On the Branching Bias of Syntax
Extracted from Pre-trained Language Models

Huayang i Lemao Liu Guoping Huang Shuming Shi
Tencent Al Lab
{alanili, redmondliu, donkeyhuang, shumingshi}@tencent.com

Abstract

Many efforts have been devoted to extracting
constituency trees from pre-trained language
models, often proceeding in two stages: fea-
ture definition and parsing. However, this kind
of methods may suffer from the branching bias
issue, which will inflate the performances on
languages with the same branch it biases to. In
this work, we propose quantitatively measur-
ing the branching bias by comparing the per-
formance gap on a language and its reversed
language, which is agnostic to both language
models and extracting methods. Furthermore,
we analyze the impacts of three factors on
the branching bias, namely parsing algorithms,
feature definitions, and language models. Ex-
periments show that several existing works ex-
hibit branching biases, and some implementa-
tions of these three factors can introduce the
branching bias.

1 Introduction

Neural language models such as LSTM (Merity
et al., 2018; Peters et al., 2018), GPT2 (Radford
et al., 2019), and BERT (Devlin et al., 2019; Liu
et al., 2019) have achieved state-of-the-art perfor-
mance in various downstream NLP tasks. Many
recent works try to interpret their success by reveal-
ing the linguistic properties captured by these lan-
guage models (Hewitt and Manning, 2019; Clark
et al., 2019; Jawahar et al., 2019; Tenney et al.,
2019). One interesting line of these works tries to
extract discrete constituency trees from pre-trained
language models (Marecek and Rosa, 2018, 2019;
Kim et al., 2020; Wu et al., 2020). The core of these
works is to extract syntax in two stages. Firstly,
it defines the feature scores based on a language
model, namely, the feature definition stage. Sec-
ondly, it leverages the feature scores to build a
constituency tree, namely, the parsing stage.
However, the degree to which the extracted con-
stituency trees match gold constituency annotations
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Figure 1: Constituency trees of a right-branching lan-
guage and its reversed (left-branching) language. The
tree at the bottom is obtained by reversing the tree at
the top.

may imprecisely reflect the model’s competence
of capturing syntax, since their final performance
may benefit from the branching bias. For exam-
ple, as pointed out by Dyer et al. (2019), the syn-
tax extracted from the ordered neuron based lan-
guage model (Shen et al., 2019) is biased to right-
branching languages ! (e.g., English). Nevertheless,
the approach to measuring the bias in Dyer et al.
(2019) is highly dependent on the architecture of
ordered neuron and its parsing algorithm. There-
fore, it is far from trivial to be applied to general
pre-trained language models.

This paper proposes a new approach to reveal the
branching bias of syntax from pre-trained language
models, which is agnostic to model architectures
and parsing algorithms. The key idea of our ap-
proach is based on the following observation: We
can construct a left-branching language by revers-
ing a right-branching language and vice versa. An
illustration is given in Figure 1. If a syntax ex-
tracting method has no branching bias, the parsing
performances on the original language and the re-

'Right-branching language is considered to be head-initial,
which means the head (e.g., the verb is the head in a verb
phrase) always precedes its complements. In contrast, left-
branching language is head-final, where the head follows its
complements (Kiparsky, 1996; Kroch, 2001).
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versed language should have little or no difference.
Therefore, the performance gap can be used as an
indicator of branching bias. Using our approach,
we find that some recent works on pre-trained lan-
guage models suffer from the branching bias (Kim
et al., 2020; Wu et al., 2020; Marecek and Rosa,
2018). We further investigate on an in-depth ques-
tion: Does the bias come from language models?
Or the extraction methods (feature definition and
parsing algorithm)? We propose a simple approach
to quantitatively analyze the bias in them, which
tries to control the impacts of other factors while
studying a specific part in the pipeline.

2 Methodology

2.1 Measuring branching bias

Intuitively, branching bias means that the induced
syntax tends a specific branching structure, such
as the right-branching in Shen et al. (2019), as
pointed out by Dyer et al. (2019). For example, a
right-branching bias will exaggerate the method’s
performance on a right-branching language and
undermine its performance on a left-branching lan-
guage. Therefore, a natural way to quantify the
branching bias in syntax is to compare the perfor-
mance gap between two natural languages with
different branches (e.g., English and Japanese).

Unfortunately, due to the intrinsic differences be-
tween the two natural languages, it may be unfair
to compare their performances directly. Therefore,
for a language L, we build a synthetic language L’
by reversing the word order in the way of right-to-
left, rather than the left-to-right order in language
L. If language L is right-branching, then language
L’ will be left-branching, as shown in Figure 1.
Based on this observation, we use a natural lan-
guage L and a synthetic language L’ to measure
the performance gap.

More concretely, the performance gap between
language L and L', namely the branching gap, is
defined as follows:

B = m(tvg) - m(tlvg/)v (1)

where m is a metric function to measure the quality
of the parsing tree (e.g., fl-score); t is a tree ex-
tracted by a syntax extracting method on language
L, and g is its golden truth; ¢’ and g’ are defined
similarly but on the reversed language L’. To make
the comparison in Eq.(1) fairer, we guarantee that
training and testing datasets for both languages are
the same except for the word order.

If a syntax extracting method is unbiased, the
branching gap would be nearly 0. The sign of
indicates the direction of the branching bias. It is
worth noting that the proposed approach to measure
branching bias is independent of the model archi-
tecture and the syntax extracting method, unlike
the approach used in Dyer et al. (2019). There-
fore, our approach can be naturally applied to any
pre-trained language models and syntax extracting
methods. Besides, Dyer et al. (2019) mainly focus
on the branching bias in a specific parsing algo-
rithm (Shen et al., 2019). In our work, we further
analyze the branching bias in feature definitions
and language models, besides parsing algorithms.

2.2 Factors affecting branching bias

Since constituency trees are extracted from a pre-
trained language model using a syntax extracting
method, the branching bias may owe to both the
syntax extracting method and the language model.
More precisely, the branching bias may be affected
by parsing algorithms, definitions of feature scores,
and language models. In the rest of this section, we
will investigate the branching bias in each of the
three factors one-by-one.

Bias in parsing algorithm Since the parsing al-
gorithm is on the top of the language model and
feature definition, To analyze the bias in a parsing
algorithm alone, we need to exclude the influences
of these two factors. To this end, we propose to
assign a sequence of random scores as the feature
scores and then run the parsing algorithm using
these random scores to obtain the constituency tree.
The random feature scores are generated accord-
ing to a uniform distribution®. Since the feature
scores are independent of both the language model
and the feature definition, the branching bias can
be introduced solely by the parsing algorithm if a
noticeable branching gap is observed.

Bias in feature definition Feature definition is
the type of information (e.g., hidden vectors or at-
tention matrix) from a language model, converted
into feature scores, and then fed into a parsing al-
gorithm. Some feature definitions may also intrin-
sically contain branching bias. To reveal the bias
solely dependent on a specific feature definition,
instead of using the original weights (e.g., hidden

>Though we defined the branching gap on the sentence
level, it can be easily applied to the corpus level.

3For feature scores that need to be normalized, and we will
assign the random value before the normalizing operation.
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Table 1: The branching gaps of some syntax extracting methods. The results are corpus-level F1 scores on English.

L is the original language and L' is its reversed version.

representations and attention weights) outputted
by a pre-trained language model, we propose ran-
domly initializing them and using them to compute
feature scores. Then we run an unbiased parsing
algorithm on the feature scores generated in this
way. Therefore, if there is a noticeable branching
gap, the branching bias will be attributed to the
feature definition. The pipeline to extract syntax is
independent of the language model, and the fixed
parsing algorithm is unbiased.

Bias in language model The pre-trained lan-
guage model is the input of a syntax extracting
method. We further analyze the branching bias in a
language model. To analyze the branching bias in
it, we firstly choose an unbiased syntax extracting
pipeline (i.e., both the feature definition and parsing
algorithm are fair) and then calculate the branching
gap using the well-trained language models on lan-
guages L and L’. Since there is no branching bias
within our selected extracting method, the branch-
ing bias can be attributed to the input itself, if a
branching gap is observed.

3 Experiments

3.1 Settings

Data We choose English as the main language in
our experiments. The English data used for training
language models is the concatenation of 1M lines
of Wikipedia data (Devlin et al., 2019) and the Penn
TreeBank (PTB) (Marcus et al., 1993) training data.
We use PTB-22 and PTB-23 for validation and test,
respectively. Besides, to rule out the impact of
other linguistic properties, we also conduct part of
our experiments on German and Chinese. We use
the German Treebank from the SPMRL (Seddah
et al., 2014) and Penn Chinese TreeBank (CTB)
(Xue et al., 2005) with their provided test sets to
evaluate previous methods on those two languages,
respectively.

Language Models In our experiments, we train
three different language models (i.e., BERT,
GPT2, LSTM) for English and its reversed lan-
guage *. The BERT and GPT2 models are trained
using Huggingface’s Transformers (Wolf et al.,
2019) and we use the default parameters of their
base settings (Devlin et al., 2019; Radford et al.,
2019; Wolf et al., 2019). The LSTM model is
trained using awd-Istm-Im>, and we use the pa-
rameters similar to Merity et al. (2018). Models
used for extracting syntax are selected according
to the PPL on validation set. The tokenizers for
BERT and GPT?2 are trained using the toolkit hug-
gingface/tokenizers®, and their vocabulary sizes are
22000 and 35000 respectively. The tokenizer of
GPT2 is shared with LSTM.

Syntax Extracting Methods To evaluate the
branching bias, we use the codes’ of Kim et al.
(2020) and Wu et al. (2020), and re-implement the
algorithm in Marecek and Rosa (2018). The pars-
ing algorithms proposed by them are referred to as
DiST, MART, and ATTNSPAN respectively. Note
that Kim et al. (2020) propose a trick to explic-
itly inject right-branching bias to their method, and
we set the weight of this injected external bias to
zero in our experiments. For feature definitions, we
mainly focus on three types of feature definitions,
which are hidden representation (Kim et al., 2020),
full attention (Marecek and Rosa, 2018), and prefix
attention (Kim et al., 2020; Wu et al., 2020). 8 The

“We train a language model on the reversed language by
reversing the entire training corpus

Shttps://github.com/salesforce/
awd—-lstm—1m

®https://github.com/huggingface/
tokenizers

"https://github.com/galsang/trees_
from_transformers and https://github.com/
LividWo/Perturbed-Masking

8Prefix-attention means the attention is performed over the
prefix words as in GPT2 whereas full-attention is over all
words in a sentence as in BERT.
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. EN ZH DE
# | Parsing Alg. — I’ Gap L I’ Gap L I’ Gap

I | ATTNSPAN | 21.37 21.45 —0.08 17.15 1698 +0.17 1779 17.78 +0.01
2 | DisT 18.30 18.27 +0.03 15.28 15.76 —0.48 17.01 1694 —0.07
3 | MART 26.11 1541 +10.70  19.90 9.51 +10.39 895 17.07 —8.12
4| RANDOM | 1831 18.37 —0.06 1533 15.03 +0.30 16.99 16.98 +0.01
5| RIGHT-B | 35.82 1040 +25.42 1977 811 +11.66  7.99 16.54 —8.55

Table 2: The branching gaps of parsing algorithms with random feature scores. Feature scores are generated
according to a uniform distribution [—1, 1]. The results are averaged corpus-level F1 scores with 10 random seeds.
L is the original language and L' is its reversed version.

EN ZH DE
# | Feature Def. I I’ Gap I I’ Gap I I’ Gap
1 | HIDDEN 18.39 18.29 —0.10 15.32 15.30 +0.02 16.88 17.10 +0.28
2 | PREFIX-ATTN | 20.44 13.17 +47.27 16.78 12.66 +4.12 14.93 18.83 —3.90
3 | FULL-ATTN 18.33 18.38 —0.05 15.12 15.04 +0.08 16.84 16.79 +0.05

Table 3: The branching gaps while applying DIST to different randomized feature definitions. The uniform
distribution [—1, 1] is used to randomize the weights of feature definitions. The results are averaged corpus-level

F1 scores with 10 random seeds.

hyper-parameters (e.g., choices of attention head
and hidden layer) of syntax extracting methods are
tuned on the validation set.

3.2 Main Results

As shown in Table 1, the behaviors of differ-
ent approaches are widely divergent. We find
that the branching bias in BERT+ATTNSPAN
and BERT+DIST are relatively lower than
other approaches.  However, the results of
GPT2+ATTNSPAN and BERT/GPT2+MART
demonstrate significant right-branching biases.
GPT2+DIST shows a tendency towards left-
branching. Since these approaches are pipelined,
which part of their methods has an impact on the
branching bias is still unclear.

The results reported in Table 1 is a little worse
than those reported in Kim et al. (2020); Wu et al.
(2020). One reason is that we evaluate the results
on the corpus-level F1 score following the standard,
rather than sentence-level (Kim et al., 2020). The
other reason is that our training data is small, since
it is too expensive to train reversed language mod-
els on a huge dataset. However, these results are
obtained by running the released codes of Kim et al.
(2020); Wu et al. (2020), and thus, we think it will
not affect our findings.

3.3 Factors affecting branching bias

Branching Bias in Parsing Algorithm The
branching gaps of different parsing algorithms are

shown in Table 2. Observing from the experiment
results in English, The branching gaps of MART is
significantly larger than O, which means it has a ten-
dency to right-branching. In contrast, the branching
gaps of parsing algorithm ATTNSPAN and DIST
are nearly 0, which means they do not bias to left-
branching or right-branching. Although DIST is
inspired by the parsing algorithm in Shen et al.
(2019), it is an unbiased, which is consistent with
the claim in Kim et al. (2020). We also evaluate
the parsing algorithm of Shen et al. (2019), and
its branching gap is +3.22 on English, which is
consistent with the finding in Dyer et al. (2019).

To examine whether some other language prop-
erties might play a role in this process, we also
conduct experiments on different languages, which
can help rule out the impact of specific language
properties. The results in Table 2 show that MART
has the same trend as RIGHT-B baseline (row 5)
on both Chinese and German datasets, which is
consistent with the finding on the English dataset.
It is also worth noting that the branching gap for
MART is positive on Chinese and English datasets,
whereas it is negative on German. The reason is
that both Chinese and English are right-branching
languages, while German is inclined to be left-
branching. However, both head-initial and head-
final structures occur in the German language from
the viewpoint of linguistics. In addition, one in-
teresting observation is that, the performances of
ATTNSPAN are always higher than the RANDOM
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# | Language Model L r Gap

1 BERT 24.93 | 25.23 | —0.30
2 GPT2 23.85 | 26.09 | —2.24
3 LSTM 28.72 1 26.22 | 42.50
4 RANDOM 18.31 | 18.37 | —0.06

Table 4: The branching gaps of different language
models using an unbiased pipeline HIDDEN + DIST.
The results are corpus-level F1 scores on English.

baseline. We hypothesize that ATTNSPAN may
have a bias towards the balance tree, due to its way
to compute weights of splitting points.

Branching Bias in Feature Definition As
shown in Table 3, we choose the unbiased parsing
algorithm DIST to further analyze the branching
bias in feature definitions. It is worth noting that,
after normalization, the attention matrix of PREFIX-
ATTN is lower triangular, and that of FULL-ATTN
is fully filled. We find that the feature definitions
based on HIDDEN and FULL-ATTN are unbiased.
However, PREFIX-ATTN tends to generate right-
branching trees, where the branching gap is +7.27
on English. This finding is consistent with that on
Chinese and German. One possible explanation
about PREFIX-ATTN is that the attention scores
will become distracted with the prefix grows, such
that the feature scores in the front of the sequence,
which has a larger value, would be picked at first.

Branching Bias in Language Models After the
analyses in previous steps, we will use the unbiased
parsing algorithm and feature definition, DIST and
HIDDEN, to evaluate the branching bias in language
models. Note that the results in this section is
different from those in Table 1, since other feature
definitions are prohibited except for HIDDEN.

Our experiments conducted on language mod-
els are shown in Table 4. The performances of
BERT on both branching are nearly the same,
where the branching gap is just —0.30. In contrast,
slight branching gap is observed on both GPT2
and LSTM. The branching gap of GPT2 is —2.24.
With the same left-to-right paradigm, LSTM be-
haviors a positive branching gap +2.50. The op-
posite branching gap may be caused by the differ-
ence between model architectures, where GPT?2
is based on self-attention (Vaswani et al., 2017)
and LSTM is based on gating mechanism (Hochre-
iter and Schmidhuber, 1997). However, the ran-
dom noises may also play a role in this observa-

tion, since the performance range of GPT2 models
trained on the original English dataset with differ-
ent random seed can also reach around 1.50. We
will investigate it in future works.

4 Conclusion

In this paper, we propose an approach to quanti-
tatively analyze the branching bias in extracting
syntax from pre-trained language models. Unlike
previous work, our approach is more general to
be applied to any pre-trained language models and
syntax extracting methods. Furthermore, we sys-
tematically analyze three factors in depth that may
affect the branching bias: the language model, fea-
ture definition, and parsing algorithm. Our experi-
ments show that branching biases are in many re-
cent works. In addition, these biases can be brought
by each of the three factors. We appeal that re-
searchers should carefully design their syntax ex-
tracting method to reveal the real competence of
syntax from a pre-trained language model.
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