
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4269–4279
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

4269

Vocabulary Adaptation for Domain Adaptation
in Neural Machine Translation

Shoetsu Sato Jin Sakuma
The University of Tokyo

Naoki Yoshinaga Masashi Toyoda
Institute of Industrial Science,

the University of Tokyo

Masaru Kitsuregawa
Institute of Industrial Science, the University of Tokyo

National Institute of Informatics

{shoetsu,jsakuma,ynaga,toyoda,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract

Neural network methods exhibit strong perfor-
mance only in a few resource-rich domains.
Practitioners therefore employ domain adapta-
tion from resource-rich domains that are, in
most cases, distant from the target domain. Do-
main adaptation between distant domains (e.g.,
movie subtitles and research papers), however,
cannot be performed effectively due to mis-
matches in vocabulary; it will encounter many
domain-specific words (e.g., “angstrom”) and
words whose meanings shift across domains
(e.g., “conductor”). In this study, aiming
to solve these vocabulary mismatches in do-
main adaptation for neural machine transla-
tion (NMT), we propose vocabulary adapta-
tion, a simple method for effective fine-tuning
that adapts embedding layers in a given pre-
trained NMT model to the target domain. Prior
to fine-tuning, our method replaces the em-
bedding layers of the NMT model by project-
ing general word embeddings induced from
monolingual data in a target domain onto a
source-domain embedding space. Experimen-
tal results indicate that our method improves
the performance of conventional fine-tuning
by 3.86 and 3.28 BLEU points in En→Ja and
De→En translation, respectively.

1 Introduction

The performance of neural machine translation
(NMT) models remarkably drops in domains dif-
ferent from the training data (Koehn and Knowles,
2017). Since a massive amount of parallel data is
available only in a limited number of domains, do-
main adaptation is often required to employ NMT in
practical applications. Researchers have therefore
developed fine-tuning, a dominant approach for
this problem (Luong and Manning, 2015; Freitag
and Al-Onaizan, 2016; Chu et al., 2017; Thompson
et al., 2018; Khayrallah et al., 2018; Bapna and
Firat, 2019) (§ 2). Assuming a massive amount of
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Figure 1: Vocabulary adaptation for domain adaptation
in NMT using cross-domain embedding projection.

source-domain and small amount of target-domain
parallel data, fine-tuning adjusts the parameters of
a model pre-trained in the source-domain to the
target domain.

However, in fine-tuning, inheriting the embed-
ding layers of the model pre-trained in the source
domain causes vocabulary mismatches; namely, a
model can handle neither domain-specific words
that are not covered by a small amount of target-
domain parallel data (unknown words) nor words
that have different meanings across domains (se-
mantic shift). Moreover, adopting the standard
subword tokenization (Sennrich et al., 2016b;
Kudo, 2018) accelerates the semantic shift. Target-
domain-specific words are often finely decomposed
into source-domain subwords (e.g., “alloy”→ “ all”
+ “o” + “y”), which introduces improper subword
meanings and hinders adaptation (Table 7 in § 5).

To resolve these vocabulary-mismatch problems
in domain adaptation, we propose vocabulary adap-
tation (Figure 1), a method of directly adapting the
vocabulary (and embedding layers) of a pre-trained
NMT model to a target domain, to perform effec-
tive fine-tuning (§ 3). Given an NMT model pre-
trained in a source domain, we first induce a wide
coverage of target-domain word embeddings from
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target-domain monolingual data. We then fit the
obtained target-domain word embeddings to the
embedding space of the pre-trained NMT model by
inducing a cross-domain projection from the target-
domain embedding space to the source-domain
embedding space. To perform this cross-domain
embedding projection, we explore two methods:
cross-lingual (Xing et al., 2015) and cross-task em-
bedding projection (Sakuma and Yoshinaga, 2019).

We evaluate fine-tuning with the proposed vo-
cabulary adaptation for two domain pairs: 1) from
JESC (Pryzant et al., 2018) to ASPEC (Nakazawa
et al., 2016) for English to Japanese translation
(En→Ja) and 2) from the IT domain to Law do-
main (Koehn and Knowles, 2017) for German to
English translation (De→En). Experimental re-
sults demonstrate that our vocabulary adaptation
improves the BLEU scores (Papineni et al., 2002)
of fine-tuning (Luong and Manning, 2015) by 3.86
points (21.45 to 25.31) for En→Ja and 3.28 points
(24.59 to 27.87) for De→En (§ 5). Moreover, it
shows further improvements when combined with
back-translation (Sennrich et al., 2016a).

The contributions of this paper are as follows.

• We empirically confirmed that vocabulary
mismatches hindered domain adaptation.

• We established an effective, model-free fine-
tuning for NMT that adapts the vocabulary of
a pre-trained model to a target domain.

• We showed that vocabulary adaptation ex-
hibited additive improvements over back-
translation that uses monolingual corpora.

2 Related Work

In this section, we first review two approaches to su-
pervised domain adaptation in NMT: multi-domain
learning and fine-tuning. We then introduce un-
supervised domain adaptation using target-domain
monolingual data and approaches to unknown word
problems in NMT.

Multi-domain learning induces an NMT model
from parallel data in both source and target do-
mains (Kobus et al., 2017; Wang et al., 2017; Britz
et al., 2017). Since this approach requires training
with a massive amount of source-domain parallel
data, the training cost becomes problematic when
we perform adaptation to many target domains.

Fine-tuning (or continued learning) is a standard
domain adaptation method in NMT. Given an NMT

model pre-trained with a massive amount of source-
domain parallel data, it continues the training of
this pre-trained model with a small amount of
target-domain parallel data (Luong and Manning,
2015; Chu et al., 2017; Thompson et al., 2018;
Bapna and Firat, 2019; Gu et al., 2019). Due to the
small cost of training, research trends have shifted
to fine-tuning from multi-domain learning. Recent
studies focus on model architectures, training ob-
jectives, and strategies in training. Meanwhile, no
attempts have been made to resolve the vocabulary
mismatch problem in domain adaptation.

Unsupervised domain adaptation exploits target-
domain monolingual data to train a language model
to support the model’s decoder in generating nat-
ural sentences in a target domain (Gülçehre et al.,
2015; Domhan and Hieber, 2017). Data augmenta-
tion using back-translation (Sennrich et al., 2016a;
Hu et al., 2019) is another approach to using target-
domain monolingual data.

These approaches can partly address the problem
of semantic shift. However, it is possible that the
source-domain encoder will fail to handle target-
domain-specific words. In such cases, a decoder
with the target-domain language model becomes
less helpful in the former approach, and the gen-
erated pseudo-parallel corpus has low-quality sen-
tences on the encoder side in the latter approach.

Handling unknown words has been extensively
studied for NMT since the vocabulary size of an
NMT model is limited due to practical requirements
(e.g., GPU memory) (Jean et al., 2015; Luong et al.,
2015). The current standard approach to the un-
known word problem is to use token units shorter
than words such as characters (Ling et al., 2015; Lu-
ong and Manning, 2016) and subwords (Sennrich
et al., 2016b; Kudo, 2018) to handle rare words
as a sequence of known tokens. However, more
drastic semantic shifts will occur for characters or
subwords than for words because they are shorter
than words and naturally ambiguous.

Besides these studies mentioned above, Aji et al.
(2020) reported that transferring embeddings and
vocabulary mismatches between parent and child
models significantly affected the performance of
models also in cross-lingual transfer learning.

In this study, we aim to provide pre-trained NMT

models with functionality that directly handles both
target-domain-specific unknown words and seman-
tic shifts by exploiting cross-domain embeddings
learned from target-domain data.
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3 Vocabulary Adaptation for Domain
Adaptation in NMT

As we have discussed (§ 1), vocabulary mismatches
between source and target domains are the impor-
tant challenge in domain adaptation for NMT. This
section proposes fine-tuning-based methods of di-
rectly resolving this problem. Although our meth-
ods are applicable to any NMT model with em-
bedding layers, we assume here subword-based
encoder-decoder models (Bahdanau et al., 2015;
Vaswani et al., 2017) for clarity.

3.1 Vocabulary Adaptation Prior to
Pre-training

One simple approach is to use target-domain vo-
cabularies in pre-training. Specifically, we first
construct vocabularies from target-domain data for
each language. We then pre-train an NMT model
in a source domain with the target-domain vocab-
ularies and embeddings. Finally, we fine-tune the
pre-trained model with target-domain parallel data.

In this approach, however, employing the target-
domain vocabularies will hinder pre-training in the
source domain. In addition, since the embeddings
induced from the target-domain data are tuned to
the source domain, the problem of semantic shifts
still remains and will hinder fine-tuning.

3.2 Vocabulary Adaptation Prior to
Fine-tuning

Another approach is to replace the encoder’s em-
beddings and the decoder’s embeddings of the pre-
trained NMT model with word embeddings induced
from target-domain data before fine-tuning. How-
ever, as in transplanting organs from a donor to
a recipient, this causes rejection; the embedding
space of a pre-trained model is irrelevant to the
space of the target-domain word embeddings.

We therefore project the target-domain word em-
beddings onto the embedding space of the pre-
trained model in order to make the embeddings
compatible with the pre-trained model (Figure 1
in § 1). This approach is inspired by cross-lingual
and cross-task word embeddings that bridge word
embeddings across languages and tasks.

An overview of our proposed method is given as
follows.

Step 1 (Inducing target-domain embeddings)
We induce word embeddings from monolingual
data in the target domain for each language. Al-
though we can use any method for induction, we

adopt Continuous Bag-of-Words (CBOW) (Mikolov
et al., 2013) here since CBOW is effective for ini-
tializing embeddings in NMT (Neishi et al., 2017),
which suggests embedding spaces of CBOW and
NMT are topologically similar.

Step 2 (Projecting embeddings across domains)
We project the target-domain embeddings of the
source and target languages into the embed-
ding spaces of the pre-trained encoder and de-
coder, respectively, to obtain cross-domain embed-
dings (§ 3.2.1, § 3.2.2).

Step 3 (Fine-tuning) We replace the vocabularies
and the embedding layers with the cross-domain
embeddings and apply fine-tuning using the target-
domain parallel data.

To induce cross-domain embedding projection,
we regard the two domains as different lan-
guages/tasks and explore the use of methods for
inducing cross-lingual (Xing et al., 2015) and cross-
task word embeddings (Sakuma and Yoshinaga,
2019). In what follows, we explain each method.

3.2.1 Vocabulary Adaptation by Linear
Transformation

The first method exploits an orthogonal linear trans-
formation (Xing et al., 2015) to obtain cross-lingual
word embeddings. We use subwords shared across
two domains for inducing an orthogonal linear
transformation from the embeddings of the target
domain to the embeddings of the source domain.
The obtained linear transformation is used to map
all embeddings of the target domain to the embed-
ding space of the source domain to address seman-
tic shift across domains.

3.2.2 Vocabulary Adaptation by Locally
Linear Mapping

Due to the difference between the domains and
tasks (CBOW and NMT) in inducing the embed-
dings, the linear transformation is likely to fail.
Thus, we employ a recent method for cross-task
embedding projection called “locally linear map-
ping” (LLM) (Sakuma and Yoshinaga, 2019). An
overview is illustrated in Figure 1 (lower left).

LLM learns a projection that preserves the local
topology (positional relationships) of the original
embeddings after mapping while disregarding the
global topology. This property of LLM is suited to
our situation because the local topology is expected
to be the same across the semantic spaces of two
domains, while globally, they can be significantly
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Figure 2: Unwanted cross-domain projection by linear
transformation due to difference of topology in vector-
based embedding space: illustrative example.

different due to semantic shift between domains as
illustrated in Figure 2.

Here, we explain the essence of LLM. Interested
readers may consult Sakuma and Yoshinaga (2019)
for details. Suppose that T LM is the word embed-
dings of the target domain induced by a language
model task, and SNMT is the word embeddings of
the source domain induced by the translation task
(the embedding layer of the pre-trained model). We
denote the vocabulary of T LM by VT , the vocabu-
lary of SNMT by VS and the vocabulary of words
shared across both domains by Vshared = VT ∩ VS .

Our goal is to produce embeddings TNMT with a
vocabulary of VT in the embedding space of SNMT.
We accomplish this by computing the TNMT that
best preserves the local topology of T LM in the
embedding space of SNMT. Concretely, for each
wordwi in VT , we first take the k-nearest neighbors
N (wi) ⊂ Vshared in T LM. We use cosine similarity
as the metric for the nearest neighbor search.

Second, we learn the local topology around wi

by reconstructing T LM
wi

from the embeddings of its
nearest neighbors as a weighted average. For this
purpose, we minimize the following objective:

α̂i = argmin
αi

∥∥∥∥∥∥T LM
wi
−

∑
wj∈N (wi)

αijT
LM
wj

∥∥∥∥∥∥
2

, (1)

with the constraint of
∑

j αij = 1; the method of
Lagrange multipliers gives the analytical solution.

We then compute the embedding TNMT
wi

that pre-
serves the local topology by minimizing the follow-
ing objective function:

TNMT = argmin
TNMT

∥∥∥∥∥∥TNMT
wi

−
∑

wj∈N (wi)

α̂ijS
NMT
wj

∥∥∥∥∥∥
2

.

(2)

This optimization problem has the trivial solution:

TNMT
wi

=
∑

wj∈N (wi)

α̂ijS
NMT
wj

. (3)

Note that subwords shared across domains
will have different embeddings after projection
(TNMT

w 6= SNMT
w for w ∈ Vshared). This captures

the semantic shift of subwords across domains. We
conduct a detailed analysis of this matter in § 6.3.

4 Experimental Setup

We conducted fine-tuning with our vocabulary
adaptation for domain adaptation in En→Ja and
De→En machine translation. In what follows, we
describe the setup of our experiments.

4.1 Datasets and Preprocessing
We selected domain pairs to simulate a plausible
situation where the target domain is specialized and
similar source-domain parallel data is not available.

For En→Ja translation, we chose the Japanese-
English Subtitle Corpus (JESC) (Pryzant et al.,
2018) as the source domain and Asian Scientific
Paper Excerpt Corpus (ASPEC) (Nakazawa et al.,
2016) as the target domain. JESC was constructed
from subtitles of movies and TV shows, while AS-
PEC was constructed from abstracts of scientific
papers. These domains are substantially distant,
and ASPEC contains many technical terms that
are unknown in the JESC domain. We followed
the official splitting of training, development, and
test sets, except that the last 1,000,000 sentence
pairs were omitted in the training set of the ASPEC
corpus as they contain low-quality translations.

For De→En translation, we adopted the dataset
constructed by Koehn and Knowles (2017) from
the OPUS corpus (Tiedemann, 2012). This dataset
includes multiple domains that are distant from
each other and is suitable for experiments on real-
istic domain adaptation. We chose the IT domain
and the Law domain from the dataset as the source
and target domain, respectively. We followed the
same splitting of training, development, and test
sets as Koehn and Knowles (2017).

Preprocessing As preprocessing for the En→Ja
datasets, we first tokenized the parallel data using
the Moses toolkit (v4.0)1 for English sentences
and KyTea (v0.4.2)2 for Japanese sentences. We

1https://github.com/moses-smt/
mosesdecoder

2http://www.phontron.com/kytea

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
http://www.phontron.com/kytea
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En→Ja JESC → ASPEC

# examples
training (all) 2,797,388 2,000,000
development 2,000 1,790
testing - 1,812

# distinct words (En) 161,695 637,377
# distinct words (Ja) 169,649 384,077
# shared words (En) 46,950 (7.4% in ASPEC)
# shared words (Ja) 50,003 (13.0% in ASPEC)

De→En IT → Law (Acquis)

# examples
training (all) 337,817 715,372
development 2,526 2,000
testing - 2,000

# distinct words (De) 140,508 189,084
# distinct words (En) 70,650 92,316
# shared words (De) 21,912 (11.6 % in Law)
# shared words (En) 17,165 (18.6 % in Law)

Table 1: Statistics of source and target parallel corpus.
#distinct/shared words are counted in training sets.

then truecased the English sentences by using the
script in the Moses toolkit. As for the De→En
datasets, we used the same tokenization and true-
casing as Koehn and Knowles (2017). The statistics
of the datasets are listed in Table 1.

We applied SentencePiece (v0.1.83)3 (Kudo and
Richardson, 2018) trained from the monolingual
data in each domain to the tokenized datasets. The
number of subwords was 16,000 for all languages.
In the training of SentencePiece, we did not con-
catenate the input language and output language to
maximize the portability of the pre-trained model.

From each of the preprocessed datasets, we used
1) 100,000 randomly sampled sentence pairs or 2)
all sentence pairs in the training set for training in
the target domain. This was for evaluating models
in both cases where we have a small/large target-
domain dataset.

To prepare reproducible target-domain mono-
lingual data, we shuffled and divided all sentence
pairs of the target-domain training set except the
100,000 sentence pairs into two equal portions. We
then used the first half and the second half as sim-
ulated monolingual data for the source language
and the target language, respectively. The mono-
lingual data was used for training SentencePiece
and CBOW vectors in the target domain and data
augmentation by back-translation. When models
did not use the monolingual data, the data used
for training SentencePiece and CBOW vectors was
exactly identical to the training set in each domain.

3https://github.com/google/
sentencepiece

# encoder/decoder layers 6 Label smoothing rate 0.1
# attention heads 8 Init. learning rate 1e-3
Dim. of embeddings 512 (warmup) 1e-7
Dim. of Transformer 2048 Dropout rate 0.1
Vocab. size (enc&dec) 16k Beam size for decoding 5
Max. tokens in batch 64k Length penalty 1.2

Table 2: Hyperparameters of NMT models.

4.2 Models and Embeddings
We adopted Transformer-base (Vaswani et al.,
2017) implemented in fairseq (v0.8.0)4 (Ott et al.,
2019), as the core architecture for the NMT mod-
els.5 Major hyperparameters are shown in Table 2.6

We evaluated the performance of the models on the
basis of BLEU (Papineni et al., 2002). Before pre-
training the models, we induced subword embed-
dings from the monolingual corpus by Continuous
Bag-of-Words (CBOW) (Mikolov et al., 2013) to
initialize the embedding layers of the NMT models.

To evaluate the effect of vocabulary adaptation,
we compared the following settings (and their com-
binations) that used either or both the source- and
target-domain parallel data.
Out-/In-domain trains a model only from the train-
ing set in the source/target domain.
Fine-tuning w/ source-domain vocab. (FT-srcV)
continues to train the Out-domain model using
the training set in the target domain without any
vocabulary adaptation (Luong and Manning, 2015).
Fine-tuning w/ target-domain vocab. (FT-tgtV)
Refer to § 3.1.
Multi-domain learning (MDL) trains a model
from both source and target domain training sets.
We employed domain token mixing (Britz et al.,
2017) as a method of multi-domain learning. In
this setting, we jointly used the source and target
domain training sets for training subword tokeniza-
tion models, CBOW vectors, and training NMT mod-
els (e.g., 2797k + 100k for En→Ja translation).
Vocabulary Adaptation (VA) Refer to § 3.2. We
compared two projection methods: linear orthogo-

4https://github.com/pytorch/fairseq
5Note that since Transformer shares the embedding and

output layers of the decoder, vocabulary adaptation is applied
to the embedding layer of the encoder and the tied embed-
ding/output layer of the decoder, respectively.

6For De→En translation, we made minor modifications
to the architecture to follow Hu et al. (2019). Concretely, we
added layer normalization (Ba et al., 2016) before each of the
encoder and decoder stacks. We also applied dropout to the
outputs of the activation functions and self-attention layers.

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/pytorch/fairseq
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# In-domain data
En→ Ja De→ En

100k 2000k 100k 715k

No adaptation
Out-domain 4.61 2.58
In-domain 11.69 41.83 18.79 34.16

Baselines
MDL 21.65 41.92 24.03 37.74
FT-srcV 21.45 43.09 24.59 38.43
FT-tgtV 28.08 42.32 24.87 36.38

Proposed
VA-CBoW 15.28 41.44 21.88 36.34
VA-Linear 22.26 42.70 25.20 37.00
VA-LLM 21.79 43.96 26.40 39.41

Table 3: Case-sensitive BLEU scores for NMT do-
main adaptation: En→Ja from JESC to ASPEC and
De→En from IT to Law. Size of training set for Out-
domain was 2797k for JESC and 338k for Law.

nal transformation (VA-Linear, § 3.2.1) and locally
linear mapping (VA-LLM, § 3.2.2). For VA-LLM,
the number of nearest neighbors, k, was fixed to
10.7 To highlight the importance of embedding pro-
jection for the proposed method, we also evaluated
settings using the target-domain CBOW vectors for
the re-initialization as is (VA-CBoW).

Back-translation (BT) applies a backward transla-
tion to target-domain monolingual data in the target
language. We employed the most standard back-
translation proposed by Sennrich et al. (2016a). For
this back-translation, a backward model (e.g., Ja
→ En) is independently trained from the source-
domain parallel data with the same setting and data
as Out-domain. The subsequent fine-tuning is
applied with the generated pseudo-parallel target-
domain corpora and a target-domain training set.

Among the above methods, Out-domain and
In-domain do not perform domain adaptation. FT-
srcV, FT-tgtV, and MDL are baseline domain
adaptation methods. BT is applied to FT-srcV,
FT-tgtV, and VA for data augmentation.

Note that FT-tgtV and MDL assume that the tar-
get domain is given before training with the source-
domain data. Although this assumption enables us
to build a suitable vocabulary for the target domain,
it sacrifices the domain portability of trained mod-
els. As a result, it requires us to perform training
for a long period of each combination of a source
and a target domain.

We used Adam (Kingma and Ba, 2015) to train

7We evaluated VA-LLM with k={1, 5, 10, 20}, and the
default value (k=10) was the best.

Enc Dec En→ Ja De→ En

100k 2000k 100k 715k

FT-srcV 21.45 43.09 24.59 38.43

X 22.69 43.48 25.64 39.48
VA-LLM X 20.75 43.66 25.69 40.19

X X 21.79 43.96 26.40 39.41

Table 4: BLEU scores on ablation tests for VA-LLM.

each model with the above settings. During both
pre-training and fine-tuning, the learning rate lin-
early increased for warm-up for the first 4,000 train-
ing steps and then decayed proportionally to the
inverse square root of the number of updates. Prior
to fine-tuning, we reset the optimizer and the learn-
ing rate and then continued training on the training
set in the target domain.

5 Results

5.1 BLEU Scores
Table 3 shows the results for the domain adapta-
tions. Among all the methods, VA-LLM achieved
the best BLEU score in three out of the four cases.
The low BLEU scores for Out-domain show how
much domain mismatch degraded the NMT per-
formance, as pointed out in (Koehn and Knowles,
2017). There were large differences in the perfor-
mance among VA-* models that perform vocab-
ulary adaptation prior to fine tuning. The results
confirmed that not only the differences in the vo-
cabulary (set of subwords) but also the initial em-
beddings matter in fine-tuning NMT models.

VA-* methods did not work well in En→Ja trans-
lation when only the 100k target-domain paral-
lel data was used. This is probably because the
more noisy emebeddings (ambiguous subwords)
introduced by the large number of domain-specific
words in the ASPEC dataset (Table 1) hinders the
embedding projection of VA-LLM and VA-Linear
with low-quality CBOW vectors trained from the
100k sentences. In this setting, we need more par-
allel data for fine-tuning to adjust the noisy initial
embeddings.

Table 4 shows results of ablation tests to examine
for which side (encoder or decoder) VA-LLM ben-
efited. The results confirmed that the poor perfor-
mance in En→Ja translation with the 100k target-
domain parallel data is due to the failure of han-
dling semantic shifts in the decoder.8

8We observed the same tendency when we conducted the
ablation tests for Ja→En translation with the ASPEC datasets.
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# In-domain data
En→ Ja De→ En

100k +BT 100k +BT

FT-srcV 21.45 24.63 24.59 25.81

w/ monolingual data for training CBoW
FT-tgtV 18.85 21.75 21.87 24.49
VA-Linear 19.35 22.19 24.09 25.79
VA-LLM 25.31 29.73 27.87 28.43

Table 5: Case-sensitive BLEU scores when employing
target-domain monolingual data (950k for En→Ja and
308k for De→En). +BT indicates that monolingual
data was used also for data augmentation.

The improvements obtained by VA-Linear were
modest overall. This was due to the nature of the
linear projection employed for cross-domain em-
bedding mapping as discussed in § 3.2.2. We ana-
lyze the difference between the two types of pro-
jected embeddings in § 6.3.

5.2 Effects of Monolingual Data

Table 5 shows how employing target-domain mono-
lingual data affected domain adaptation. In the
settings, the SentencePiece and CBOW vectors of
the target domain were trained from both the 100k
parallel data and the monolingual data (950k and
308k for En→Ja and De→En, respectively). We
also evaluated the orthogonality of the proposed
method to BT since both methods exploit target-
domain monolingual data.

Interestingly, the results of FT-tgtV and VA-
Linear were worse than the results in Table 3. We
consider the reason to be as follows. When addi-
tionally using the target-domain monolingual data,
the resulting SentencePiece model and CBOW vec-
tors become more suitable for the target domain
thanks to the increase of data. However, this also
means that target-domain-specific words appear-
ing only in the monolingual data accelerated the
vocabulary mismatches, the semantic shifts, and
the difference of topology in the embedding space.
As the result, the vocabulary mismatches degraded
the pre-trained model of the source domain for FT-
tgtV and linear transformation failed to handle the
semantic shifts for VA-Linear.

In contrast, due to the capability of the projection
method, the performance of VA-LLM was success-
fully improved by the use of the monolingual data.
Table 5 also shows the orthogonality of VA-LLM
to BT, since the increase of BLEU scores for VA-
LLM + BT from FT-srcV + BT were substantial

# Updates in training w/
source target BT
(2797k) (100k) (950k)

w/o monolingual data
In-domain - 3,440 -
MDL 36,342 -
FT-srcV 28,750 2,480 -
VA-LLM 28,750 3,200 -

w/ monolingual data
FT-srcV + BT 56,350 31,280
VA-LLM + BT 56,350 32,895

Table 6: Number of updates until convergence for
En→Ja translation.

(5.10 pt and 2.61 pt for En→Ja and De→En trans-
lation, respectively).

5.3 On Efficiency: Training Steps

Table 6 shows the number of updates until con-
vergence in En→Ja translation with the 100,000
target-domain training set.9 We confirmed that all
models were trained over a sufficient number of
steps. The validation loss did not improve over at
least five epochs after the best model was chosen.
We used four GPUs (NVIDIA Quadro P6000) for
training, and it took 0.9 sec/update on average.

Here, we emphasize that VA-LLM achieved su-
perior performance with a small number of updates
(3,200 steps, less than 50 minutes) similarly to
FT-srcV. Note that the overhead time of our vocab-
ulary adaptation was negligible since embedding
projection took only several minutes. Meanwhile,
FT-srcV + BT took 31,280 steps due to the size of
the augmented data even when we ignore the time
taken to generate back-translated parallel data.

Additionally, our proposed method is based on
fine-tuning and the target domain is not supposed to
be given before pre-training in the source domain,
differently from MDL. Therefore, the pre-trained
Out-domain can be reused each time when the tar-
get domain or settings are changed, which enables
us to omit the long training time (28,750 steps,
about 7.2 hours) per model training. As the train-
ing steps of VA-LLM + BT show, the overhead
caused by employing the proposed method with
back-translation was also small. Nevertheless, the
improvements of VA-LLM + BT compared with
FT-srcV + BT were substantial (Table 5).

9As for FT-srcV + BT and VA-LLM + BT, the number
of updates in the pre-training phase is the sum of the training
steps for both forward and backward models.
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Input (JESC vocab.) 3 cases of the lu m bar spinal1 can al ste no s is2 · · ·
Input (ASPEC vocab.) 3 cases of the lumbar spinal1 canal stenosis2 · · ·

Reference · · · 腰部脊脊脊柱柱柱1 管狭狭狭窄窄窄症2 の 3例について · · ·

FT-srcV · · · 腰部 <unk>柱管狭 <unk>症の 3症例について · · ·
FT-srcV + BT · · · 腰部 <unk>柱管狭 <unk>症の 3症例について · · ·
VA-LLM + BT · · · 腰部脊脊脊柱柱柱1 管狭狭狭窄窄窄2 の 3症例について · · ·

Input (IT vocab.) falls der Austausch der Rat if ik ation s ur ku nden1 zwischen · · ·
Input (Law vocab.) falls der Austausch der Ratifikation surkunde n1 zwischen · · ·

Reference should the instruments of ratification1 be exchanged between · · ·

FT-srcV if the exchange of the ratification of ratification between · · ·
FT-srcV + BT where the exchange of the Council takes place between · · ·
VA-LLM + BT if the instruments of ratification1 are met between · · ·

Table 7: Translation examples of the models with 100k target-domain parallel data in Table 3 and Table 5. Bolded
words are rare or unknown in source domain. Underlined words and subscript numbers indicate correspondence.
Input (JESC, IT) and Input (ASPEC, Law) were fed to FT-srcV/FT-srcV + BT and VA-LLM + BT, respectively.

6 Analysis

6.1 Translation Examples
Table 7 shows translation examples generated by
FT-srcV in Table 3, FT-srcV + BT and VA-LLM
+ BT in Table 5. The size of target-domain parallel
data for training was 100k.

FT-srcV and FT-srcV + BT often failed to trans-
late target-domain-specific words that were tok-
enized into short subwords. In such cases, the mod-
els tended to ignore or transliterate them. For in-
stance, the De→En examples (lower) show that FT-
srcV and FT-srcV + BT failed in translating “Rat-
ifikationsurkunden (instruments of ratification).”

Moreover, in the En→Ja examples (upper), the
decomposed target-domain-specific words “脊柱
(spinal)” and “狭窄症 (stenosis)” contained target-
domain-specific subwords such as “脊” and “窄.”
The models without vocabulary adaptation also
failed to handle these subwords when both the
source-domain training set and the target-domain
100k training set rarely contained them.

Meanwhile, VA-LLM + BT successfully trans-
lated both of the cases with the help of target-
domain monolingual data. These examples imply
the difficulty in translating target-domain-specific
words without vocabulary adaptation.

We observed that VA-LLM + BT generated vari-
ous target-domain-specific words. To quantitatively
confirm this, we calculated the percentage of dis-
tinct words included in both the generated outputs
and the references. The outputs in En→Ja transla-
tion generated by VA-LLM + BT, FT-srcV + BT,
and FT-srcV contained 57.9%, 53.4%, and 49.5%
of distinct words in the references, respectively.
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Figure 3: BLEU scores of VA-LLM while varying
target-domain vocabulary size. The source-domain vo-
cabulary size was fixed to 16k.

6.2 Effect of Vocabulary Size in Fine Tuning

As reported in (Sennrich and Zhang, 2019), the vo-
cabulary size of an NMT model can affect its trans-
lation quality in a low-resource setting. How about
in fine-tuning? To explore this, we varied only
the target-domain vocabulary size of VA-LLM
before fine-tuning by vocabulary adaptation.

Figure 3 shows that VA-LLM preferred large
vocabulary sizes when additional target-domain
monolingual data was used for training CBOW,
whereas it preferred small vocabulary sizes when
the data was not used. We consider the reason to
be as follows. In the former case, a large vocab-
ulary contains low-frequency subwords of which
representation is unlikely to be well-trained as dis-
cussed in (Sennrich and Zhang, 2019). In the latter
case, however, target-domain monolingual data can
cover such low-frequency subwords.

As this analysis showed, the vocabulary size also
had large effects on fine-tuning (3.52 pt difference
at most). Besides the vocabulary mismatch prob-
lem, our vocabulary adaptation could make further
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Nearest neighbors in ASPEC-CBOW embedding space

branches branch, roots, veins, arteries, trees
experimentally systematically, numerical, theoretical,

experimental, experiments

Nearest neighbors in JESC-NMT embedding space

via linear transformation (Linear)
branches trees, sides, birds, parts, pieces
experimentally rope, tanks, laser,

gravitational, simulation

via locally linear mapping (LLM)
branches branch, trees, roots, veins, arteries
experimentally by, experiment, experiments,

experimental, simulation

Table 8: Top-5 nearest neighbors of “ branches” and
“ experimentally” in ASPEC-CBOW embedding space
and JESC-NMT embedding space via cross-domain em-
bedding projection: bold-faced subwords are near-
est neighbors shared across both top-5. The ASPEC-
CBOW vectors are trained from the 100k target-domain
parallel data and the monolingual data.

improvements by the vocabulary size were adjusted
depending on the amount of target-domain parallel
and monolingual data with a low training cost.

6.3 Quality of Cross-domain Embeddings

The advantage of our approach is that it adjusts the
meanings of subwords (embeddings) as well as the
vocabulary (set of subwords) to the target domain.
We thus examined to what extent our vocabulary
adaptation captures the semantic shift.

We first observed the nearest neighbors based
on cosine similarity for each of the subword em-
beddings in the target domain (hereafter, ASPEC-
CBOW).10 Note that the nearest neighbors should
be unchanged even after embedding projection to
keep the meanings learned in the target domain.

Next, we compute cosine similarities between
each of the projected ASPEC-CBOW and the em-
beddings of Out-domain to find their nearest
neighbors in the embedding space of Out-domain
(hereafter, JESC-NMT). The obtained nearest
neighbors show how the ASPEC-CBOW embed-
dings projected by linear-transformation or LLM
performed during fine-tuning.

Table 8 shows the nearest neighbors of two
words: “ branches,” which appears in both do-
mains and can have different meanings across do-
mains, and “ experimentally,” which is only in the
ASPEC domain.

10Through this analysis, the candidates of nearest neighbors
were limited to the shared subwords across JESC and ASPEC
domains for clear comparison.

While the CBOW vector for “ branches” and the
embedding projected by LLM have the meaning of
“ veins” and “ arteries”, the embedding projected
by linear transformation lost it. “ experimentally”
is a subword that only the target-domain (ASPEC)
vocabulary contains. As illustrated in Figure 2, the
mapping of target-domain-specific subword em-
beddings is likely to fail due to the difference of
topology in the embedding space. We found that
LLM relatively accurately computed its embedding
in the JESC-NMT space while linear transforma-
tion failed. This tendency was also observed when
using only the 100k parallel data for training of
SentencePiece and CBOW vectors. These observa-
tions demonstrate the capability of LLM in cross-
task/domain embedding projection.

7 Conclusion

In this study, we tackled the vocabulary mismatch
problem in domain adaptation for NMT, and we pro-
posed vocabulary adaptation, a simple but direct
solution to this problem. It adapts the vocabulary
of a pre-trained NMT model to a target domain for
performing effective fine-tuning. Regarding do-
mains as independent languages/tasks, our method
makes wide-coverage word embeddings induced
from target-domain monolingual data be compati-
ble with a model pre-trained in a source domain.

We explored two methods for projecting word
embeddings across two domains: linear transfor-
mation and locally linear mapping (LLM). The
experimental results for English to Japanese trans-
lation and German to English translation confirmed
that our domain adaptation method with LLM dra-
matically improved the translation performance.

Although the vocabulary adaptation was evalu-
ated only for NMT, it is also applicable to a wider
range of neural network models and tasks, and it
can even be combined with existing fine-tuning-
based domain adaptations. We will release all code
to promote the reproducibility of our results.11
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