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Abstract

Code retrieval is a key task aiming to match
natural and programming languages. In this
work, we propose adversarial learning for
code retrieval, that is regularized by question-
description relevance. First, we adapt a sim-
ple adversarial learning technique to generate
difficult code snippets given the input ques-
tion, which can help the learning of code
retrieval that faces bi-modal and data-scarce
challenges. Second, we propose to lever-
age question-description relevance to regular-
ize adversarial learning, such that a generated
code snippet should contribute more to the
code retrieval training loss, only if its paired
natural language description is predicted to be
less relevant to the user given question. Exper-
iments on large-scale code retrieval datasets
of two programming languages show that our
adversarial learning method is able to im-
prove the performance of state-of-the-art mod-
els. Moreover, using an additional duplicate
question prediction model to regularize ad-
versarial learning further improves the perfor-
mance, and this is more effective than using
the duplicated questions in strong multi-task
learning baselines.1

1 Introduction

Recently there has been a growing research interest
in the intersection of natural language (NL) and
programming language (PL), with exemplar tasks
including code generation (Agashe et al., 2019;
Bi et al., 2019), code summarizing (LeClair and
McMillan, 2019; Panthaplackel et al., 2020), and
code retrieval (Gu et al., 2018). In this paper, we
study code retrieval, which aims to retrieve code
snippets for a given NL question such as “Flatten
a shallow list in Python.” Advanced code retrieval
tools can save programmers tremendous time in

1Source code and dataset are available at
https://github.com/jiez-osu/QQC.

various scenarios, such as how to fix a bug, how
to implement a function, which API to use, etc.
Moreover, even if the retrieved code snippets do
not perfectly match the NL question, editing them
is often much easier than generating a code snippet
from scratch. For example, the retrieve-and-edit
paradigm (Hayati et al., 2018; Hashimoto et al.,
2018; Guo et al., 2019) for code generation has
attracted growing attention recently, which first em-
ploys a code retriever to find the most relevant code
snippets for a given question, and then edit them
via a code generation model. Previous work has
shown that code retrieval performance can signif-
icantly affect the final generated results (Huang
et al., 2018) in such scenarios.

There have been two groups of work on code re-
trieval: (1) One group of work (e.g., the recent
retrieve-and-edit work (Hashimoto et al., 2018;
Guo et al., 2019)) assumes each code snippet is
associated with NL descriptions and retrieves code
snippets by measuring the relevance between such
descriptions and a given question. (2) The other
group of work (e.g., CODENN (Iyer et al., 2016)
and Deep Code Search (Gu et al., 2018)) directly
measures the relevance between a question and a
code snippet. Comparing with the former group,
this group of work has the advantage that they can
still apply when NL descriptions are not available
for candidate code snippets, as is often the case for
many large-scale code repositories (Dinella et al.,
2020; Chen and Monperrus, 2019). Our work con-
nects with both groups: We aim to directly match a
code snippet with a given question, but during train-
ing, we will utilize question-description relevance
to improve the learning process.

Despite the existing efforts, we observe two chal-
lenges for directly matching code snippets with NL
questions, which motivate this work. First, code
retrieval as a bi-modal task requires representation
learning of two heterogeneous but complementary
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modalities, which has been known to be difficult
(Cvitkovic et al., 2019; LeC; Akbar and Kak, 2019)
and may require more training data. This makes
code retrieval more challenging compared to doc-
ument retrieval where the target documents often
contain useful shallow NL features like keywords
or key phrases. Second, code retrieval often en-
counters special one-to-many mapping scenarios,
where one NL question can be solved by multiple
code solutions that take very different approaches.
Table 1 illustrates the challenges. For i=1,2 or
3, q(i) is an NL question/description that is asso-
ciated with a Python answer c(i). Here, question
q(1) should be matched with multiple code snippets:
c(1) and c(2), because they both flatten a 2D list de-
spite with different programming approaches. In
contrast, c(3) is performing a totally different task,
but uses many overlapped tokens with c(1). Hence,
it can be difficult to train a code retrieval model
that generalizes well to match q(1) with both c(1)

and c(2), and is simultaneously able to distinguish
c(1) from c(3).

To address the first challenge, we propose to in-
troduce adversarial training to code retrieval, which
has been successfully applied to transfer learning
from one domain to another (Tzeng et al., 2017)
or learning with scarce supervised data (Kim et al.,
2019). Our intuition is that by employing a gen-
erative adversarial model to produce challenging
negative code snippets during training, the code
retrieval model will be strengthened to distinguish
between positive and negative 〈q, c〉 pairs. In par-
ticular, we adapt a generative adversarial sampling
technique (Wang et al., 2017), whose effectiveness
has been shown in a wide range of uni-modal text
retrieval tasks.

For the second challenge, we propose to further
employ question-description (QD) relevance as a
complementary uni-modal view to reweight the ad-
versarial training samples. In general, our intuition
is that the code retrieval model should put more
weights on the adversarial examples that are hard
to distinguish by itself, but easy from the view of a
QD relevance model. This design will help solve
the one-to-many issue in the second challenge, by
differentiating true negative and false negative ad-
versarial examples: If a QD relevance model also
suggests that a code snippet is not relevant to the
original question, it is more likely to be a true nega-
tive, and hence the code retrieval model should put
more weights on it. Note that this QD relevance

q(1)Flatten a shallow list in Python

c(1) from itertools import chain
rslt = chain(*list_2d)

q(2)How to flatten a 2D list to 1D without using numpy?

c(2) list_of_lists = [[1,2,3],[1,2],[1,4,5,6,7]]
[j for sub in list_of_lists for j in sub]

q(3)How to get all possible combinations of a list’s elements?

c(3) from itertools import chain, combinations
subsets = chain(*map(lambda x: combinations(

mylist, x), range(0, len(mylist)+1)))

Table 1: Motivating Example. 〈q(i), c(i)〉 denotes an as-
sociated 〈natural language question, code snippet〉 pair.
q(i) can also be viewed as a description of c(i). Given
q(1), the ideal code retrieval result is to return both c(1)

and c(2) as their programming semantics are equiva-
lent. Contrarily, c(3) is semantically irrelevant to q(1)

and should not be returned, although its surface form
is similar to c(1). In such cases, it can be easier to de-
cide their relationships from the question perspective,
because 〈q(1), q(2)〉 are more alike than 〈q(1), q(3)〉.

design aims to help train the code retrieval model
better and we do not need NL descriptions to be
associated with code snippets at testing phase.

We conduct extensive experiments using a large-
scale 〈question, code snippet〉 dataset StaQC (Yao
et al., 2018) and our collected duplicated question
dataset from Stack Overflow2. The results show
that our proposed learning framework is able to im-
prove the state-of-the-art code retrieval models and
outperforms using adversarial learning without QD
relevance regularization, as well as strong multi-
task learning baselines that also utilize question
duplication data.

2 Overview

The work studies code retrieval, a task of match-
ing questions with code, which we will use QC
to stand for. The training set DQC consists of NL
question and code snippet pairs DQC={q(i), c(i)}.
Given NL question q(i), the QC task is to find c(i)

from DQC among all the code snippets. For sim-
plicity, we omit the data sample index and use q
and c to denote a QC pair, and c− to represent any
other code snippets in the dataset except for c.

Our goal is to learn a QC model, denoted as fQC
θ ,

that retrieves the highest score code snippets for
an input question: argmaxc′∈{c}∪{c−} f

QC
θ (q, c′).

Note that at testing time, the trained QC model fQC

can be used to retrieve code snippets from any code
bases, unlike the group of QC methods (Hayati
et al., 2018; Hashimoto et al., 2018; Guo et al.,

2https://stackoverflow.com/

https://stackoverflow.com/
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2019) relying on the availability of NL descriptions
of code.

We aim to address the aforementioned chal-
lenges in code retrieval through two strategies:
(1) We introduce adversarial learning (Goodfellow
et al., 2014a) to alleviate the bi-modal learning chal-
lenges. Specifically an adversarial QC generator
selects unpaired code snippets that are difficult for
the QC model to discriminate, to strengthen its abil-
ity to distinguish top-ranked positive and negative
samples (Wang et al., 2017). (2) We also propose
to employ a question-description (QD) relevance
model to provide a secondary view on the generated
adversarial samples, inspired by the group of QC
work that measures the relevance of code snippets
through their associated NL descriptions.

Figure 1 gives an overview of our proposed learn-
ing framework, which does not assume specific
model architectures and can be generalized to dif-
ferent base QC models or use different QD rele-
vance models. A general description is given in the
caption. In summary, the adversarial QC generator
selects ĉ that is unpaired with a given q. q̂ is an NL
description of ĉ. Details on how to acquire q̂ will
be introduced in Section 3.2. Next, a QD model
predicts a relevance score for 〈q, q̂〉. A pairwise
ranking loss is calculated based on whether the QC
model discriminates ground-truth QC pair 〈q, c〉
from unpaired 〈q, ĉ〉. Learning through this loss is
reweighted by a down-scale factor, which is dynam-
ically determined by the QD relevance prediction
score. This works as a regularization term over
potential false negative adversarial samples.

3 Proposed Methodology

We now introduce in detail our proposed learning
framework. We start with the adversarial learn-
ing method in Section 3.1 and then discuss the
rationale to incorporate question-description or QD
relevance feedback in Section 3.2, before putting
them together in Section 3.3 and Section 3.4.

3.1 Adversarial Learning via Sampling

We propose to apply adversarial learning (Goodfel-
low et al., 2014a) to code retrieval. Our goal is to
train a better QC model fQC

θ by letting it play the
adversarial game with a QC generator model gQC

φ .
θ represents the parameters of the QC model and
φ represents the parameters of the adversarial QC
generator. As in standard adversarial learning, fQC

θ

plays the discriminator role to distinguish ground-

Adversarial Code

Adversarial QC
Generator

QD Relevance
Model

NL Question

Adversarial Code

NL Question 

Learning

NL Question 

Relevance Score

Question-Description
Relevance Regularization

Overall QC Model
Training Objective

NL Description of 
Adversarial Code

QC Model

NL Question 

Pairwise
Ranking Loss

Matching Scores

Paired Code

Adversarial

Figure 1: Regularized adversarial learning framework.
Best viewed in color. The adversarial QC generator
(middle) produces an adversarial code given an NL
question. The QD relevance model (right) then predicts
a relevance score between the given question and the
NL description or the generated adversarial code. A
pairwise ranking loss is computed between the ground-
truth code and the adversarial code. The QC model
(left) is trained with the ranking loss, after it is scaled by
a QD relevance regularization weight that depends on
the QD relevance score. The parameter update is larger
when the relevance score is smaller and vice versa.

truth code snippet c from generated pairs ĉ. The
training objective of the QC model is to minimize
Lθ below:

Lθ =
∑
i

Eĉ∼Pφ(c|q(i))lθ(q
(i), c(i), ĉ),

lθ = max(0, d+fQC
θ (q(i), ĉ)−fQC

θ (q(i), c(i))),

where lθ is a pairwise ranking loss, and specifically
we use a hinge loss with margin d. ĉ is gener-
ated by gQC

φ and follows a probability distribution
Pφ(c|q(i)). gQC

φ aims to assign higher probabilities
to code snippets that would mislead fQC

θ .

There are many ways to realize the QC generator.
For example, one may employ a sequence model to
generate the adversarial code snippet ĉ token by to-
ken (Bi et al., 2019; Agashe et al., 2019). However,
training a sequence generation model is difficult,
because the search space of all code token combi-
nations is huge. Henceforce, we turn to a simpler
idea inspired by Wang et al. (2017), and restrict the
generation of ĉ to the space of all the existing code
snippets in the training dataset DQC. The QC gen-
erator then only needs to sample an existing code
snippet c(j) from an adversarial probability distri-
bution conditioned on a given query and let it be ĉ,
i.e., ĉ=c(j)∼Pφ(c|q(i)). Adopting this method will
make training the QC generator easier, and ensures
that the generated code snippets are legitimate as
they directly come from the training dataset. We
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define the adversarial code distribution as:

Pφ(c|q(i)) =
exp(gQC

φ (q(i), c)/τ)∑
c′ exp(gQC

φ (q(i), c′)/τ)
,

where gQC
φ represents an adversarial QC matching

function. τ is a temperature hyper-parameter used
to tune the distribution to concentrate more of less
on top-scored code snippets. Moreover, scoring all
code snippets can be computationally inefficient in
practice. Therefore, we use the method of Yang
et al. (2019) to first uniformly sample a subset of
data, whose size is much smaller than the entire
training set size, and then perform adversarial sam-
pling on this subset.

The generator function gQC
φ can be pre-trained in

the same way as the discriminator (i.e., fQC
θ ) and

then get updated using standard policy gradient
reinforcement learning algorithms, such as REIN-
FORCE (Williams, 1992), to maximize the ranking
losses of the QC model. Formally, the QC gener-
ator aims to maximize the following expected re-
ward: J(φ)=

∑
i Ec(j)∼Pφ(c|q(i))[lθ(q

(i), c(i), c(j))],
where lθ(q

(i), c(i), c(j)) is the pairwise ranking
loss of the discriminator model defined ear-
lier. The gradient of J can be derived as
∇φJ=

∑
i Ec(j)∼Pφ(c|q(i))[lθ · ∇φ logPφ(c

(j)|q(i))].
Another option is to let gQC

φ use the same ar-
chitecture as fQC

θ and use tied parameters (i.e.,
φ=θ), as adopted in previous work (Deshpande
and M.Khapra, 2019; Park and Chang, 2019).

The focus of this work is to show the effective-
ness of applying adversarial learning to code re-
trieval, and how to regularize it with QD relevance.
We leave more complex adversarial techniques (e.g.
adversarial perturbation (Goodfellow et al., 2014b;
Miyato et al., 2015) or adversarial sequence gener-
ation (Li et al., 2018)) for future studies.

3.2 Question-Description Relevance
Regularization

Intuitively, we can train a better code retrieval
model, if the negative code snippets are all true-
negative ones, i.e., if they are confusingly similar
to correct code answers, but perform different func-
tionalities. However, because of the one-to-many
mapping issue, some negative code snippets sam-
pled by the adversarial QC generator can be false-
negative, i.e. they are equally good answers for
a given question despite that they are not paired
with the question in the training set. Unfortunately
during training, this problem could become increas-

ingly obvious as the adversarial will be improved
along with the code retrieval model, and eventually
makes learning less and less effective. Since both
the QC model and the adversarial QC generator op-
erates from the QC perspective, it is difficult to fur-
ther discriminate true-negative and false-negative
code snippets.

Therefore, we propose to alleviate this problem
with QD relevance regularization. This idea is in-
spired by the group of QC work mentioned in Sec-
tion 1 that retrieves code snippets by matching their
NL descriptions with a given question. But differ-
ent from them, we only leverage QD relevance
during training to provide a secondary view and
to reweight the adversarial samples. Fortunately,
an adversarial code snippet ĉ sampled from the
original training dataset DQC is paired with an NL
question q̂, which can be regarded as its NL de-
scription and used to calculate the relevance to the
given question q.

Let us refer to the example in Table 1 again.
At a certain point of training, with q(1) “Flatten
a shallow list in Python” being the given ques-
tion, the adversarial QC generator may choose c(2)

and c(3) as the negative samples, but instead of
treating them equivalently, we can infer from the
QD matching perspective that c(3) is likely to be
true negative, because q(3) “How to get all possible
combinations of a list’s elements” clearly has dif-
ferent meanings from q(1), while c(2) is likely to be
a false negative example since q(2) “How to flatten
a 2D list to 1D without using numpy?” is similar
to q(1). Hence, during training, the discriminative
QC model should put more weights on negative
samples like c(3) rather than c(2).

We now explain how to map QD relevance
scores to regularization weights. Let fQD(q, q̂)
denote the predicted relevance score between the
given question q and the question paired with an
adversarial code snippet q̂, and let fQD(q, q̂) be nor-
malized to the range from 0 to 1. We can see from
the above example that QD relevance and adjusted
learning weight should be reversely associated, so
we map the normalized relevance score to a weight
using a monotonously decreasing polynomial func-
tion: wQD(x)=(1−xa)b, 0≤x≤1. Both a and b are
positive integer hyper-parameters that control the
shape of the curve and can be tuned on the dev sets.
In this work, they are both set to one by default for
simplicity. wQD ∈ [0, 1] allows the optimization
objective to weigh less on adversarial samples that
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Algorithm 1: Question-Description Rele-
vance Regularized Adversarial Learning.

QC training data :DQC = {q(i), c(i)}
QD model :fQD

Constants :positive intergers N , τ , a, b
Result: QC model fQC

θ

1 . Pretrain fQC
θ on DQC using pairwise ranking loss

lQC
θ with randomly sampled negative code snippets ;

2 . Initialize QC generator gQC
φ with fQC

θ : φ← θ ;
3 while not converge or not reach max iter number do
4 for random sampled 〈q(i), c(i)〉 ∈ DQC do
5 Randomly choose D={q,c} ⊂ DQC, where

|D|=N ;
6 Sample c(j)∈D, that c(j) ∼ Pφ(c(j)|q(i)) =

softmaxτ (gQC
φ (q(i), c(j))) ;

7 lQC
θ ← lθ(q

(i), c(i), c(j)) ;
8 Find q(j) associated with q(j),

wQD ← (1− fQD(q(i), q(j))a)b ;
9 Update QC model with gradient descent to

reduce loss: wQD · lQC
θ ;

10 Update adversarial QC generator with
gradient ascent: lQC

θ · ∇φ logPφ(c
(j)|q(i))

11 end
12 . Optional QD model update. (See Section 3.4.)
13 end

are more likely to be false negative.

3.3 Question-Description Relevance
Regularized Adversarial Learning

Now we describe the proposed learning framework
in Algorithm 1 that combines adversarial learning
and QD relevance regularization. Let us first as-
sume the QD model is given and we will explain
how to pre-train, and optionally update it shortly.

The QC model can be first pre-trained onDQC us-
ing standard pairwise ranking loss lθ(q(i), c(i), c(j))
with randomly sampled c(j). Line 3-11 show
the QC model training steps. For each QC pair
〈q(i), c(i)〉, a batch of negative QC pairs are sam-
pled randomly from the training set DQC. The QC
generator then choose an adversarial c(j) from dis-
tribution Pφ(c|q(i)) defined in Section 3.1, and its
paired question is q(j). Two questions q(i) and q(j)

are then passed to the QD model, and the QD rel-
evance prediction is mapped to a regularization
weight wQD. Finally, the regularization weight is
used to control the update of the QC model on the
ranking loss with the adversarial ĉ.

3.4 Base Model Architecture

Our framework can be instantiated with various
model architectures for QC or QD. Here we choose
the same neural network architecture as (Gu et al.,

2018; Yao et al., 2019) as our base QC model, that
achieves competitive or state-of-the-art code re-
trieval performances. Concretely, both a natural
language question q and a code snippet c are se-
quences of tokens. They are encoded respectively
by separate bi-LSTM networks (Schuster and Pali-
wal, 1997), passed through a max pooling layer
to extract the most salient features of the entire
sequence, and then through a hyperbolic tangent
activate function. The encoded question and code
representations are denoted as hq and hc. Finally,
a matching component scores the vector represen-
tation between q and c and outputs their matching
score for ranking. We follow previous work to use
cosine similarity: fQC(q, c) = cosine(hq, hc).
QD Model. There are various model architec-
ture choices, but here for simplicity, we adapt the
QC model for QD relevance prediction. We let
the QD model use the same neural architecture
as the QC model, but with Siamese question en-
coders. The QD relevance score is the cosine simi-
larity between hq

(i)
and hq

(j)
, the bi-LSTM encod-

ing outputs for question q(i) and q(j) respectively:
fQD(q(i),q(j))=cosine(hq

(i)
,hq

(j)
). This method

allows using a pre-trained QC model to initial-
ize the QD model parameters, which is easy to
implement and the pre-trained question encoder
in the QC model can help the QD performance.
Since programming-domain question paraphrases
are rare, we collect a small QD training set consist-
ing of programming related natural language ques-
tion pairs DQD={q(j), p(j)} based on duplicated
questions in Stack Overflow.

The learning framework can be symmetrically
applied, as indicated by Line 12 in Algorithm 1,
so that the QD model can also be improved. This
may provide better QD relevance feedback to help
train a better QC model. In short, we can use a
discriminative and a generative QD model. The
generative QD model selects adversarial questions
to help train the discriminative QD model, and
this training can be regularized by the relevance
predictions from a QC model. More details will be
introduced in the experiments.

4 Experiments

In this section, we first introduce our experimen-
tal setup, and then will show that our method not
only outperforms the baseline methods, but also
multi-task learning approaches, where question-
description relevance prediction is the other task. In
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Python SQL
Train Dev Test Train Dev Test

QC 68,235 8,529 8,530 60,509 7,564 7,564
QD 1,085 1,085 1,447 18,020 2,252 2,253

Table 2: Dataset statistics. QD is used to represent the
duplicate question dataset.

particular, the QD relevance regularization consis-
tently improves QC performance upon adversarial
learning, and the effectiveness of relevance regular-
ization can also be verified as it is symmetrically
applied to improve the QD task.

4.1 Datasets

We use StaQC (Yao et al., 2018) to train and evalu-
ate our code retrieval model, which contains auto-
matically extracted questions on Python and SQL
and their associated code answers from Stack Over-
flow. We use the version of StaQC that each ques-
tion is associated with a single answer, as those
associated with multiple answers are predicted by
an automatic answer detection model and therefore
noisier. We randomly split this QC datasets by a
70/15/15 ratio into training, dev and testing sets.
The dataset statistics are summarized in Table 2.

We use Stack Exchange Data Explorer3 to col-
lect data for training and evaluating QD rele-
vance prediction. Specifically, we collect the
question pairs from posts that are manually la-
beled as duplicate by users, which are related by
LinkTypeId=3. It turns out that the QD datasets
are substantially smaller than the QC datasets, espe-
cially for Python, as shown in Table 2. This makes
it more interesting to check whether a small amount
of QD relevance guidance can help improve code
retrieval performances.

4.2 Baselines and Evaluation Metrics

We select state-of-the-art methods from both
groups of work for QC (mentioned in Introduc-
tion). DecAtt and DCS below are methods that
directly match questions with code. EditDist and
vMF-VAE transfer code retrieval into a question
matching problem.
• DecAtt (Parikh et al., 2016). This is a widely

used neural network model with attention mech-
anism for sentence pairwise modeling.
• DCS (Gu et al., 2018). We use this as our base

model, because it is a simple yet effective code

3SEDE and SEDE schema documentation.

retrieval model that achieves competitive perfor-
mance without introducing additional training
overheads (Yao et al., 2019). Its architecture has
been described in Section 3.4.
• EditDist (Hayati et al., 2018). Code snippets are

retrieved by measuring an edit distance based
similarity function between their associated NL
descriptions and the input questions. Since there
is only one question for each sample in the QC
datasets, we apply a standard code summariza-
tion tool (Iyer et al., 2016) to generate code de-
scriptions to match with input questions.
• vMF-VAE (Guo et al., 2019). This is similar

to EditDist, but a vMF Variational Autoencoder
(Xu and Durrett, 2018) is separately trained to
embed questions and code descriptions into la-
tent vector distributions, whose distance is then
measured by KL-divergence. This method is
also used by Hashimoto et al. (2018).

We further consider multi-task learning (MTL) as
an alternative way how QD can help QC. It is worth
mentioning that our method does not require asso-
ciated training data or the sharing of trained param-
eters between the QD and QC tasks, whereas MTL
typically does. For fair comparison, we adapt two
MTL methods to our scenario that use the same
base model, or its question and code encoders:

• MTL-DCS. This is a straightfoward MTL adapta-
tion of DCS, where the code encoder is updated
on the QC dataset and the question encoder is up-
dated on both QC and QD datasets. The model
is alternatively trained on both datasets.
• MTL-MLP (Gonzalez et al., 2018). This recent

MTL method is originally designed to rank rel-
evant questions and question-related comments.
It uses a multi-layer perceptron (MLP) network
with one shared hidden layer, a task-specific hid-
den layer and a task-specific classification layer
for each output. We adapt it for our task. The in-
put to the MLP is the concatenation of similarity
features [max(hq, hc), hq − hc, hq � hc], where
� is element-wise product. hq and hc are learned
using the same encoders as our base model.

The ranking metrics used for evaluation are
Mean Average Precision (MAP) and Normalize
Discounted Cumulative Gain (nDCG) (Järvelin and
Kekäläinen, 2002). The same evaluation method
as previous work is adopted (Iyer et al., 2016; Yao
et al., 2019) for both QC and QD, where we ran-
domly choose from the testing set a fixed-size (49)
pool of negative candidates for each question, and

https://data.stackexchange.com/stackoverflow/query/new
https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede/2678##2678
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Python SQL
MAP nDCG MAP nDCG

EditDist (Hayati et al., 2018) 0.2348 0.3844 0.2096 0.3641
vMF-VAE (Guo et al., 2019) 0.2886 0.4511 0.2921 0.4537
DecAtt (Parikh et al., 2016) 0.5744 0.6716 0.5142 0.6231
DCS (Gu et al., 2018) 0.6015 0.6929 0.5155 0.6237
MTL-MLP (Gonzalez et al., 2018) 0.5737 0.6712 0.5079 0.6179
MTL-DCS 0.6024 0.6935 0.5160 0.6237
Our 0.6372∗ 0.7206∗ 0.5404∗ 0.6429∗
Our - RR 0.6249∗ 0.7111∗ 0.5274∗ 0.6327∗

Table 3: Code retrieval (QC) performance on test sets.
* denotes significantly different from DCS (Gu et al.,
2018) in one-tailed t-test (p < 0.01).
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Figure 2: QC learning curves on the Python dev set.

evaluate the ranking of its paired code snippet or
questions among these negative candidates.

4.3 Implementation Details

Our implementation is based on Yao et al. (2019).
We follow this work to set the base model hyper-
parameters. The vocabulary embedding size for
both natural language and programming language
is set at 200. The LSTM hidden size is 400. Margin
in the hinge loss is 0.05. The trained DCS model is
used as pre-training for our models. The learning
rate is set at 1e-4 and the dropout rate set at 0.25.
For adversarial training, we set τ to 0.2 following
(Wang et al., 2017) and limit the maximum num-
ber of epochs to 300. Standard L2-regularization
is used on all the models. We empirically tried
to tie the parameters of the discriminator and the
generator following previous work (Deshpande and
M.Khapra, 2019; Park and Chang, 2019), which
shows similar improvements over the baselines. Im-
plementation from Xu and Durrett (2018) is used
for the vMF-VAE baseline.

We follow the code preprocessing steps in Yao
et al. (2018) for Python and Iyer et al. (2016) for
SQL. We use the NLTK toolkit (Bird and Loper,
2004) to tokenize the collected duplicate questions,
and let it share the same NL vocabulary as the QC
dataset DQC.

4.4 Results and Analyses

Our experiments aim to answer the following re-
search questions:

(1) Can the question regularized adversarial learn-
ing framework improve code retrieval (QC) perfor-
mance? We will first compare the code retrieval
performance of different methods. Table 3 sum-
marizes the test results, which are consistent on
both Python and SQL datasets. Code retrieval base-
lines by measuring QD relevance, e.g., EditDist
and vMF-VAE, are popularly used in code gener-
ation related work, but do not perform well com-
pared to other code retrieval baselines in our ex-
periments, partly because they are not optimized
toward the QC task. This suggests that applying
more advanced code retrieval methods for retrieve-
and-edit code generation can be an interesting fu-
ture research topic. DCS is a strong baseline, as
it outperforms DecAtt that uses a more complex
attention mechanism. This indicates that it is not
easy to automatically learn pairwise token associa-
tions between natural language and programming
languages from software community data, which
is also suggested by previous work (Panthaplackel
et al., 2019; Vinayakarao et al., 2017).

Our proposed learning algorithm can improve
the QC performance compared to all the baselines.
The “- RR” variant is to only apply adversarial
sampling without QD relevance regularization. It
already leads to improvements compared to the
base model (i.e. DCS), but does not perform as
well as our full model. This proves the usefulness
of the QD relevance regularization and indicates
that selectively weighting the contribution of ad-
versarial samples to the training loss can help the
model generalize better to test data. Figure 2 com-
pares QC learning curves on the dev set. The full
model curve being the smoothest qualitatively sug-
gests that the adversarial learning has been well
regularized.

(2) How does the proposed algorithm compare with
multi-task learning methods? The results are re-
ported in Table 4. The MTL-MLP model is orig-
inally proposed to improve question-question rel-
evance prediction by using question-comment rel-
evance prediction as a secondary task (Gonzalez
et al., 2018). It does not perform as well as MTL-
DCS, which basically uses hard parameter sharing
between the two tasks and does not require ad-
ditional similarity feature definitions. In general,
the effectiveness of these MTL baselines on the
QC task is limited because there are only a small
amount of QD pairs available for training. Both
our method and its ablated variant outperform the
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Python SQL
MAP nDCG MAP nDCG

MTL-MLP (Gonzalez et al., 2018) 0.5737 0.6712 0.5079 0.6179
MTL-DCS 0.6024 0.6935 0.5160 0.6237
Our 0.6372 0.7206 0.5404 0.6429

Table 4: Compare QC performance with MTL.

MTL baselines. This shows that it may be more
effective to use a data scarce task to regularize the
adversarial learning of a relatively data rich task,
than using those scarce data in MTL.
(3) Can the QD performance be improved by the
proposed method? Although QD is not the focus of
this work, we can use it to verify that generalizabil-
ity of our method by symmetrically applying it to
update the QD model as mentioned in Section 3.2.
To be concrete, a generative adversarial QD model
selects difficult questions from the a distribution of
question pair scores: q̂ ∼ softmaxτ (fQD(q̂, q(i))).
Then a QC model is used to calculate a relevance
score for a question-code pair, and this can regular-
ize the adversarial learning of the QD model.

Table 5 shows the results. Our method and its ab-
lated variants outperform the QD baselines EditDist
and vMF-VAE, again suggesting that supervised
learning is more effective. The full model achieves
the best overall performance and removing rele-
vance regularization (- RR) from the QC model
consistently leads to performance drop. In contrast,
further removing adversarial sampling (- AS) hurts
the performance on SQL dataset slightly, but not on
Python. This is probably because the Python QD
dataset is very small and using adversarial learning
can easily overfit, which again suggests the im-
portance of our proposed relevance regularization.
Finally, removing QC as pretraining (- Pretrain)
greatly hurts the performance, which is understand-
able since QC datasets are much larger.

Because the QD model performance can be im-
proved in such a way, we allow it to get updated in
our QC experiments (corresponding to line 12 in
Algorithm 1) and the results have been discussed in
Table 3. We report here the QC performance using
a fixed QD model (i.e. Our - RR - AS) for relevance
regularization: MAP=0.6371, nDCG=0.7205 for
Python and MAP=0.5366, nDCG=0.6398 for SQL.
Comparing these results with those in Table3 (Our),
one can see that allowing the QD model to update
consistently improves QC performance, which sug-
gests that a better QD model can provide more
accurate relevance regularization to the QC model
and leads to better results.

Python SQL
MAP nDCG MAP nDCG

EditDist (Hayati et al., 2018) 0.3617 0.4883 0.3246 0.4580
vMF-VAE (Guo et al., 2019) 0.3009 0.4616 0.3029 0.4641
Our 0.7162 0.7821 0.6947 0.7651
Our - RR 0.7046 0.7734 0.6846 0.7575
Our - RR - AS 0.7116 0.7787 0.6764 0.7512
Our - RR - AS - Pretrain 0.3882 0.5170 0.6284 0.7129

Table 5: Question relevance prediction results, evalu-
ated on the question duplication dataset we collected.

5 Related Work

Code Retrieval. Code retrieval has developed
from using classic information retrieval techniques
(Hill et al., 2014; Haiduc et al., 2013; Lu et al.,
2015) to recently deep neural methods that can
be categorized into two groups. The first group
directly model the similarity across the natural lan-
guage and programming language modalities. Be-
sides CODENN (Iyer et al., 2016) and DCS (Gu
et al., 2018) discussed earlier, Yao et al. (2019)
leverage an extra code summarization task and en-
semble a separately trained code summary retrieval
model with a QC model to achieve better over-
all code retrieval performances. Ye et al. (2020)
further train a code generation model and a code
summarization model through dual learning, which
helped to learn better NL question and code repre-
sentations. Both works employ additional sequence
generation models that greatly increases the train-
ing complexity, and they both treat all unpaired
code equally as negatives. Our work differs from
them as we introduce adversarial learning for code
retrieval, and the existing work do not leverage
question relevance for code retrieval as we do.

The second group of works transfer code re-
trieve to a code description retrieval problem. This
methodology has been widely adopted as a compo-
nent in the retrieve-and-edit code generation litera-
ture. For example, heuristic methods such as mea-
suring edit distance (Hayati et al., 2018) or com-
paring code type and length (Huang et al., 2018)
are used, and separate question latent representa-
tions (Hayati et al., 2018; Guo et al., 2019) are
learned. Our work shares with them the idea to
exploit QD relevance, but we use QD relevance in
a novel way to regularize the adversarial learning
of QC models. It will be an interesting future work
to leverage the proposed code retrieval method for
retrieve-and-edit code generation.
Adversarial Learning. Adversarial learning has
been widely used in areas such as computer vision
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(Mirza and Osindero, 2014; Chen et al., 2016; Rad-
ford et al., 2015; Arjovsky et al., 2017), text gen-
eration (Yu et al., 2017; Chen et al., 2019; Liang,
2019; Gu et al., 2018; Liu et al., 2017; Ma et al.,
2019), relation extraction (Wu et al., 2017; Qin
et al., 2018), question answering (Oh et al., 2019;
Yang et al., 2019), etc. We proposed to apply ad-
versarial learning to code retrieval, because they
have effectively improved cross-domain task per-
formances and helped generate useful training data,
We adapted the method from Wang et al. (2017)
for the bi-modal QC scenario. As future work,
adversarial learning for QC can be generalized to
other settings with different base neural models
(Yang et al., 2019) or with more complex adver-
sarial learning methods, such as adding perturbed
noises (Park and Chang, 2019) or generating adver-
sarial sequences (Yu et al., 2017; Li et al., 2018).
Our method differs from most adversarial learning
work in that the discriminator (QC model) does not
see all generated samples as equally negative.

6 Conclusion

This work studies the code retrieval problem, and
tries to tackle the challenges of matching natural
language questions with programming language
(code) snippets. We propose a novel learning algo-
rithm that introduces adversarial learning to code
retrieval, and it is further regularized from the per-
spective of a question-description relevance predic-
tion model. Empirical results show that the pro-
posed method can significantly improve the code
retrieval performances on large-scale datasets for
both Python and SQL programming languages.
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