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Abstract

The Natural Questions (NQ) benchmark set
brings new challenges to Machine Reading
Comprehension: the answers are not only at
different levels of granularity (long and short),
but also of richer types (including no-answer,
yes/no, single-span and multi-span). In this
paper, we target at this challenge and handle
all answer types systematically. In particu-
lar, we propose a novel approach called Re-
flection Net which leverages a two-step train-
ing procedure to identify the no-answer and
wrong-answer cases. Extensive experiments
are conducted to verify the effectiveness of
our approach. At the time of paper writing
(May. 20, 2020), our approach achieved the
top 1 on both long and short answer leader-
board∗, with F1 scores of 77.2 and 64.1, re-
spectively.

1 Introduction

Deep neural network models, such as (Cui et al.,
2017; Chen et al., 2017; Clark and Gardner,
2018; Wang et al., 2018; Devlin et al., 2019;
Liu et al., 2019; Yang et al., 2019), have greatly
advanced the state-of-the-arts of machine read-
ing comprehension (MRC). Natural Questions
(NQ) (Kwiatkowski et al., 2019) is a new Question
Answering benchmark released by Google, which
brings new challenges to the MRC area. One chal-
lenge is that the answers are provided at two-level
granularity, i.e., long answer (e.g., a paragraph in
the document) and short answer (e.g., an entity or
entities in a paragraph). Therefore, the task requires
the models to search for answers at both document
level and passage level. Moreover, there are richer
answer types in the NQ task. In addition to indi-
cating textual answer spans (long and short), the

‡Corresponding author.
∗https://ai.google.com/research/

NaturalQuestions/leaderboard

(a) Question: who made it to stage 3 in american ninja warrior sea-
son 9

Wikipedia Page: American Ninja Warrior (season 9)

Long Answer: Results: Joe Moravsky (3:34.34), Najee Richardson
(3:39:71) and Sean Bryan finished to go into Stage 3.

Short Answer: Joe Moravsky, Najee Richardson, Sean Bryan

(b) Question: why does queen Elizabeth sign her name Elizabeth r

Wikipedia Page: Royal sign-manual

Long Answer: The royal sign-manual usually consists of the
sovereign’s regnal name (without number, if other-
wise used), followed by the letter R for Rex (King)
or Regina (Queen). Thus, the signs-manual of both
Elizabeth I and Elizabeth II read Elizabeth R ...

Short Answer: NULL

(c) Question: is an end of terraced house semi detached

Wikipedia Page: Terraced house

Long Answer: In the 21st century, Montréal has continued to build
row houses at a high rate, with 62% of housing
starts in the metropolitan area being apartment or
row units.[10]Apartment complexes, high-rises, and
semi-detached homes are less popular in Montréal
when compared to large Canadian cities ...

Short Answer: YES

Table 1: Example of NQ challenge, short answer cases:
(a) Multi-span answer, (b) No-answer, (c) Yes/No.

models need to handle cases including no-answer
(51%), multi-span short answer (3.5%), and yes/no
(1%) answer. Table 1 shows several examples in
NQ challenge.

Several works have been proposed to address the
challenge of providing both long and short answers.
Kwiatkowski et al. (2019) adopts a pipeline ap-
proach, where a long answer is first identified from
the document and then a short answer is extracted
from the long answer. Although this approach is
reasonable, it may lose the inherent correlation be-
tween the long and the short answer, since they are
modeled separately. Several other works propose
to model the context of the whole document and
jointly train the long and short answers. For ex-
ample, Alberti et al. (2019) split a document into
multiple training instances using sliding windows,
and leverages the overlapped tokens between win-
dows for context modeling. A MRC model based
on BERT (Devlin et al., 2019) is applied to model
long and short answer span jointly. While previ-

https://ai.google.com/research/NaturalQuestions/leaderboard
https://ai.google.com/research/NaturalQuestions/leaderboard
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Figure 1: Overview of our proposed Reflection Net, consisting of MRC model and its corresponding Reflection
model. MRC model try its best to predict answer, Reflection model output corresponding answer confidence score.
The left arrow denotes when training, Reflection model is initialized with the parameters of trained MRC model.

ous approaches have proved effective to improve
the performance on the NQ task, few works focus
on the challenge of rich answer types in this QA
set. We note that 51% of the questions have no
answer in the NQ set, therefore, it is critical for
the model to accurately predict when to output the
answer. For other answer types, such as multi-span
short answer or yes/no answer, although they have
a small percentage in the NQ set, they should not
be ignored. Instead, a systematic design which can
handle all kinds of answer types well would be
more preferred in practice.

In this paper, we target the challenge of rich
answer types, and particularly for no-answer. In
particular, we first train an all types handling MRC
model. Then, we leverage the trained MRC model
to inference all the training data, train a second
model, called the Reflection model takes as inputs
the predicted answer, its context and MRC head
features to predict a more accurate confidence score
which distinguish the right answer from the wrong
ones. There are three reasons of applying a second-
phase Reflection model. Firstly, the common prac-
tice of MRC confidence computing is based on
heuristics of logits, which isn’t normalized and isn’t
very comparable between different questions.(Chen
et al., 2017; Alberti et al., 2019) Secondly, when
training long document MRC model, the negative
instances are down sampled by a large magnitude
because they are too many compared with positive
ones (see Section 2.1). But when predicting, MRC

model should inference all the instances. This data
distribution discrepancy of train and predict result
in that MRC model may be puzzled by some neg-
ative instance and predict a wrong answer with a
high confidence score. Thirdly, MRC model learns
the representation towards the relation between the
question, its type, and the answer which isn’t aware
of the correctness of the predicted answer. Our
second-phase model addresses these three issues
and is similar to a reflection process which become
the source of its name. To the best of our knowl-
edge, this is the first work to model all answer types
in NQ task. We conducted extensive experiments
to verify the effectiveness of our approach. Our
model achieved top 1 performance on both long
and short answer leaderboard of NQ Challenge at
the time of paper writing (May. 20, 2020). The F1
scores of our model were 77.2 and 64.1, respec-
tively, improving over the previous best result by
1.1 and 2.7.

2 Our Approach

We propose Reflection Net (see Figure 1), which
consists of a MRC model for answer prediction and
a Reflection model for answer confidence.

2.1 MRC Model

Our MRC model (see Figure 1(b)) is based on
pre-trained transformers (Devlin et al., 2019; Liu
et al., 2019; Alberti et al., 2019), and it is able
to handle all answer types in NQ challenge. We
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adopt the sliding window approach to deal with
long document (Alberti et al., 2019), which slices
the whole document into overlapping sliding win-
dows. We pair each window with the question to
get one training instance limiting the length to 512.
The instances divide into positive ones whose win-
dow contain the answer and negative ones whose
window doesn’t contain. Since the documents are
usually very long, there are too many negative in-
stances. For efficient training, we down-sample the
negative instances to some extent.

The targets of our MRC model include answer
type and answer spans, which are denoted as
l = (t, s, e,ms). t is the answer type, which can
be one of the answer types described before or the
special “no-answer”. s and e are the start and end
positions of the minimum single span that contains
the corresponding answer. All answer types in NQ
have a minimum single span (Alberti et al., 2019).
When answer type is multi-span, ms represents the
sequence labels of this answer, otherwise null. We
adopt the B, I, O scheme to indicate multi-span an-
swer (Li et al., 2016) in which ms = (n1, . . . , nT ),
where ni ∈ {B, I, O}. Then, the architecture of our
MRC model is illustrated as following. The input
instance x = (x1, . . . , xT ) of the MRC model has
the embedding:

E(x) = (E(x1), . . . ,E(xT )), (1)

where

E(xi) = Ew(xi) + Ep(xi) + Es(xi), (2)

and Ew, Ep and Es are the operation of word em-
bedding, positional embedding and segment em-
bedding, respectively. The contextual hidden repre-
sentation of the input sequence is

h(x) = Tθ(E(x)) = (h(x1), . . . , h(xT )) (3)

where Tθ is pretrained Transformer (Vaswani et al.,
2017; Devlin et al., 2019; Liu et al., 2019) with pa-
rameter θ. Next, we describe three types of model
outputs.

Answer Type: Same with the method
in Kwiatkowski et al. (2019), we classify
the hidden representation of [cls] token, h(x1) to
answer types:

ptype = softmax(h(x1) ·W T
o ) (4)

where, ptype ∈ RK is answer type probability, K
is the number of answer types , h(x1) ∈ RH , H

is the size of hidden vectors in Transformer, Wo ∈
RK×H is the parameters need to be learned. The
loss of answer type prediction is:

Ltype = − log ptype=t (5)

where t is the ground truth answer type.

Single Span: As described above, all kinds of
answers have a minimal single span. We model
this target as predicting the start and end positions
independently. For the no-answer case, we set the
positions pointing to the [cls] token as in Devlin
et al. (2019).

pstart=i =
exp(S · h(xi))∑
j exp(S · h(xj))

(6)

pend=i =
exp(E · h(xi))∑
j exp(E · h(xj))

(7)

where S ∈ RH , E ∈ RH are parameters need to
be learned. The single span loss is:

Lspan = −(log pstart=s + log pend=e) (8)

Multi Spans: We formulate the multi-spans pre-
diction as a sequence labeling problem. To make
the loss comparable with that for answer type and
single span , we do not use the traditional CRF or
other sequence labeling loss, instead, directly feed
the hidden representation of each token to a linear
transformation and then classify to B, I, O labels:

plabeli = softmax(h(xi) ·W T
l ) (9)

where, plabeli ∈ R3 is the B, I, O label probabilities
of the i-th token. Wl ∈ R3×H is the parameter
matrix. The loss of multi spans is:

Lmulti-span = − 1

T

T∑
i=1

log plabeli=ni (10)

Combining all above three losses together, the total
MRC model loss is denoted as:

Lmrc = Ltype + Lspan + Lmulti-span (11)

For cases which do not have multi-span answer, we
simply set Lmulti-span as 0.

Besides of predicting answer, MRC model
should also output a corresponding confidence
score. In practice, we use the following heuris-
tic (Alberti et al., 2019) to represent the confidence
score of the predicted span:

score = S ·h(xs)+E ·h(xe)−S ·h(x1)−E ·h(x1)
(12)
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Feature name Description
score heuristic answer confidence score based on MRC model predictions, e.g. Eq. (12)
ans type one-hot answer type feature. Answer type corresponding to the predicted answer is one, others are zeros.
ans type probs the probabilities of each answer type, e.g. Eq. (4)
ans type prob the probability of the answer type corresponding to the predicted answer.
start logits start logits of predicted answer, [cls] token and top n start logits.
end logits end logits of predicted answer, [cls] token and top n end logits.
start probs start probabilities of predicted answer, [cls] token and top n start probabilities.
end probs end probabilities of predicted answer, [cls] token and top n end probabilities.

Table 2: Head Features: features extracted from the top layer of MRC model when it is on prediction mode. These
features directly reflect some state information of MRC model’s prediction process.

where xs, xe, x1 are the predicted start, end and
[cls] tokens, respectively. S and E are the learned
parameters in Eq. 6 and 7.

To be specific of the answer prediction and confi-
dence score calculation: firstly, we use MRC model
to predict spans for all the sliding window instances
of a document; then we rank predicted single spans
based on its score Eq. (12), choose the top 1 as
predicted answer, and determine answer type based
on probabilities of Eq. (4), if the answer type is
multi-span, we decode its corresponding sequence
labels further; thirdly, we select as the long answer
the DOM tree top level node containing the pre-
dicted top 1 span. The final confidence score of the
predicted answer is its corresponding span score.

2.2 Reflection Model
Reflection model target a more precise confidence
score which distinguish the right answer from two
kinds of wrong ones (see Section 3.4). The first one
is predicting a wrong answer for a has-ans question,
the second is predicting any answer for a no-ans
question.

Training Data Generation: To generate Reflec-
tion model’s training data, we leverage the trained
MRC model above to inference its full training data
(i.e. all the sliding window instances.):

• For all the instances belong to each one ques-
tion, we only select the one with top 1 pre-
dicted answer according to its confidence
score.

• The selected instance, MRC predicted answer,
its corresponding head features described be-
low and correctness label (if the predicted an-
swer is same to the ground-truth answer, the
label is 1; otherwise 0) together become a
training case for Reflection model†.

†When MRC model has predicted ‘no-answer’, Reflection

Model Training: As shown in Figure 1(a), we
initialize Reflection model with the parameters of
the trained MRC model, and utilize a learning rate
several times smaller than the one used in MRC
model. To directly receive important state infor-
mation of the MRC model, we extract head fea-
tures from the top layer of the MRC model when
it is predicting the answer. As detailed in Table 2,
score and ans type prob features are the two most
straightforward ones; probabilities and logits fea-
tures correspond to “soft-targets” in knowledge dis-
tillation (Hinton et al., 2015), which are so-called
“dark knowledge” with its distribution reflecting
MRC model’s inner state during answer prediction
process. Here we only use top n = 5 logits/probs
instead of all. The head features are concatenated
with the hidden representation of [cls] token, then
followed by a hidden layer for final confidence
prediction.

Formulation: Reflection model takes as inputs
the selected instance x and the predicted answer. In
detail, we create a dictionary Ans whose elements
are answer types and answer position marks‡. We
add answer type mark to the [cls] token, the posi-
tion mark to corresponding tokens in position, and
EMPTY to other tokens. The embedding represen-
tation of i-th token is given by:

Er(xi) = E(xi) + Er(fi) (13)

where r denotes Reflection model, E(xi) is taken
from Eq. (2), fi is one of Ans element correspond-
ing to token xi as described above, Er is its em-
bedding operation whose parameters is randomly
initialized. We use the same Transformer archi-
tecture as MRC model with parameter Φ, denoted

model throw away this question since the finial output is no-
answer already determined.
‡For NQ, it would be {SINGLE SPAN, MULTI SPAN,

YES, NO, LONG, START, END, B, I, O, EMPTY}.
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as TΦ. The contextual hidden representations are
given by:

hr(x) = TΦ(Er(x)) (14)

Then, we concatenate the [cls] token repre-
sentation hr(x1) with the head features, send
it to a linear transformation activated with
GELU (Hendrycks and Gimpel, 2016) to get the
aggregated representation as:

hidden(x) = gelu(concat(hr(x1),head(x))·W T
r )

(15)
where, Wr ∈ RH×(H+h) is parameter matrix,
head(x) ∈ Rh are head features§. At last, we
get the confidence score in probability:

pr = sigmoid(A · hidden(x)) (16)

where A ∈ RH is parameter vector. The loss is
binary classification cross entropy given by:

Lr = −(y · log pr + (1− y) · log(1− pr)) (17)

where, y = 1 if MRC model’s predicted answer
(which is based on x) is correct, otherwise 0. For
inference, MRC model has to predict all sliding
window instances of one document for each ques-
tion, but Reflection model only needs to inference
one instance who contains the MRC model pre-
dicted final answer. So the computation cost of
Reflection model is very little.

3 Experiments

We perform the experiments on NQ (Kwiatkowski
et al., 2019) dataset which consists of 307,373
training examples, 7,830 development examples
and 7,842 blind test examples used for leaderboard.
The evaluation metrics are separated for long and
short answers, each containing Precision (P), Re-
call (R), F-measure (F1) and Recall at fixed Pre-
cision (R@P=90, R@P=75, R@P=50). For each
question, the system should provide both answer
and its confidence score. During evaluation, the
official evaluation script will calculate the optimal
threshold which maximizes the F1, if answer score
is higher than this threshold, the answer is trig-
gered otherwise no-triggered. Our dataset prepro-
cessing method is similar to Alberti et al. (2019):
firstly, we tokenize the text according to different
pretrained models, e.g. wordpiece for BERT, BPE
§We transform head features by scale to [0, 1], sqrt, log,

minus mean then divided by standard deviation.

for RoBERTa; then use sliding window approach to
slice document into instances as described in Sec-
tion 2.1. For NQ, since the document is quite long,
we add special atomic markup tokens to indicate
which part of the document the model is reading.

3.1 Implementation
Our implementation is based on Huggingface
Transformers (Wolf et al., 2019). All the pretrained
models are large version (24 layers, 1024 hidden
size, 16 heads, etc.). For MRC model training,
we firstly finetune it on squad2.0 (Rajpurkar et al.,
2018) data and then continue to finetune on NQ
data. For Reflection model, we firstly leverage the
MRC model to generate training data, and then
finetune Reflection model which is initialized by
MRC model parameters. We use one MRC model
to deal with all answer types in NQ, but two Re-
flection models, one for long answer, the other
for short. We manually tune the hyperparameters
based on dev data F1 and submit best models to
NQ organizer for leaderboard, list the best setting
in Appendices. Experiments are performed on 4
NVIDIA Tesla P40 24GB cards, both MRC and
Reflection model can be trained within 48 hours.
Dev data inference can be finished within 1 hour.
Adam (Kingma and Ba, 2015) is used for optimiza-
tion.

3.2 Baselines
The first baseline is DocumentQA (Clark and Gard-
ner, 2018) proposed to address the multi-paragraph
reading comprehension task. The second baseline
is DecAtt + DocReader which is a pipeline ap-
proach (Kwiatkowski et al., 2019) and decompose
full document reading comprehension task to firstly
select long answer and then extract short answer.
The third baseline BERTjoint is proposed by Alberti
et al. (2019) which is similar to our MRC model but
that it omits yes/no, multi-span short answer and
it doesn’t have a confidence prediction model like
Reflection model. The rest two baselines include
a single human annotator (Single-human) and an
ensemble of human annotators (Super-annotator).

3.3 Results
The dev set results are shown in Table 3. Middle
block are our results where subscript “all type” de-
notes that our MRC model is able to handle all
answer types. Considering all the metrics, our
BERTall type alone already surpass all the three base-
lines. For BERT based models, our BERTall type sur-
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NQ Long Answer Dev NQ Short Answer Dev
F1 P R R@P90 R@P75 R@P50 F1 P R R@P90 R@P75 R@P50

DocumentQA 46.1 47.5 44.7 - - - 35.7 38.6 33.2 - - -
DecAtt + DocReader 54.8 52.7 57.0 - - - 31.4 34.3 28.9 - - -
BERTjoint 64.7 61.3 68.4 - - - 52.7 59.5 47.3 - - -

BERTall type 69.5 67.0 72.1 28.8 60.5 79.6 54.5 60.6 49.5 0.0 33.1 54.8
BERTall type + Reflection 72.4 72.6 72.2 43.6 69.6 79.7 56.1 64.3 49.7 14.3 40.3 56.4
RoBERTaall type 73.0 74.0 72.1 36.9 71.0 82.1 58.2 63.3 53.9 19.0 42.6 61.2

Ensemble (3) 73.6 71.8 75.4 37.3 71.6 83.5 60.0 65.4 55.5 21.8 46.2 63.3
RoBERTaall type + Reflection 75.9 79.4 72.7 52.7 75.5 82.1 61.3 69.3 55.0 25.8 49.2 62.2

Ensemble (3) + Reflection 77.0 78.2 75.9 50.9 78.3 85.2 63.4 67.9 59.4 29.0 52.9 66.2

Single-human 73.4 80.4 67.6 - - - 57.5 63.4 52.6 - - -
Super-annotator 87.2 90.0 84.6 - - - 75.7 79.1 72.6 - - -

Table 3: NQ development set results. The top block rows are baselines we borrow from Alberti et al. (2019). The
last block rows are single human annotator and an ensemble of human annotators. The middle block are ours
where BERTall type and RoBERTaall type are our MRC model. “+ Reflection” means that our Reflection model is
used to provide answer confidence score. Ensemble (3) are three RoBERTaall type models.

NQ Long Answer Test NQ Short Answer Test
F1 P R R@P90 R@P75 R@P50 F1 P R R@P90 R@P75 R@P50

DecAtt + DocReader 53.9 54.0 53.9 0.3 13.8 57.1 29.0 32.7 26.1 0 0 0
BERTjoint 66.2 64.1 68.3 22.6 47.2 76.6 52.1 63.8 44.0 13.7 34.4 51.4

RoBERTa-mnlp-ensemble 73.3 73.1 73.5 38.8 71.0 83.9 61.4 69.6 54.9 28.2 50.4 62.7
RikiNet-ensemble 75.6 75.3 75.9 40.5 76.0 85.2 59.5 63.2 56.2 13.9 44.8 62.7
RikiNet v2 (Liu et al., 2020) 76.1 78.1 74.2 40.1 77.0 85.7 61.3 67.6 56.1 18.1 48.4 64.2

ReflectionNet-ensemble 77.2 76.8 77.6 53.3 78.5 85.2 64.1 70.4 58.8 35.0 54.4 66.1

Table 4: Leaderboard results (May. 20, 2020). The top block rows are baselines we described in Section 3.2. The
middle rows are top 3 performance methods in leaderboard. The last is ours which achieved top 1 in both long and
short answer leaderboard. Note that in terms of R@P=90 metric which is mostly used in real production scenarios,
we surpass the top system by 12.8 and 6.8 absolute points for long and short answer respectively.

pass BERTjoint which ignores yes/no, multi-span
answers by F1 scores of 4.8 and 1.8 point for long
and short answers respectively. This shows the ef-
fectiveness of addressing all answer types in NQ.
Compared with BERTall type and RoBERTaall type,
our Reflection model can further boost model per-
formance significantly by providing more accurate
answer confidence score. Take RoBERTaall type as
an example, our Reflection model improves the
F1 scores of long and short answers by 2.9 and
3.1 points respectively which outperform the sin-
gle human annotator results on both long and short
answers. For ensemble, we train 3 RoBERTaall type
models with different random seed. When pre-
dicting, per each question we combine the same
answers by summing its confidence scores and then
select the final answer which has the highest confi-
dence score. For “+ Reflection”, we leverage the
same shared Reflection models to provide confi-
dence scores for these three MRC models predicted
answers and conduct the same ensemble strategy.
We see that Reflection model can further boost

MRC ensemble due to a more precise and consis-
tent score.

Table 4 shows the leaderboard result on se-
questered test data. At the time we are writing
this paper, there are 40+ submissions for each
long and short answer leaderboard. We list the
aforementioned two baselines: DecAtt + DocRe-
ader and BERTjoint, top 3 performance submis-
sions and our ensemble (Ensemble (3) + Reflec-
tion). We achieved top 1 on both long and short
leaderboard. In real production scenarios, the most
practical metric is recall at a fixed high precision
like R@P=90. For example, in search engine sce-
narios, question answering system should provide
answers with a guaranteed high precision bar. In
terms of R@P=90, our method surpasses top sub-
missions by a large margin, 12.8 and 6.8 points for
long and short answer respectively.

3.4 Analysis

NQ contains question which has a answer (has-ans)
and question has no answer (no-ans). For has-ans
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NQ Long Answer Dev NQ Short Answer Dev
Ground truth has-ans: 4608 no-ans: 3222 has-ans: 3456 no-ans: 4374
Model predict right-ans wrong-ans no-ans wrong-ans no-ans right-ans wrong-ans no-ans wrong-ans no-ans
RoBERTaall type 3324 446 838 725 2497 1863 561 1032 520 3854

+ Reflection
3347 334 927 534 2688 1908 441 1107 423 3951
(+23) (-112) (+89) (-191) (+191) (+45) (-120) (+75) (-97) (+97)

Table 5: The count of model predictions categorized as right-ans, wrong-ans and no-ans. Compared with
RoBERTaall type, Reflection model leads to the decrease of wrong-ans and increase of no-ans and right-ans.

questions, good performing model should predict
right-ans as much as possible and wrong-ans as
little as possible or replace wrong-ans with no-ans
to increase precision. For no-ans questions, the
best is to always predict no-ans because predict any
answer equals to wrong-ans. As shown in Table 5,
the no-ans questions are about half in NQ (3222 for
long, 4374 for short in dev set) which is challenge.
MRC model (RoBERTaall type) though powerful has
predicted a lot of wrong-ans in each scenario. With
our Reflection model to provide a more accurate
confidence score which is leveraged to determine
answer triggering, the prediction count of wrong-
ans is decreased and no-ans increased saliently,
thus lead to the improvement of evaluation metrics.
The overall trend agree well with our paper title
“No answer is better than wrong answer”. However,
as we can see, the no-answer & wrong-ans identifi-
cation problem is hard and far from being solved:
Ideally, all the wrong-ans case should be assigned
a low confidence score thus identified as no-ans,
which requires more powerful confidence models.

4 Ablation Study

4.1 Ablation on Answer Types

NQ Short Answer Dev
F1 P R R@P90 R@P50

RoBERTaall type 58.2 63.3 53.9 19.0 61.2

- multi-spans (3.5%) 57.4 61.2 54.1 17.3 60.7
- yes/no (1%) 56.8 62.8 51.9 17.1 58.5
- multi-spans & yes/no 56.0 63.0 50.4 15.7 58.2

Table 6: Ablation study on answer types. We compare
all answer types handling model with ablation of multi-
spans, yes/no type and both.

As described in Section 2.1, our MRC model
can deal with all answer types. We perform exper-
iments to verify the effectiveness of dealing with
these answer types in short answer, based on the
same RoBERTa large MRC model architecture. As
shown in Table 6, without dealing with multi-spans
answers results in a 0.8 point F1 drop. And with-

out dealing with the yes/no answer leads to a 1.4
point F1 drop. When we neither deal with multi-
spans nor yes/no answer types, but only address
single-span answer, we get a 56.0 F1 score which
is 2.2 point less than our all types handling model:
RoBERTaall type. Note that the ratios of multi-spans
and yes/no answer types are only 3.5% and 1%
respectively. Thus 2.2 points gain is quite decent
considering the low coverage of these answer types.

4.2 Ablation and Variant of Reflection Model

For ablation/variation experiments on Reflec-
tion model, we use the same MRC model:
RoBERTaall type to predict answer, which means
they have exactly the same answer but different
confidence score. The results are shown in Table 7.

Comparison with Verifier: To compare with
verifier (Tan et al., 2018; Hu et al., 2019), we build
an analogue one by taking following steps upon
Reflection model: remove head features, keep pre-
dicted answer input and initialize transformer with
original RoBERTa large parameters. This setting
corresponds to a RoBERTa based verifier. The re-
sult is shown in “ w/o head features & init.” row,
although there is a 1.2 and 0.7 point F1 boost of
long and short answers respectively, it is less ef-
fective than our Reflection model. This demon-
strates that head features and parameter initializa-
tion from MRC model are very important for Re-
flection model performing well.

Effect of Head Features: Head features are
manually crafted features based on MRC model as
described in Section 2.2. We believe these features
contain state information that can be leveraged to
predict accurate confidence score. To justify our
assumption, we feed head features alone to a feed-
forward neural network (FNN) with one hidden
layer sized 200 and one output neuron which pro-
duces the confidence score. For training this FNN,
we use the same pipeline and training target as our
Reflection model. The results are shown in “only
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NQ Long Answer Dev NQ Short Answer Dev
F1 P R R@P90 R@P75 R@P50 F1 P R R@P90 R@P75 R@P50

RoBERTaall type 73.0 74.0 72.1 36.9 71.0 82.1 58.2 63.3 53.9 19.0 42.6 61.2
RoBERTaall type + Reflection 75.9 79.4 72.7 52.7 75.5 82.1 61.3 69.3 55.0 25.8 49.2 62.2

w/o head features & init. 74.2 76.7 71.9 45.5 73.1 82.0 58.9 64.9 53.9 20.7 44.1 61.0
only head features 74.1 74.3 73.9 39.0 72.8 82.1 59.9 66.2 54.7 19.1 45.4 61.8
head features & MRC [cls] 74.5 76.4 72.7 44.8 73.8 82.1 60.1 64.2 56.5 21.6 45.8 61.9

Table 7: Ablation and Variant of Reflection model. There are absence of head features and initialized from MRC
model, simple three layer feedforward neural networks which take as input only head features, and lastly, head
features integrated with MRC [cls] hidden representation.

head features” row. Note that the vector size of
original head features is only 42, it is interesting
that only this small sized head features and simple
FNN can beat MRC model’s heuristic confidence
score by a salient margin, 1.1 and 1.7 point F1 for
long and short answer respectively.

Head features & MRC [cls]: We experiment
with reuse of MRC model’s transformer, that say,
the [cls] representation of Reflection model is re-
placed with MRC model’s. For training, we use
the same pipeline as standard Reflection model but
without predicted answer as extra input. Another
thing is that we freeze the parameters of MRC
model but only train aggregation Eq. (15) and con-
fidence score layer Eq. (16), because the training
target are quite different from MRC model, further
training will hurt the accuracy of answer prediction.
This configuration save a lot memory and compu-
tation cost of prediction: all the data only need to
pass through one Transformer. The results show
it can improve most of the metrics. However, the
[cls] representation in MRC model targets at an-
swer types classification which include no-answer
but not predicted wrong-ans, the performance isn’t
as good as Reflection model.

5 Related Work

Machine Reading Comprehension: Machine
reading comprehension (Hermann et al., 2015;
Chen et al., 2017; Rajpurkar et al., 2016; Clark and
Gardner, 2018) is mostly based on the attention
mechanism (Bahdanau et al., 2015; Vaswani et al.,
2017) that take as input 〈question, paragraph〉, com-
pute an interactive representation of them and pre-
dict the start and end positions of the answer. When
dealing with no-answer cases, popular method is
to jointly model the answer position probability
and no-answer probability by a shared softmax nor-
malizer (Kundu and Ng, 2018; Clark and Gardner,

2018; Devlin et al., 2019), or independently model
the answerability as a binary classification prob-
lem (Hu et al., 2019; Yang et al., 2019; Liu et al.,
2019). For long document processing, there are
pipeline approaches of IR + Span Extraction (Chen
et al., 2017), DecAtt + DocReader (Kwiatkowski
et al., 2019), sliding window approach (Alberti
et al., 2019) and recently proposed long sequence
handling Transformers (Kitaev et al., 2020; Guo
et al., 2019; Beltagy et al., 2020)

Answer Verifier: Answer verifier (Tan et al.,
2018; Hu et al., 2019) is proposed to validate the
legitimacy of the answer predicted by MRC model.
First a MRC model is trained to predict the can-
didate answer. Then a verification model takes
question, answer sentence as input and further veri-
fies the validity of the answer. Our method extends
ideas of this work, but there are some main differ-
ences. The primary one is that our model takes
as inputs answer, context and MRC model’s state
where an answer is generated. Another difference
is that our model is based on transformer and is
initialized with MRC.

6 Conclusion

In this paper, we propose a systematic approach
to handle rich answer types in MRC. In partic-
ular, we develop a Reflection Model to address
the no-answer/wrong-answer cases. The key idea
is to train a second phase model and predict the
confidence score of a predicted answer based on
its content, context and the state of MRC model.
Experiments show that our approach achieves the
state-of-the-art results on the NQ set. Measured
by F1 and R@P=90, and on both long and short
answer, our method surpasses the previous top sys-
tems with a large margin. Ablation studies also
confirm the effectiveness of our approach.
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