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Abstract

This paper proposes a novel approach to learn
commonsense from images, instead of lim-
ited raw texts or costly constructed knowledge
bases, for the commonsense reasoning prob-
lem in NLP. Our motivation comes from the
fact that an image is worth a thousand words,
where richer scene information could be lever-
aged to help distill the commonsense knowl-
edge, which is often hidden in languages. Our
approach, namely Loire, consists of two stages.
In the first stage, a bi-modal sequence-to-
sequence approach is utilized to conduct the
scene layout generation task, based on a text
representation model ViBERT. In this way, the
required visual scene knowledge, such as spa-
tial relations, will be encoded in ViBERT by
the supervised learning process with some bi-
modal data like COCO. Then ViBERT is con-
catenated with a pre-trained language model
to perform the downstream commonsense rea-
soning tasks. Experimental results on two
commonsense reasoning problems, i.e. com-
monsense question answering and pronoun
resolution, demonstrate that Loire outperforms
traditional language-based methods. We also
give some case studies to show what knowl-
edge is learned from images and explain how
the generated scene layout helps the common-
sense reasoning process.

1 Introduction

Commonsense reasoning is an important yet chal-
lenging task in artificial intelligence and natural
language processing. Take commonsense question
answering as an example, given a question and
multiple choices, some commonsense knowledge
is usually required to make the correct answer from
the provided choices. Table 1 show some typi-
cal commonsense question answering examples ex-
tracted from the dataset of commonsenseQA (Tal-
mor et al., 2018).
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Table 1: Examples from CommonsenseQA dataset.

Question: Where is a good idea but not required to
have a fire extinguisher?

Choices: (A) school bus (B) boat (C) house
(D) hospital (E) school

Question: Where can you put a picture frame when
it’s not hung vertically?

Choices: (A) art show (B) wall (C) newspaper
(D) car (E) table

Existing commonsense reasoning methods
mainly utilize raw texts to conduct the data rep-
resentation and answer prediction process (Talmor
et al., 2018; Rajani et al., 2019). However, the back-
ground knowledge required in the commonsense
reasoning task, such as spatial relations, causes and
effects, scientific facts and social conventions, are
usually not explicitly provided by the text. There-
fore, it is difficult to capture such knowledge solely
from the raw texts. Some other works propose to
leverage knowledge bases to extract related com-
monsense knowledge (Lin et al., 2019; Lv et al.,
2019; Kipf and Welling, 2016; Ye et al., 2019; Li
et al., 2019c; Ma et al., 2019). However, the con-
struction of a knowledge base is expensive, and the
contained knowledge is too limited to fulfill the re-
quirement. Furthermore, most commonsense ques-
tion answering datasets, such as CommonsenseQA,
are constructed from an existing knowledge base,
e.g., ConceptNet (Speer et al., 2017). So it is un-
fair to use the knowledge base in these tasks. To
sum up, how to automatically learn commonsense
remains a challenging problem in NLP.

Motivated by the fact that images usually contain
richer scene information, which can be viewed as
an important supplementary resource to perceive
for commonsense knowledge, this paper proposes
to learn commonsense from images and incorpo-
rate such knowledge into the commonsense reason-
ing process. Take the question ‘Where is a good
idea but not required to have a fire extinguisher?’
shown in Table 1 as an example. Solving this prob-
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lem requires a strong background knowledge that
fire extinguishers are usually equipped in public
places, such as hospitals, schools, and school buses.
We can see that such background knowledge is
not explicitly provided by the raw texts, and mean-
while, too abstract and complex to be extracted
by the current language model techniques. In this
case, images will help. For example, we could
find many images where fire extinguishers appear
in these scenes of public places. Therefore, this
commonsense knowledge could be learned by per-
ceiving the scene information of these images, and
the corresponding question will be well answered.
These analyses are in accordance with Minsky’s
statement in Minsky (2000), ‘perhaps a good ar-
chitecture theory based on multiple representations
and multi-modal reasoning would help us to design
better systems that allow us to study and understand
commonsense reasoning.’

Our approach, named Loire (Learning
Commonsense from Images for Reasoning),
consists of two stages, i.e. visual commonsense
learning and knowledge-augmented reasoning.
In the first stage, a scene layout generation task
is conducted on a bi-modal data such as the
representative benchmark COCO (Lin et al., 2014).
Firstly, a text encoder Visual BERT (ViBERT for
short) is employed to obtain the representation
of a caption. ViBERT is then incorporated into
the recurrent encoder-decoder structure for the
labeled bounding box generation. This module
is trained separately by a supervised learning
approach, based on the ground-truth bounding
boxes of images. In this way, the required visual
commonsense knowledge will be encoded in
ViBERT. In the following commonsense reasoning
stage, the concerned text representations (such
as question and answer in commonsenseQA)
will be obtained by concatenating ViBERT and a
traditional pre-trained language model, e.g. BERT.
Then the language model is fine-tuned on the
commonsense reasoning data, with ViBERT fixed
as some prior knowledge. Experimental results
on two commonsense reasoning tasks, i.e. Com-
monsenseQA and WinoGrande (Sakaguchi et al.,
2019), demonstrate that the learnt commonsense
from images brings improvements to traditional
models, such as BERT fine-tune (Devlin et al.,
2018) and RoBERTa fine-tune (Liu et al., 2019).
We also give some case studies to show how the
learned visual commonsense knowledge helps the

reasoning process.
To the best of our knowledge, we are the first to

propose learning commonsense knowledge from
images to facilitate the commonsense reasoning
in NLP. The proposed model of using scene lay-
out generation as the supervision demonstrates a
preliminary exploration in this direction. Other
methods like learning commonsense from retrieved
relevant images could also be investigated. We
believe this novel approach may provide a new
perspective for commonsense reasoning in NLP.

2 Related Work

2.1 Commonsense reasoning Methods

There are mainly two kinds of commonsense rea-
soning methods, knowledge base approach and raw
text approach.

Knowledge base approach makes use of the exist-
ing knowledge bases (Speer et al., 2017; Sap et al.,
2019) to conduct the commonsense reasoning pro-
cess. Some methods regard knowledge base as a
supplement and integrate extracted knowledge with
information from the processed text. For example,
Mihaylov and Frank (2018) encodes external com-
monsense knowledge as a key-value memory. Lv
et al. (2019) and Lin et al. (2019) extract knowl-
edge from ConceptNet and Wikipedia to construct
graphs, then use Graph Convolutional Network
(Kipf and Welling, 2016) for modeling and infer-
ence. Other methods (Zhong et al., 2018; Ma et al.,
2019; Ye et al., 2019; Li et al., 2019c) use knowl-
edge bases as another corpus for pre-training, and
then refining the models on task-specific contents.

Besides extracting knowledge from knowledge
bases, some other methods directly learn common-
sense knowledge from raw texts. A common way
is to use pre-trained language models. Recently,
Talmor et al. (2018); Da and Kusai (2019); Sak-
aguchi et al. (2019); Zhou et al. (2019) have made
comprehensive empirical studies and shown that
pre-trained language models significantly outper-
form traditional methods on the task of common-
sense reasoning. In addition, Da and Kusai (2019)
proves that pre-trained language models have the
ability to encode some commonsense knowledge
in the embedding space through the attribute classi-
fication evaluation. However, they also show that
the encoded commonsense knowledge is limited,
which could be improved by introducing some sup-
plementary data, like ConceptNet.

Moreover, some methods propose to leverage
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additional text information/data for better com-
monsense reasoning. Tandon et al. (2018) uses
commonsense knowledge as constraints and large
scale web corpus to steer the model away from
unlikely predictions. Rajani et al. (2019) incor-
porates the generated explanations into the train-
ing of language models for enhancement. Xia
et al. (2019) leverages two auxiliary relation-aware
tasks to better model the interactions between ques-
tion and candidate answers. Chalier et al. (2020)
proposes a multi-faceted model of commonsense
knowledge statements to capture more expressive
meta-properties.

Different from the above approaches, we pro-
pose to learn commonsense from images and in-
corporate this visual knowledge into the following
commonsense reasoning process.

2.2 Bi-modal Language Models

Recently, some transformer-based bi-modal lan-
guage models (Su et al., 2019; Li et al., 2019a; Al-
berti et al., 2019; Li et al., 2019b; Tan and Bansal,
2019; Lu et al., 2019) have been proposed to tackle
with bi-modal reasoning problems in computer vi-
sion, such as visual question answering, visual com-
monsense reasoning, and image retrieval. They first
encode image representation and text representa-
tion into a shared embedding space, then apply the
joint embeddings for downstream reasoning. At
first glance, these models are quite similar to ours.
However, we should make it clear that they are to-
tally different. The purpose of a bi-modal language
model is to capture a cross-modal alignment be-
tween image and text to benefit the bi-modal task,
which is only available when both image and text
data are provided as input simultaneously. That is
why they are usually popular in bi-modal scenar-
ios like VQA. If we want to apply these models
to commonsense reasoning in NLP, how to find
corresponding images to the question, and how to
employ the joint embeddings to the downstream
NLP reasoning tasks is still unclear. Our model also
adopts image data as a supplementary, but the mod-
eling approach is different from bi-modal language
models. We first encode the visual commonsense
knowledge into ViBERT by the upstream layout
generation process on a bi-modal data, then apply
ViBERT as fixed prior knowledge to fine-tune the
pre-trained language models for the downstream
NLP reasoning tasks.
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Figure 1: Images and the associated bounding boxes
from COCO with captions similar to ‘a woman eats in
the restaurant’.

3 Visual Commonsense Knowledge

Images are made up of individual pixels, which
are detailed but sometimes noisy. Therefore, how
to extract useful commonsense knowledge from
images remains a challenging problem. Inspired
by the knowledge base in NLP, where knowledge
is usually represented as a triple to demonstrate
the relation between two entities, we focus on the
attributes and relations of the objects in images.
Clearly, such information can be well captured by
the scene layout. Take the sentence ‘a woman eats
in the restaurant’ as an example. Images related to
this sentence are shown in the Figure 1. We can see
that the scene layouts of these images, including
bounding boxes and labels, contains a lot of useful
information for commonsense reasoning:

(1) Size attributes and relations can be easily
obtained by the bounding boxes in images. For in-
stance, the bounding boxes of tableware, e.g. fork,
cup, spoon are always smaller than the bounding
boxes of the dining table.

(2) Position can be accurately captured by the
coordinate of each bounding box, to help under-
stand some abstract commonsense. For instance,
through the relative positions between the bound-
ing boxes of person and table, one can figure out
what ”next to” means. Besides, since the bounding
boxes of person and table are always close in the
eating scene, one can learn that if a person is eating,
he will be next to the table instead of standing far
away, which provides some detailed information
for the abstract word ‘eating’.

(3) Co-occurrence relations of objects are ex-
pressed by the labels of bounding boxes. For in-
stance, images of ‘a woman eats in the restaurant’
often contain labels of table, chair, person, food
and tableware. So from the co-occurrence of these
objects, one can infer that it is in a dinner or restau-
rant scenario, which offers rich context information
for the abstract word ‘eating’.

From the above analysis, images usually contain
rich scene information, such as size, position and
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Figure 2: The recurrent structure of the visual common-
sense learning stage.

co-occurrence relations, which are useful for under-
standing the commonsense knowledge hidden in
language. So we propose to learn such visual com-
monsense knowledge and incorporate them into the
commonsense reasoning models in NLP.

4 Our Approach: Loire

Now we introduce Loire, which includes two
stages, i.e. visual commonsense learning and
knowledge-augmented reasoning.

4.1 Visual Commonsense Learning

The visual commonsense learning stage is con-
ducted on bi-modal data, like the typical image
caption data COCO. For a given image, the re-
quired scene layout is generated by a sequence-to-
sequence approach, shown in Figure 2 and 3. This
module consists of a text encoder, namely ViBERT,
to map the input sentence to a latent representation,
a layout encoder to encode the current generated
scene layout, and a bounding box decoder to gener-
ate the next bounding box and its label.

Specifically, we make the following nota-
tions. Let the input image caption be S =
{w1, w2, . . . , wL}, where wi stands for the i-th
word in the sentence, and L is the sentence length.
The output is a set of labeled bounding boxes
B1:T = {B1, ..., BT }, with each labeled bounding
box Bt contains the position, size and category la-
bel of a corresponding object at the t-th step. So we
denote Bt = (bt, lt), where bt = [bxt , b

y
t , b

w
t , b

h
t ] ∈

R4 stands for 2-dimensional coordinates, width and
height, respectively. lt ∈ {0, 1}C+1 is a one-hot
vector to indicate the category label for an object,
and the additionalC+1 class is defined as a special
indicator for the end of generation.

4.1.1 ViBERT: Text Encoder
The text encoder ViBERT is fine-tuned from BERT,
which is a popular pre-trained language model in-
troduced in Devlin et al. (2018). The network
structure is a typical transformer-based architecture
containing multiple transformer blocks of multi-
headed scaled dot product attention and fully con-
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Figure 3: An illustration of the t-th layout generation.

nected layers (Vaswani et al., 2017). It has been
proven to be effective in many natural language
processing tasks.

To adapt to the setting of BERT, the image cap-
tion is preprocessed as follows. The special to-
kens ‘[CLS]’ and ‘[SEP]’ are inserted into the
beginning and the end of the sentence, to obtain
S = {w0, w1, ..., wL+1}, where w0, wL+1 stands
for [CLS] and [SEP], respectively. After that, each
word wi is mapped to its word embedding vector
eSi by ViBERT, so that e(S) = {eS0 , eS1 , ..., eSL+1}.
With BERT, the output of ‘[CLS]’ from the last
transformer layer is fed into a pooler layer to ob-
tain the representation of the whole sentence eS ,

eS = tanh(f(eS0 )), (1)

where f is a single-layer perceptron.

4.1.2 Layout Encoder
At each time step t, a layout encoder is utilized
to encode the state of the current generated layout
B0:t−1. Specifically, we construct a layout matrix
It−1 ∈ {0, 1}C×W×H , where W,H are width and
height of this layout respectively. The value of
ilwh in It−1 indicates whether the bounding box
of object l covers the pixel at coordinate [w, h].
A blank layout without any object is used to ini-
tialize B0. A layout encoder takes layout matrix
and previous layout representation as inputs, and
uses a convolutional GRU architecture to output the
representation of the current layout eIt as follows:

eIt = ConvGRU(It−1, e
I
t−1). (2)

4.1.3 Bounding Box Decoder
At each time step t, a bounding box decoder
is used to predict the labeled bounding box
of next object, based on the caption represen-
tation eS from ViBERT and the current lay-
out representation eIt from the layout encoder.
Specifically, we decompose the conditional joint
bounding box probability as p(bt, lt|s,B0:t−1) =
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p(lt|S,B0:t−1)p(bt|S,B0:t−1, lt). The decoder
firstly samples a class label lt according to
p(lt|S,B0:t−1):

p(lt|s,B0:t−1) = Softmax(g(ut, ct)),

ult = φl(eIt , e
S), clt = ϕl([ult; l1:t−1], e(S)),

where g is a two-layer perceptron, φl is a Convolu-
tion network (Xu et al., 2015) with spatial attention
on eIt , and ϕl is a text-based attention module (Lu-
ong et al., 2015), which is used to focus on different
parts of the caption.

After that, the decoder tries to find out bt for
object lt based on p(bt|S,B0:t−1, lt), which is
obtained by a regression network θ with b̂t =
(x̂t, ŷt, ŵt, ĥt) = θ(cbt , u

b
t). The parameters cbt and

ubt are represented similarly to ut and ct. That is,

ubt = φb(eIt , c
b
t), cbt = ϕb([ult; lt], e(S)),

where φb is an image-based attention module to
find an appropriate position, and ϕb is another text-
based attention module but focuses more on the
contents related to the current object.

4.1.4 Training
To reduce the expensive training ViBERT from
scratch, we initialize ViBERT with the parameter
weights of BERTBASE released by Google 1. Then
the scene layout generator can be trained by mini-
mizing the negative log-likelihood of the ground-
truth object labels and the mean-square error of the
ground-truth bounding box coordinates as follows:

Llayout =
∑
t

(
||b̂t − b∗t ||2 − log p(l∗t )

)
, (3)

where b∗t and l∗t stands for the ground-truth bound-
ing box and label, respectively. As for the gener-
ation order, we have observed that the model is
difficult to converge with unfixed order, which may
be caused by some dependencies among different
bounding boxes. So we follow the existing image
generation methods and simply fix the order from
bottom to top, left to right.

It should be noted that although we use BERT
as a text encoder on image captions, we do not
optimize the objective of the language model, i.e.
the masked language model (MLM) objective. This
is to avoid the possibility that the improvement

1https://github.com/google-research/
bert

of downstream reasoning task is due to the use
of more text data, instead of visual commonsense
knowledge from images. In our experiments, we
have conducted some ablation studies to validate
this point.

4.2 Knowledge-Augmented Reasoning

After using scene layout generation to encode vi-
sual commonsense knowledge into ViBERT, we
can apply ViBERT as a fixed prior to enhance the
downstream commonsense reasoning tasks.

Here we use commonsenseQA as an example
to demonstrate our method. For a given ques-
tion qi ∈ Q, where Q is the question set, and
its candidate answers Ai = {a1i , . . . , ani }, where
n denotes the number of choices, a common ex-
isting method is to first concatenate question and
each candidate answer to a raw representation
[qi; a

j
i ]. Then a pre-trained language model is ap-

plied to obtain a semantic representation, denoted
as E(1)

i,j = LM([qi; a
j
i ]). In our method, ViBERT is

applied on the raw representation [qi; a
j
i ] to obtain a

image scene-aware text representation, denoted as
E

(2)
i,j = ViBERT([qi; a

j
i ]). Since the two represen-

tations are not always in the same space, we use a
projection matrix M to project E(2)

i,j to the space of

E
(1)
i,j . After that, they are simply concatenated and

fed into a linear layer to compute the probability
p(aji |pi) as follows.

score(aji ) = h(E
(1)
i,j ;M

TE
(2)
i,j ]),

p(aji |pi) = Softmax({score(aji )}j),

where h is a simple linear layer for classification,
and the parameters of both language model and the
linear layer will be fine-tuned on the downstream
commonsense reasoning task. Specifically, in the
training process, the objective is to minimize the
negative log-likelihood of ground-truth answers a∗i
as follows. After that, the choice with the highest
score will be selected as the answer.

Lqa = −
∑
i

log p(a∗i |qi). (4)

5 Experiments

This section demonstrates our experiments on two
commonsense reasoning tasks, i.e. comonsense
question answering and pronoun resolution.

https://github.com/google-research/bert
https://github.com/google-research/bert
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5.1 Datasets

CommonsenseQA2 (Talmor et al., 2018) is a
typical commonsense question answering dataset,
which consists of 12,102 natural language ques-
tions generated from ConceptNet. It covers vari-
ous types of commonsense knowledge, including
spatial, causal, social, and activity, etc. Each ques-
tion has five candidate answers. Table 5 shows 3
question-answering examples. In our experiments
on this dataset, we use the official random-split set-
ting for fair comparisons with the reported results
on CommonsenseQA’s leaderboard.

WinoGrande3 (Sakaguchi et al., 2019) is a
challenging pronoun resolution dataset extended
from the original Winograd Schema Challenge
(Levesque et al., 2012). The task is about resolving
a pronoun (represented as a blank line) to one of
its two probable co-referents in the sentence. For
this task, each sentence is treated as a fill-in-the-
blank question with binary choices. The line in
the sentence is replaced by each option, and the
model is required to provide the likelihood for the
two resulting sentences for determination. In the
training set of WinoGrande, there are five different
sizes, i.e. XS(160), S (640), M (2,558), L (10,234)
and XL (40,398). We experiment on all the five
sizes and report their results for analysis.

5.2 Experimental Settings

For the upstream scene layout generation module,
we train our ViBERT on 2 Nvidia K80 GPUs with
a batch size of 32 for 15 epochs. The learning rate
is 5e−5, and the optimizer is Adam with StepLR
schedule, where the step size is 3 and γ is 0.8. In
the training process, the bi-modal data COCO (Lin
et al., 2014) is used to train our layout generation
model. COCO consists of 123,287 images over 80
object categories, and each image is associated with
instance-wise annotations and 5 image captions.
For better training, we ignore small objects and
filter images with more than 20 objects. This leaves
us 119,146 images. We use the official train and
validation splits, and set a max sequence length as
128.

For the downstream commonsense reasoning
module, we choose BERT and RoBERTa as our
baseline models, which are the fundamental and
competitive models for NLP tasks.

2https://www.tau-nlp.org/commonsenseqa
3https://leaderboard.allenai.org/

winogrande/submissions/get-started

BERT (Talmor et al., 2018) is a powerful contex-
tualized word representation model and has been
proven helpful in many NLP tasks. We apply un-
cased BERTBASE to downstream commonsense rea-
soning tasks by encoding each question and its can-
didate answers as a series of delimiter-separated se-
quences, i.e. ‘[CLS] question [SEP] choice [SEP]’
for CommonsenseQA and ‘[CLS] segment1 [SEP]
option segment2 [SEP]’ for WinoGrande. Then
the representation of ‘[CLS]’ is then fed into a
BERT-Pooler and converted to predictions by a
linear classification layer.

RoBERTa (Liu et al., 2019) is similar to BERT,
but is usually pre-trained with a larger amount of
training data and different techniques such as dy-
namic masking. Besides RoBERTaBASE, we also
compare with a fine-tuned RoBERTaLARGE follow-
ing the implementation released in fairseq 4. And
according to fairseq, we prepend a prefix of Q: to
the question and A: to the answer for Common-
senseQA, which was found to be helpful.

Loire By using BERT and RoBERTa as a lan-
guage model for text, we concatenate the repre-
sentations from ViBERT and the pre-trained lan-
guage model, and obtain two versions of our model,
denote as Loire-BERT and Loire-RoBERTa, re-
spectively. Since ViBERT is a static feature ex-
tractor and doesn’t need to be fine-tuned in the
downstream reasoning tasks, our running time is
similar to the baselines without extra time cost.

We train all models on 2 Nvidia K80 GPUs us-
ing AdamW (Loshchilov and Hutter, 2018) with
WarmupLinearSchedule approach (He et al., 2016)
for optimization, where the warmup percentage is
set to 0.1 and 0.05 for BERT and RoBERTa, respec-
tively. We use grid-search for hyper-parameters
tuning. The learning rate, number of epochs and
batch-size are chosen from {1, 2} × e−5, {3, 5, 8},
and {8, 16, 32}. The best development set accu-
racy from 5 random restarts of fine-tuning is re-
ported, with the standard deviation. The best mod-
els on the development dataset are then submitted
to the official private test dataset to return the test
results. All our code and data are publicly available
at https://github.com/VickiCui/Loire.

5.3 Experimental Results
On the dev set, the accuracy of the layout gener-
ation for label prediction is 63.4%, and the mean

4https://github.com/pytorch/
fairseq/tree/master/examples/roberta/
commonsense_qa

https://www.tau-nlp.org/commonsenseqa
https://leaderboard.allenai.org/winogrande/submissions/get-started
https://leaderboard.allenai.org/winogrande/submissions/get-started
https://github.com/VickiCui/Loire
https://github.com/pytorch/fairseq/tree/master/examples/roberta/commonsense_qa
https://github.com/pytorch/fairseq/tree/master/examples/roberta/commonsense_qa
https://github.com/pytorch/fairseq/tree/master/examples/roberta/commonsense_qa
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Table 2: Results on CommonsenseQA (%), where ‘*’
indicates the reported result from the leaderboard.

Model Dev Acc. Dev Avg. Test Acc.

Ott et al. (2019) - - 72.1∗

RoBERTaLARGE 77.47 76.65±0.58 71.58
Loire-RoBERTaLARGE 77.94 77.56±0.28 71.93
RoBERTaBASE 65.47 64.96±0.62 59.82
Loire-RoBERTaBASE 66.67 66.12±0.47 60.61
BERTBASE 59.71 58.95±0.65 53.00∗

Loire-BERTBASE 61.19 60.07±0.58 54.91

Human - - 88.00

Table 3: Results on WinoGrande with 5 training sizes,
where ‘*’ indicates the reported result from the leader-
board.

Model XS S M L XL

Dev Acc. (%)
BERTBASE 50.76 51.61 52.81 55.26 60.19
Loire-BERTBASE 51.61 52.34 53.9 56.74 61.50
RoBERTaBASE 51.72 54.71 57.91 62.52 67.94
Loire-RoBERTaBASE 53.26 55.18 58.93 64.09 69.21
RoBERTaLARGE 52.40 61.95 68.67 75.14 79.08
Loire-RoBERTaLARGE 52.64 63.06 70.40 76.56 81.06

Test Acc. (%)
BERTBASE 49.75 49.75 49.01 51.50 54.73
Loire-BERTBASE 49.86 49.29 52.07 53.88 59.54
RoBERTaBASE 50.93 52.01 57.67 61.35 65.42
Loire-RoBERTaBASE 53.42 53.42 56.82 62.31 67.12
Levesque et al. (2012) 50.37 58.63 67.57 74.70 79.12
Yang et al. (2020) 55.04 62.37 66.72 74.19 78.21
Loire-RoBERTaLARGE 53.14 63.27 70.51 76.12 77.99

square error for bbox prediction is 0.015 (the co-
ordinates of bbox have been standardized between
0 and 1). This shows that the layout generator has
a good performance and can generate good qual-
ity scene layouts, and the model does learn the
corresponding knowledge.

Table 2 shows the experimental results on Com-
monsenseQA. From the results, we can see that
our approach leads to a 1.91%, 0.79% and 0.35%
improvement in terms of accuracy on the test set,
as compared with BERTBASE, RoBERTaBASE and
RoBERTaLARGE respectively. Similar results have
been observed on the development set. Besides,
the standard deviation of several random results on
the development set becomes smaller when using
Loire, which demonstrates better stability. Some-
one may argue that the improvement is marginal as
compared with RoBERTaLARGE, and our result is
worse than the best result of RoBERTaLARGE on the
leaderboard (Ott et al., 2019). It should be noted
that the best result of RoBERTaLARGE on the leader-
board is based on validation performance after 100
trials. However, we only conducted five trials in
our experiments due to our limited computing re-
sources. The purpose of this paper is to propose a

Table 4: Accuracy (%) of different models on Common-
senseQA development set.

Model. Dev Acc. Dev Avg

BERTBASE 59.71 58.95±1.03
+BERT∗

BASE 59.89 59.12±0.65
+BERTCAPTION 60.29 59.47±0.60
+ViBERT (ours) 61.19 60.07±0.58

new perspective of learning commonsense from the
image, rather than achieving a SOTA result. We can
clearly see some improvement from the compari-
son with the baseline models. It is acceptable that
when using more complicated language models, the
effect of visual knowledge will be weakened. How-
ever, there are indeed some methods to improve the
current results, which will be investigated in our fu-
ture work. For example, we have filtered out small
objects to make the training easier, which may re-
sult in insufficient details. Besides, the adopted
bi-modal data COCO is very limited, with only 80
categories of objects. On the one hand, the cov-
erage of the commonsense may be restricted. On
the other hand, the layouts generated by our model
may not be very accurate for some objects. For
instance, the generated layout of ‘laundry’ is ‘a
suitcase’ since COCO does not contain clothes in
our case study. We plan to employ larger data such
as Visual Genome (Krishna et al., 2017) to tackle
this problem.

Table 3 shows the experimental results on Wino-
Grande. Specifically, five models are trained on
five different training data sizes separately, and the
development set and test set are identical for all
models. As for the accuracy of the development
set, We can see that Loire achieves consistent per-
formance improvements across different sizes of
training data, as compared with both BERTBASE,
RoBERTaBASE and RoBERTaLARGE. While for the
test accuracy (Levesque et al. (2012) and Yang et al.
(2020) are two test results of RoBERTaLARGE from
the leaderboard), except for a few ones, Loire con-
sistently outperforms the corresponding baselines
on across different sizes of training data. These re-
sults show the effectiveness of incorporating visual
scene knowledge for commonsense reasoning.

5.4 Ablation Study
In order to validate that the performance improve-
ment owes to the introduction of learned visual
commonsense knowledge, rather than using more
parameters or data, we conduct the following abla-
tion studies on CommonsenseQA. The results are
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Table 5: Case study examples from the dev set of Com-
monsenseQA.

Question1: The man got a pail to catch the draining
motor oil, where was he likely doing this
at home?

Choices1: (A) garage (B) hardware store (C) util-
ity room (D) wishing well (E) laundry

Question2: Where would a person be doing when
having to wait their turn?

Choices2: (A) have patience (B) get in line (C) sing
(D) stand in line (E) turn left

Question3: Where would you find magazines along
side many other printed works?

Choices3: (A) doctor (B) bookstore (C) market
(D) train station (E) mortuary

shown in Table 4, where ‘+ViBERT’ denotes Loire.
Firstly, we study whether the improvement owes

to the use of additional parameters. To this end,
we compare with the BERTBASE concatenated with
freeze BERT∗

BASE features, in which the parame-
ters are set to be the same as BERTBASE+ViBERT.
From the results, we can see that, under the same
setting, the accuracy of BERTBASE concatenated
with freeze BERT∗

BASE features is 59.89% on dev
set, which is worse than ours.

Then we study whether the improvement owes
to the use of additional text data, i.e. captions
in COCO. We first fine-tune a BERTBASE model
on COCO captions with MLM objective, denoted
as BERTCAPTION. Then we concatenate it with
BERTBASE, to perform a similar downstream fine-
tuning as in Loire-BERTBASE. We also randomly
initialized the model 5 times. The best dev result is
60.29%, which is worse than Loire.

In summary, these ablation studies prove that
the commonsense knowledge learned form images,
rather than the introduction of more parameters or
text data, is responsible for the improvements.

5.5 Case Study

To understand what type of commonsense knowl-
edge is learned by Loire, we analyze the relations
between question concept and answer concept in
CommonsenseQA according to ConceptNet. For
the part of the questions that are done right by our
model but wrong by the text-only model, which can
be seen benefit from images, the top three relation
types are AtLocation (36.4%), Causes (12.7%) and
RelatedTo (8.5%). These relationships can indeed
be expressed through the scenes shown in the im-
ages. So this is accordant with our motivation, and
the introduction of images can indeed play a com-

Question: The man got a pail to catch the draining motor oil, where was he
                 likely doing this at home?

(A) Garage (B) Hardware Store

(C) Utility Room (D) Wishing Well (E) Laundry

Question
Person Truck Car TV

TV Chair Person Suitcase

Figure 4: Scene layout of the first example in Table 5.

plementary role. For complete statistics of relation
types, please see Appendix A.

Table 5 gives three examples in the development
set of CommonsenseQA that benefit from visual
commonsense knowledge. To better understand
how visual commonsense helps, we generate the
layout for each pair of question and choice by the
trained upstream layout generator. Figure 5 shows
the layouts of Question1 and its choices, and others
can be found in Appendix B due to space limita-
tions.

Take the first question as an example, language
models mainly rely on word co-occurrence or se-
mantics for modeling, so they are easy to wrongly
choose ’utility room’ as the answer. That is be-
cause it is difficult to capture the commonsense of
‘got a pail to catch the draining motor oil in garage’
from the pure language. From Figure 5, we can
see that the layout of question, the correct answer
‘garage’ and the wrong answer ‘utility room’ are
’a person’ with ‘a truck’, ‘cars’, and ’chairs’ and
‘old televisions’, respectively. That is to say, we
can learn from images that ‘got a pail to catch the
draining motor oil’ usually happen with the scene
that a person is with a truck. By encoding this
knowledge into ViBERT, it is easy for the language
model to connect the similarity between ‘truck’ and
‘cars’, so Loire is able to choose the correct answer
’garage’, instead of ’utility room’.

6 Conclusion

In this paper, we propose a novel two-stage pipeline
approach Loire to learn commonsense from im-
ages. In the first stage, a text representation model
ViBERT is trained in the bi-modal sequence-to-
sequence approach for scene layout generation on
COCO. Therefore, visual commonsense knowl-
edge like spatial relations will be encoded in
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ViBERT by the supervision of caption and im-
age layout. After that, ViBERT is concatenated
with a pre-trained language model to perform a
knowledge-augmented reasoning process. Exper-
imental results show that Loire outperforms the
current state-of-the-art language models BERT and
RoBERTa on two NLP commonsense reasoning
tasks, i.e. commonsense question answering data
CommonsenseQA and pronoun resolution data
WinoGrande. The ablation and case study further
show that the improvements are truly owing to the
learned visual commonsense knowledge, and how
this knowledge helps the NLP reasoning process.

The current approach is a preliminary study on
the proposed direction of using images to automat-
ically learn commonsense knowledge to facilitate
the NLP reasoning tasks, which could be modified
from the following aspects to further improve the
empirical performances. Firstly, larger bi-modal
data could be employed to learn more common-
sense required in the reasoning task. Secondly,
other bi-modal methods instead of training ViB-
ERT by the supervision of scene layout generation
may be investigated. Thirdly, how to design intrin-
sic evaluation to help to understand what is learned
by Lorie is still challenging and will be considered
in the future.
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A Relation Types Analysis

Table 6: The relation types that benefit from images.

Relations Proportion(%) Relations Proportion(%) Relations Proportion(%)

MotivatedByGoal 1.7 HasProperty 0.8 CausesDesire 4.2
HasPrerequisite 5.1 Desires 0.8 CapableOf 5.9
HasSubevent 5.1 RelatedTo 8.5 DistinctFrom 1.7
HasA 1.7 NotDesires 0.8 HasLastSubevent 0.8
PartOf 2.5 UsedFor 4.2 AtLocation 36.4
FormOf 0.8 Antonym 5.9 Causes 12.7

B Layout Examples

Question: Where would a person be doing when having to wait their turn?
(B) get in lineQuestion

Person
(A) have patience (C) sing (D) stand in line (E) turn left

Person PersonPerson Cell phone Person Tie Traffic light

(a)

Question
Book

(A) doctor
Bed Person

(B) bookstore
Book

(C) market
Apple

(D) train station
Train

(E) mortuary
Vase

Question: Where would you find magazines along side many other printed works?

(b)

Figure 5: Layout example that generated by scene layout generator. Images in the first column are layouts for
questions. The layout for each choice is given in the other images.

In this appendix, we visualize two more layout examples to show how the learned visual commonsense
knowledge in our model helps the commonsense reasoning process.

As shown in Figure 5 (a), according to the question, we can get a layout ”a line of people”, which
is similar to the layouts of correct answer ‘stand in line’ and choice ‘get in line’. In this case, visual
commonsense knowledge helps the model eliminate irrelevant choices.

As shown in Figure 5 (b), we obtain the layout ‘a row of books’ for the question, which exactly matches
the layout of the answer ‘bookstore’. In this case, the visual commonsense knowledge directly helps the
model get the correct answer.


