
Ji and Smith (2017) _Richt 774 784 798
- Tree-RNN° 584 - . & : : :
Khanehzar et al. (2019) Political Affiliation
- RoBERTa ® .658 — - - Democrat 788 .806 799
STL 707 794 848 - Republican .802 .805 .800
e M M & T
» Emotion : . . - Economic 147 759 7158
- Capacity & Resources .601 .604 .602
Table 3: Accuracy scores for the main political tasks. - Morality 646 662 648
Significance compared to STL is bolded (p < 0.05). - Fairness & Equality 502 527 Sl
- Crime & Punishment .719 721 17
- Security & Defense ~ .554 577 .560
- Health & Safety .683 .694 .684
5.2 Results - Quality of Life 572 554 556
- Cultural Identity .690 703 .695
Table 3 summarises our results. For political per- - Public Sentiment 670 678 675
. . . . - Political .808 815 812
spective detection in news articles, the STL model  Legality
improves over the text-based method of Li and Constitutionality 787 795 784
Goldwasser (2019). This illustrates that RoBERTa & Jurisdiction
. . - Policy Prescription
provides an enhanced document encoding for pre- & Evaluation 525 538 330
dicting political perspectives. Both MTL setups - External Regulation - 675 681

significantly improved over the STL model. Joint
learning with emotion proved most beneficial and
outperformed the metaphor detection setup, sig-
nificantly. For political affiliation prediction, both
MTL setups improve over STL significantly, al-
though there is no significant difference between
them. In case of the framing task, joint learn-
ing with metaphor significantly outperformed STL.
MTL using emotion, on the other hand, yielded
results on par with STL. Table 4 presents a break-
down of the performance per class in each task.

3Ji and Smith (2017) use only a subset (Immigration Pol-
icy) of the data and an older version of the dataset, which
complicates direct performance comparisons.

SKhanehzar et al. (2019) report results on the Immigration
Policy subset of the data only.

& Reputation

Table 4: Average F1 for each class and task.

6 Discussion

Political Perspective and Affiliation For the po-
litical perspective detection task, the performance
improvements of MTL models stem mostly from
improved predictions for the right-wing class. Ex-
ample 1 of Table 1 presents an emotive article snip-
pet containing the metaphors of “boil over” and
“simmering anger”, for which joint learning with
metaphor corrected the STL prediction.

For political affiliation, improvements from aux-
iliary tasks are due to a more accurate identification
of the class of democrats. According to Pliskin et al.
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(2014), liberals are more susceptible to emotions,
which could in part explain this result. Appendix
A.2.2, Figure 2 visualises the performance across
the political spectrum, from which we infer that
politicians at the centre are harder to distinguish,
and those on the left are better identified by our
MTL models. We explored the emotions predicted
by the MTL model in politicians’ posts, as shown
in Table 2. We found that emotions typically associ-
ated with conservative rhetoric — e.g. anger, disgust
or fear (Jost et al., 2003) — were more frequent in
republicans’ posts. On the contrary, emotions asso-
ciated with the liberal rhetoric — e.g. love (Lakoff,
2002) or sadness (Steiger et al., 2019) — are more
often predicted for democrats’ posts. Appendix
A.2.2, Table 7 contains example posts where joint
learning using emotion corrected the STL setup.

Framing In case of the framing task, MTL with
metaphor prediction yielded the largest improve-
ments for the frames of security and defence, moral-
ity and fairness and equality, particularly in articles
on the metaphor-rich topics of immigration, gun-
control and death penalty. We automatically anno-
tated metaphorical expressions in these articles to
conduct a qualitative analysis. We observed that
correct identification of linguistic metaphors of-
ten accompanies correct frame classification by the
MTL model. Examples of such cases are shown in
Table 1. In Example 2, metaphors such as “airtight
case” and “evaporated”, aided the model to iden-
tify the fairness and equality framing within the
topic of death penalty. Similarly, presenting border
security in Example 3 as a “sticking point in the
immigration debate” improved the classification
of the security and defense framing of an article
on the topic of immigration. Appendix A.2.1, Ta-
ble 6 presents detailed results per policy issue. The
results for the immigration policy subset can be
compared to those from Ji and Smith (2017) and
Khanehzar et al. (2019).

7 Conclusion

In this paper, we introduced the first joint models of
metaphor, emotion and political rhetoric. We con-
sidered predicting the political perspective of news,
the party affiliation of politicians and the framing
dimensions of policy issues. MTL using metaphor
detection resulted in significant performance im-
provements across all three tasks. This finding
emphasises the prevalence of metaphor in political
discourse and its importance for the identification

of framing strategies. Joint learning with emotion
yielded significant performance improvements for
the political perspective and affiliation tasks, which
suggests that the use of emotion is an important
political tool, aiming to influence public opinion.
Future research may explore further tasks such as
emotion and misinformation detection, which so-
cial scientists have found to be inter-related, and de-
ploy more advanced MTL techniques, such as soft
parameter sharing. Our code is publicly available
at github.com/LittlePeal3/mtl_political discourse.
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A Supplemental Material
A.1 Experimental Setup

Our implementation is in Pytorch and uses Hug-
gingface’s Transformers library’ to load the pre-
trained models and perform finetuning. Some code
for training models was adapted from the utils_nlp®
library. The data splits and code were attached with
our submission.

In order to train the model, a cluster with 4 x
Titan RTX, 24 GB GDDR6 GPU with an Intel®
Xeon® 2.30 GHz CPU was used. Each model
was trained in under two hours. STL models were
trained in half of the time it took to train MTL mod-
els. We finetuned the pretrained RoBERTa model
and do not account for the time it took to pretrain
RoBERTa. RoBERTa itself has 125 million param-
eters and our task-specific layers added around 5
million parameters, with some variance per task,
making a total of 130 million parameters.

We experimented with multiple « values at in-
tervals of 0.1. To estimate the warm-up period for
scheduled learning, we experimented with 3, 4 or
5 epochs. For the political affiliation task, dropout
probabilities of 0.1, 0.2 and 0.3 were experimented
with. The final hyperparameter setups were cho-
sen through manual tuning based on the accuracy
scores on the validation sets. Hyperparameters that
were shared between MTL and STL for the same
main task were selected based on the performance

"https://github.com/huggingface/transformers
8https://github.com/microsoft/nlp-
recipes/tree/master/utils_nlp

in the STL setup. The validation accuracy socres
are listed in Table 5.

Perspective  Affiliation Framing
STL .832 .804 .699
MTL, Metaphor .835 .804 703
MTL, Emotion .838 811 704

Table 5: Accuracy validation scores for the main politi-
cal tasks.

A.2 Results
A.2.1 Framing

STL MTL, Metaphor MTL, Emotion
Immigration ~ 0.689 0.700 0.686
Tobacco 0.718 0.721 0.717
Death Penalty 0.690 0.704 0.690
Gun Control ~ 0.704 0.717 0.711
same Sex 0.744 0.741 0.745
Marriage

Table 6: Average accuracy values across different poli-
cies for Framing.

A.2.2 Political Affiliation
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Emotions

Facebook Post Gold Label emotions MTL STL

Anger,
Disgust
and Fear

Love,
Joy and
Optimism

Last week, I held a Congress on Your Corner event in Frankfort.

Monica was upset by the recent deal between the United States,

our global partners, and Iran. The deal provides $7 billion in

sanction relief in exchange for Iran limiting, but not halting, its nuclear
activities. I am skeptical of this deal. In the words of my friend Eric Cantor,
I believe we must distrust and verify in this case. I believe

it is imperative that we stand with Israel against the very dangerous

threat posed by Iran’s nuclear activities. I do not believe that Iran

has given us any reason to trust that it will not continue pursuing

nuclear weapons.

Republican ~ Republican Democrat

T’ll be spending most of my day tomorrow opposing Paul Ryan’s cuts-only

budget in committee. In the name of deficit reduction, Mr. Ryan is once

again proposing to eliminate one of the few pieces of good news we have in
reducing healthcare costs that are driving the deficits: Obamacare (aka, the
Affordable Care Act). We should be expanding its reforms, not trying to

repeal them. For example, the CBO estimates that adding a public plan option

to the health insurance exchanges would save another $88 billion and that the plan
would have premiums 5-7% lower than private plans, which would increase
competition in the marketplace and result in substantial savings for individuals,
families, and employers purchasing health insurance through an exchange.

Democrat Democrat Republican

Table 7: Examples from the test set for the Political Affiliation task where emotion detection MTL improved the
predictions over STL.
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Figure 2: Average performance accross the political spectrum for the Political Affiliation task. Dimension taken
from Voteview.
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A.3 Lists A.3.2 List of emotions in Mohammad et al.
(2018) dataset

— Anger (also includes annoyance, rage)

. . — Anticipation (also includes interest, vigi-
A.3.1 List of Frames in Card et al. (2015)

lance)
dataset
— Disgust (also includes disinterest, dislike,
loathing)
— Fear (also includes apprehension, anxiety, ter-
ror)
— Economic: costs, benefits, or other financial — Joy (also includes serenity, ecstasy)
implications — Love (also includes affection)
— Capacity and resources: availability of physi- — Optimism (also includes hopefulness, confi-
cal, human or financial resources, and capacity dence)

of current systems - . ..
y — Pessimism (also includes cynicism, no confi-

— Morality: religious or ethical implications dence)

— Fairness and equality: balance or distribu- — Sadness (also includes pensiveness, grief)

tion of rights, responsibilities, and resources . . . .
— Surprise (also includes distraction, amaze-

— Legality, constitutionality and jurispru- ment)
dence: rights, freedoms, and authority of in-

dividuals, corporations, and government — Trust (also includes acceptance, liking, admi-

ration)
— Policy prescription and evaluation: discus-

sion of specific policies aimed at addressing
problems

— Crime and punishment: effectiveness and
implications of laws and their enforcement

— Security and defense: threats to welfare of
the individual, community, or nation

— Health and safety: health care, sanitation,
public safety

— Quality of life: threats and opportunities for
the individual’s wealth, happiness, and well-
being

— Cultural identity: traditions, customs, or val-
ues of a social group in relation to a policy
issue

— Public opinion: attitudes and opinions of the
general public, including polling and demo-
graphics

— Political: considerations related to politics
and politicians, including lobbying, elections,
and attempts to sway voters

— External regulation and reputation: inter-
national reputation or foreign policy of the
U.s.

— Other: any coherent group of frames not cov-
ered by the above categories
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