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Abstract

Low-resource language translation is a chal-
lenging but socially valuable NLP task. Build-
ing on recent work adapting the Transformer’s
normalization to this setting, we propose
QKNORM, a normalization technique that
modifies the attention mechanism to make the
softmax function less prone to arbitrary satu-
ration without sacrificing expressivity. Specif-
ically, we apply `2 normalization along the
head dimension of each query and key ma-
trix prior to multiplying them and then scale
up by a learnable parameter instead of di-
viding by the square root of the embedding
dimension. We show improvements averag-
ing 0.928 BLEU over state-of-the-art bilin-
gual benchmarks for 5 low-resource transla-
tion pairs from the TED Talks corpus and
IWSLT’15.1

1 Introduction

The Transformer (Vaswani et al., 2017) remains
the architecture of choice for machine translation.
Since its introduction, various architectural and
functional modifications have been made to im-
prove its performance on NMT datasets (Ahmed
et al., 2017; Zhang et al., 2018; Wang et al., 2019;
Dai et al., 2019; Zhao et al., 2019). Translating
low-resource languages presents special challenges.
Recent strategies for adapting Transformers to this
socially valuable task include exploiting transfer
learning with many-to-many multilingual models
(Aharoni et al., 2019), reducing model depth (van
Biljon et al., 2020), and adding a regularization
penalty for diverging from the predictions of a
monolingual language model pretrained on the tar-
get language (Baziotis et al., 2020). This paper
builds on recent work on layer normalization for

1Code to reproduce our experiments is available at https:
//github.com/CyndxAI/QKNorm

low-resource language pairs, introducing a normal-
ization technique that tries to keep the input to
softmax attention within an appropriate range.

Layer normalization. For Transformers and
other NLP models, layer normalization (Ba et al.,
2016) yields significantly better performance than
batch normalization (Ioffe and Szegedy, 2015), in
part because NLP models tend to exhibit greater
variance in batch statistics during training, for ex-
ample compared to computer vision (Shen et al.,
2020). Layer normalization boosts performance in
deeper networks chiefly by controlling their gradi-
ents (Xu et al., 2019). It re-scales and re-centers
activation distributions (though re-centering may
be unnecessary, see Zhang and Sennrich 2019).
The type of normalization used and the placement
of that normalization within the Transformer are
both crucial to Transformer performance (Nguyen
and Salazar, 2019).

Softmax attention. Given a matrix X embed-
ding a sequence of tokens, attention transforms
each embedding into a mixture of itself and other
elements of the sequence according to the impor-
tance of their connections for the modeling task at
hand. In the case of multihead self-attention, the
vectors of X are projected linearly into Query, Key
and Value matrices. The operation

softmax(QKT ) (1)

defines a distribution for each token over all the oth-
ers in its sequence that sums to 1. Multiplying by
V then yields a new matrix where the embedding
of each token is a weighted average of the vectors
in V .

Richter and Wattenhofer (2020) propose replac-
ing the softmax function in attention because it con-
strains attention’s output to the convex hull spanned
by the vectors in V , limiting model flexibility. For

https://github.com/CyndxAI/QKNorm
https://github.com/CyndxAI/QKNorm
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the softmax over the vocabulary in next word pre-
diction, Demeter et al. (2020) find that the norms
of word embeddings drown out their angular dis-
placements, with the consequence that words with
smaller norms are systematically less likely to be
predicted.

In this work, we replace the dot product inside
of softmax attention with cosine similarity scaled
up by a learnable parameter. This technique yields
improved performance in low-resource bilingual
translation, which we conjecture is because it binds
QKT to a narrower range in a way that makes
it easier to learn more diffuse attention patterns
wherever these prove valuable.

2 Background

Nguyen and Salazar (2019) achieve state-of-the-art
bilingual performance on 5 low-resource transla-
tion pairs from the TED Talks (Qi et al., 2018)
and IWSLT’15 (Cettolo et al., 2015) corpora. This
work builds directly on theirs, applying our tech-
nique to the same 5 benchmarks. Their model
combines three normalization techniques that we
describe below: FIXNORM (Nguyen and Chiang,
2018), PRENORM (Klein et al., 2017; Domhan,
2018; Vaswani et al., 2018; Chen et al., 2018), and
SCALENORM, which they introduce as a replace-
ment for layer normalization. They report that each
technique contributes about 0.3 BLEU for an aver-
age improvement of 1.1 BLEU across the test sets
for their 5 language pairs.

FIXNORM sets word embeddings to unit length,
which aids rare word translation (Nguyen and Chi-
ang, 2018). PRENORM simply changes the location
of layer normalization within the Transformer ar-
chitecture, applying it to the input to each sublayer
instead of after the residual connection. Moving
layer normalization ahead of the residual connec-
tion enhances stability because the residual path
is allowed to stay an identity map, instead of con-
tributing terms to the gradient that could cause it
to explode or vanish (Wang et al., 2019; Nguyen
and Salazar, 2019). Interestingly, Nguyen and
Salazar (2019) find PRENORM to be superior in
low-resource but not high-resource translation set-
tings.

Lastly, SCALENORM replaces layer normaliza-
tion with `2 normalization along the embedding
dimension, multiplied by a learnable scalar param-
eter initialized with 1√

d
(where d is the embedding

dimension; the same term is used in scaled dot

product attention (Vaswani et al., 2017)).
In other words, SCALENORM applies `2 normal-

ization along the embedding dimension of Q, K
and V , and it does so before the input to multihead
attention gets split into heads.

Building on their work, we combine FIXNORM,
PRENORM, and vanilla layer normalization
(LAYERNORM) with a new technique we call
query-key normalization (QKNORM), surpassing
their model’s performance on each of the same 5
translation pairs by an average of 0.928 test BLEU.

QKNORM applies `2 normalization to Q and
K only, and it does so along the head dimension
(which is the same dimension as the embedding di-
mension, but after multihead attention has split its
input into separate heads). Q and K thus become
Q̂ and K̂, where the ith row vector of Q̂ (the ith
embedding in the sequence) is given by:

q̂i =
qi
||qi||

(2)

The effect is to make each element of QKT the co-
sine similarity of the corresponding pair of contex-
tual token representations instead of their dot prod-
uct. This is similar to Luo et al. (2018), who pro-
pose replacing the dot product in fully-connected
networks between layer weights and previous layer
outputs with cosine similarity.

Like SCALENORM, we also multiply by a learn-
able parameter that we initialize according to a rule
of thumb we describe below. Unlike SCALENORM,
QKNORM complements LAYERNORM rather than
replacing it.

3 Dot Products and the Softmax
Function

Softmax attends only to the differences between
values. For example,

softmax([760, 752, 750])

= softmax([12, 4, 2])

= [0.99962, 0.00034, 0.00005].

Since the dot product is unbounded, differences
between elements that may be insignificantly small
on a relative basis can silence all other signals in
the attention weights applied to V . We conjecture
that this limits the complexity of the patterns that
attention heads can learn.

The impact is more obvious in less sophisticated
Transformer implementations (perhaps in part be-
cause subsequent advances have mitigated the same
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Figure 1: Scaled Dot Product Attention. Self-attention heatmaps for 4 heads from one encoder layer displaying
more “concentrated” attention, consistent with the conjecture that unnormalized dot products in QKT saturate the
softmax and limit the attention patterns that can be learned.

Figure 2: Query-Key Normalized Attention. Self-attention heatmaps of the same 4 heads in Figure 1. QKNORM
enables more diffuse attention patterns.

issue in different ways). Figures 1 and 2 show a
heatmap comparison of encoder weights trained
using the code for The Annotated Transformer2,
the first with scaled dot product attention and the
second with QKNORM.

The models containing these encoders were
trained for 10 epochs on IWSLT 2016 de→en
(Cettolo et al., 2016) using the Annotated Trans-
former implementation, with the baseline model
scoring 19.4 BLEU and the QKNORM model scor-
ing 24.33 BLEU on the test set, computed with the
SacreBLEU Python package (Post, 2018).

Though this heatmap comparison is obviously
not systematic, we think the visual at least pro-
vides a plausible intuition for the incremental gain
this technique achieves, with scaled dot product
attention exhibiting the kind of “winner-take-all”
behavior we would expect from a softmax near
saturation.

In comparison to dot products, cosine similari-
ties are bounded by [−1, 1] which creates the oppo-
site problem as input to softmax – the differences

2https://nlp.seas.harvard.edu/2018/04/
03/attention.html

between values are too small for softmax to let
the model effectively ignore connections between
words it should not attend to. Instead of dividing by√
d as in scaled dot product attention we scale up

using a learnable parameter that we initialize with
a value that depends on the length of the sequences
in the training data (and hence on the number of
elements in QKT ):

g0 = log2(L
2 − L) (3)

where L is the 97.5th percentile sequence length
across all training data sequences for source and
target.

The attention operation thus changes from

softmax(
QKT

√
d

)V (4)

to
softmax(g ∗ Q̂K̂T )V (5)

where Q̂ and K̂ are Q and K with `2-normalization
applied along their head dimensions and g is a
learnable scalar parameter initialized with g0 as
computed in (3).

https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://nlp.seas.harvard.edu/2018/04/03/attention.html
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Examples Source + Target Tokens Number of Parameters Training Time (in hours) Development BLEU GPU L

gl→en 10k 0.37M 31,051,880 6 23.45 T4 79
sk→en 61k 2.32M 48,356,907 11 31.34 T4 75
en→vi 133k 5.99M 48,431,538 19 28.77 T4 72
en→he 212k 7.88M 48,401,538 38 31.16 T4 72
ar→en 214k 8.09M 48,499,512 26 37.94 P100 75

Table 1: Summary of data and model training information. Number of examples and number of tokens taken
directly from Nguyen and Salazar (2019). L is the 97.5th percentile sequence length across all training data
sequences.

en→vi ar→en en→he gl→en sk→en
Nguyen and Salazar (2019) 32.79 36.09 28.28 22.01 32.58
QKNORM + LAYERNORM 33.24 36.75 28.96 24.21 33.23

Table 2: Comparison of test BLEU (Papineni et al., 2002), scored using the Moses toolkit scripts provided in the
repo for Nguyen and Salazar (2019). p < 0.01 using bootstrap resampling (Koehn, 2004). Both architectures use
PRENORM and FIXNORM. The Nguyen and Salazar (2019) architecture uses SCALENORM where we instead use
vanilla layer normalization (Ba et al., 2016), and scaled dot product attention where we use QKNORM.

4 Experiments and Results

We follow the implementation in the repository
for Nguyen and Salazar (2019), both in replicating
their performance and as a starting point for our
version (and also for computing BLEU as reported
in Table 2).3 We train on the same 5 low-resource
translation pairs as Nguyen and Salazar (2019):
4 from the TED Talks corpus (Qi et al., 2018)4 –
Arabic, Slovak, and Galician translated to English,
and English translated to Hebrew – and 1 from the
IWSLT’15 corpus (Cettolo et al., 2015), English
to Vietnamese. The repository for Nguyen and
Salazar (2019) provides the tokenized text they
used for English to Vietnamese.

Tokenization and BLEU. Apart from BPE (Sen-
nrich et al., 2016), their repository does not include
the code they used for tokenization, so for the other
4 language pairs we used the tokenization script
from the repository for Qi et al. (2018).5

The repository for Nguyen and Salazar
(2019) includes two Moses6 scripts for
scoring BLEU, multi-bleu.perl and
multi-bleu-detok.perl. We can’t use
multi-bleu.perl for the 4 TED Talks pairs
without being able to replicate their tokenization
because scores from that script are not comparable

3https://github.com/tnq177/
Transformers_without_tears

4http://phontron.com/data/ted_talks.
tar.gz

5https://github.com/neulab/
word-embeddings-for-nmt/blob/master/
ted_reader.py

6https://github.com/moses-smt/
mosesdecoder

when there are differences in tokenization, unlike
multi-bleu-detok.perl (Post, 2018). We
use multi-bleu.perl to score en→vi (since
we have their preprocessed text for this pair) and
multi-bleu-detok.perl to score the 4
TED Talks pairs.

For additional confirmation, we also
score all models using SacreBLEU (Post,
2018) after detokenizing with NLTK’s
TreebankWordDetokenizer (Bird and
Loper, 2004). These scores are reported in Table 3.
All the detokenized BLEU scores from Table
2 are basically unchanged in Table 3, with the
exception of en→vi. The best scores for the
baseline model we could get on en→vi were 32.48
for Moses multi-bleu.perl and 32.41 for
SacreBLEU, though in Table 2 we report the
multi-bleu.perl score from Nguyen and
Salazar (2019), 32.79. Our model’s score for the
same pair comes in 0.06 BLEU lower as well.

Following the Nguyen and Salazar (2019) repos-
itory, we perform BPE using fastBPE7. We also
use the same Moses code for bootstrap resampling
(Koehn, 2004).

Model hyperparameters. Although PRENORM

has been shown to make warmup less important
for Transformers using scaled dot product attention
(Nguyen and Salazar, 2019; Xiong et al., 2020), we
obtained our best results using 8,000 steps of linear
warmup. How much linear warmup matters for
QKNORM and why it matters are both subjects for
further investigation. We used the same validation-

7https://github.com/glample/fastBPE

https://github.com/tnq177/Transformers_without_tears
https://github.com/tnq177/Transformers_without_tears
http://phontron.com/data/ted_talks.tar.gz
http://phontron.com/data/ted_talks.tar.gz
https://github.com/neulab/word-embeddings-for-nmt/blob/master/ted_reader.py
https://github.com/neulab/word-embeddings-for-nmt/blob/master/ted_reader.py
https://github.com/neulab/word-embeddings-for-nmt/blob/master/ted_reader.py
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/glample/fastBPE
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en→vi ar→en en→he gl→en sk→en
Nguyen and Salazar (2019) 32.41 36.09 28.28 22.01 32.58
QKNORM + LAYERNORM 33.18 36.75 28.96 24.21 33.22

Table 3: Comparison of test BLEU (Papineni et al., 2002), scored using SACREBLEU (Post, 2018).

based decay scheme as Nguyen and Salazar (2019)
and allowed models to train until they had reached
the minimum learning rate. For all other model
hyperparameters and preprocessing settings we fol-
lowed Nguyen and Salazar (2019) and the code in
the lead author’s GitHub repository. As in their
repository, we calculate test BLEU on the trans-
lation from the epoch with the highest validation
BLEU.

Results. Incorporating QKNORM and using
layer normalization instead of SCALENORM

boosted performance by an average of 0.928 BLEU
across the test sets for the 5 translation pairs. On
IWSLT’15 en→vi, our SacreBLEU test score of
33.18 is only 0.09 BLEU lower than Provilkov et al.
(2020), who use BPE-dropout to increase BLEU
1.49 over the same model with vanilla BPE.

5 Conclusion

In this paper, we introduced a normalization tech-
nique that modifies the attention mechanism in
Transformers and demonstrated its utility for low-
resource bilingual translation by building it into
an existing Transformer implementation with state-
of-the-art performance on 5 low-resource language
pairs. QKNORM improves performance for each of
the 5 pairs, with an average test BLEU increase of
0.928. We pointed to possible explanations for its
effectiveness but identifying exactly where it helps
and why requires further research. First, we plan to
combine our approach with the fairseq Transformer
implementation (Ott et al., 2019) and apply it to the
FLORES dataset (Guzmán et al., 2019), investigat-
ing the effect of QKNORM on the optimal depth,
number of attention heads, and warmup schedule
for low-resource translation, in combination with
recent advances like BPE-dropout (Provilkov et al.,
2020). Next, we plan to look at high-resource set-
tings to see whether the benefits of query-key nor-
malization dissipate with access to more training
data. Lastly, we intend to study how QKNORM

impacts what attention heads actually learn, adapt-
ing methods from BERT attention studies such as
Clark et al. (2019).
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Number of Heads Test BLEU
2 32.40
4 33.16
8 33.24
16 32.42
32 32.30

Table 4: IWSLT’15 en→vi test BLEU for QKNORM
varying the number of attention heads.

Percentile Test BLEU
75th 32.58
90th 32.89
92.5th 32.64
95th 33.13
97.5th 33.24
99th 32.64
Maximum Word Count 33.10

Table 5: IWSLT’15 en→vi test BLEU for QKNORM
varying the training set word count percentile used to
initialize the learnable scaling factor g.

Appendix

A Varying the Number of Heads

In Table 4, we show the performance of QKNORM

on the en→vi test set varying the number of heads.
Even when the number of heads is 32 (with head
dimension 16), the performance remains stable.

B Equation 3

Intuitively, longer sequences require more scaling
to make it at least possible for the maximum values
in QKT to softmax to 1. We arrived at Equation
3 empirically by applying softmax to similarity
matrices of word vectors scaled up with various
heuristics. Like

√
d in scaled dot product attention

(Vaswani et al., 2017), Equation 3 is a rule of thumb
but it initializes a learnable parameter.

We determined the best value of L in Equation 3
by running the en→vi translation task with different
percentile values. Table 5 shows the results from
those experiments.

C Ablation Experiments

Table 6 shares test performance on en→vi when
we ablate specific components of QKNORM. The
biggest performance drop in these experiments
comes from omitting g, the learnable scaling factor.
This is unsurprising because if we don’t scale up
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Experiment Test BLEU
Without g 24.53
Without LAYERNORM 31.56
Without FIXNORM 32.63
Without FIXNORM or PRENORM 32.20
`2-normalizing V along with Q and K 32.34

Table 6: Ablation Experiments.

Q̂K̂T its values are all within [−1, 1] and softmax
is a function of the differences between values.


