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Abstract

State-of-the-art NLP inference uses enormous
neural architectures and models trained for
GPU-months, well beyond the reach of most
consumers of NLP. This has led to one-size-
fits-all public API-based NLP service models
by major AI companies, serving large numbers
of clients. Neither (hardware deficient) clients
nor (heavily subscribed) servers can afford tra-
ditional fine tuning. Many clients own little or
no labeled data. We initiate a study of adap-
tation of centralized NLP services to clients,
and present one practical and lightweight ap-
proach. Each client uses an unsupervised,
corpus-based sketch to register to the service.
The server uses an auxiliary network to map
the sketch to an abstract vector representation,
which then informs the main labeling network.
When a new client registers with its sketch, it
gets immediate accuracy benefits. We demon-
strate the success of the proposed architecture
using sentiment labeling, NER, and predictive
language modeling.

1 Introduction

State-of-the-art NLP uses large neural networks
with billions of parameters, enormous training data,
and intensive optimization over weeks of GPU-
time, causing more carbon emission than a car over
its lifetime (Strubell et al., 2019). Such training
prowess is (mercifully) out of reach for most users
of NLP methods. Recognizing this, large AI com-
panies have launched NLP cloud services1 and also
provided trained models for download and fine tun-
ing. But many clients have too little data or hard-
ware for fine tuning massive networks. Neither can
the service be expected to fine-tune for each client.

Distributional mismatch between the giant
general-purpose corpus used to train the central ser-
vice and the corpus from which a client’s instances

1Google NLP, Microsoft Azure, IBM Watson

arise leads to lower accuracy. A common source of
trouble is mismatch of word salience (Paik, 2013)
between client and server corpora (Ruder, 2019).
In this respect, our setting also presents a new op-
portunity. Clients are numerous and form natural
clusters, e.g., healthcare, sports, politics. We want
the service to exploit commonalities in existing
client clusters, without explicitly supervising this
space, and provide some level of generalization to
new clients without re-training or fine-tuning.

In response to the above challenges and con-
straints, we initiate an investigation of practical
protocols for lightweight client adaptation of NLP
services. We propose a system, KYC (“Know Your
Client”), in which each client registers with the
service using a simple sketch derived from its (un-
labeled) corpus. The service network takes the
sketch as additional input with each instance later
submitted by the client. The service provides accu-
racy benefits to new clients immediately.

What form can a client sketch take? How should
the service network incorporate it? While this will
depend on the task, we initiate a study of these twin
problems focused on predictive language modeling,
sentiment labeling, and named entity recognition
(NER). We show that a simple late-stage interven-
tion in the server network gives visible accuracy
benefits, and provide diagnostic analyses and in-
sights. Our code and data can be found here2.

Contributions In summary, we
• introduce the on-the-fly client adaptation prob-

lem motivated by networked NLP API services;
• present KYC, that learns to compute client-

specific biases from unlabeled client sketches;
• show improved accuracy for predictive language

modeling, NER and sentiment labeling;
• diagnose why KYC’s simple client-specific la-

bel biases succeed, in terms of relations between
2https://github.com/sahil00199/KYC

https://cloud.google.com/natural-language
https://azure.microsoft.com/en-us/services/cognitive-services/language-understanding-intelligent-service/
https://www.ibm.com/watson/natural-language-processing
https://github.com/sahil00199/KYC
https://github.com/sahil00199/KYC
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word salience, instance length and label distribu-
tions at diverse clients.

Related work Our method addresses the mis-
match between a client’s data distribution and the
server model. The extensive domain adaptation lit-
erature (DauméIII, 2007; Blitzer et al., 2006; Ben-
David et al., 2006) is driven by the same goal but
most of these update model parameters using la-
beled or unlabeled data from the target domain
(client). Unsupervised Domain Adaptation summa-
rized in (Ramponi and Plank, 2020) relaxes the re-
quirement of labelled client data, but still demands
target-specific fine-tuning which inhibits scalabil-
ity. Some recent approaches attempt to make the
adaptation light-weight (Lin and Lu, 2018; Li et al.,
2020; Jia et al., 2019; Cai and Wan, 2019; Liu
et al., 2020) while others propose to use entity de-
scription (Bapna et al., 2017; Shah et al., 2019)
for zero-shot adaptation. Domain generalization
is another relevant technique (Chen and Cardie,
2018; Guo et al., 2018; Li et al., 2018a; Wang et al.,
2019; Shankar et al., 2018; Carlucci et al., 2019;
Dou et al., 2019; Piratla et al., 2020) where mul-
tiple domains during training are used to train a
model that can generalize to new domains. Of
these, the method that seems most relevant to our
setting is the mixture of experts network of (Guo
et al., 2018), with which we present empirical com-
parison. Another option is to transform the client
data style so as to match the data distribution used
to train the server model. Existing style transfer
techniques (Yang et al., 2018; Shen et al., 2017;
Prabhumoye et al., 2018; Fu et al., 2018; Lample
et al., 2019; Li et al., 2018b; Gong et al., 2019)
require access to server data distribution.

2 Proposed service protocol

We formalize the constraints on the server and
client in the API setting. (1) The server is expected
to scale to a large number of clients making it im-
practical to adapt to individual clients. (2) After
registration, the server is expected to provide la-
beling immediately and response latency per in-
stance must be kept low implying that the server’s
inference network cannot be too compute-inten-
sive. (3) Finally, the client cannot perform complex
pre-processing of every instance before sending to
the server, and does not have any labelled data.

Server network and model These constraints
lead us to design a server model that learns to

compute client-specific model parameters from the
client sketch, and requires no client-specific fine-
tuning or parameter learning. The original server
network is written as ŷ = Yθ(Mθ(x)) where x is
the input instance, and Yθ is a softmax layer to get
the predicted label ŷ. Mθ is a representation learn-
ing layer that may take diverse forms depending on
the task; of late, BERT (Devlin et al., 2018) is used
to design Mθ for many tasks.

We augment the server network to accept, with

lossy

Yθ

+

Mθ

g

Gφ

x Sc

Figure 1: KYC
overview.

each input x, a client-specific
sketch Sc as shown in Figure 1.
We discuss possible forms of Sc
in the next subsection. (The dot-
ted arrow represents a genera-
tive influence of Sc on x.) The
server implements an auxiliary
network g = Gφ(Sc). Here g
can be regarded as a neural di-
gest of the client sketch. Mod-
ule
⊕

combines Mθ(x) and g;
concatenation was found ade-
quate on the tasks we evaluated
but we also discuss other options in Section 3.
When the

⊕
module is concatenation we are com-

puting a client-specific per-label bias, and even that
provides significant gains, as we show in Section 3.

Client sketch The design space of client sketch
Sc is infinite. We initiate a study of designing Sc
from the perspective of term weighting and salience
in Information Retrieval (Paik, 2013). Sc needs to
be computed once by each client, and thereafter
reused with every input instance x. Ideally, Sc and
Gφ should be locality preserving, in the sense that
clients with similar corpora and tasks should lead
to similar gs. Suppose the set of clients already
registered is C.

A simple client sketch is just a vector of counts
of all words in the client corpus. Suppose word w
occurs nc,w times in a client c, with

∑
w nc,w = Nc.

Before input to Gφ, the server normalizes these
counts using counts of other clients as follows:
From all of C, the server will estimate a back-
ground unigram rate of word. Let the estimated
rate for word w be pw, which is calculated as:
pw = (

∑
c∈C nc,w)

/(∑
w

∑
c∈C nc,w

)
. (1)

The input into Gφ will encode, for each word w,
how far the occurrence rate of w for client c devi-
ates from the global estimate. Assuming the multi-
nomial word event distribution, the marginal prob-
ability of having w occur nc,w times at client c is
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OOD ID

OOD Clients Base MoE KYC Base MoE KYC

BC/CCTV+Phoenix 63.8 66.9 71.8 86.0 83.8 86.7
BN/PRI+BN/VOA 88.7 87.9 90.7 84.5 83.0 86.0
NW/WSJ+Xinhua 73.9 78.9 80.9 80.8 77.2 82.5
BC/CNN+TC/CH 78.3 75.2 78.7 85.6 82.7 87.4
WB/Eng+WB/a2e 76.2 69.9 78.4 86.4 82.6 87.3
Average 76.2 75.8 80.1 84.7 81.9 86.0

Table 1: Test F1 on Ontonotes NER. OOD numbers are
on the two listed domains whereas ID numbers are on
test data of clients seen during training.

proportional to pnc,w
w (1− pw)(Nc−nc,w). We finally

pass a vector containing the normalized negative
log probabilities as input to the model:

Sc ∝
(
−nc,w log pw
− (Nc − nc,w) log(1− pw) : ∀w

)
. (2)

We call this the term-saliency sketch. We discuss
other sketches like TF-IDF and corpus-level statis-
tics like average instance length in Sec. 3.

3 Experiments

We evaluate KYC on three NLP tasks as services:
NER, sentiment classification, and auto-completion
based on predictive language modeling. We com-
pare KYC against the baseline model (without the
Gφ network in Figure 1) and the mixture of experts
(MoE) model (Guo et al., 2018) (see Appendix B).
For all three models, the Mθ network is identical
in structure. In KYC, Gφ has two linear layers
with ReLU giving a 128-dim vector g, with slight
exceptions (see Appendix A). We choose datasets
that are partitioned naturally across domains, used
to simulate clients. We evaluate in two settings: in-
distribution (ID) on test instances from clients seen
during training, and out-of-distribution (OOD) on
instances from unseen clients. For this, we perform
a leave-k-client-out evaluation where given a set
D of clients, we remove k clients as OOD test and
use remaining D − k as the training client set C.
Named Entity Recognition (NER) We use
Ontonotes (Pradhan et al., 2007) which has 18 en-
tity classes from 31 sources which forms our set D
of clients. We perform leave-2-out test five times
with 29 training clients as C. We train a cased
BERT-based NER model (Devlin et al., 2018) and
report F-scores. Table 1 shows that KYC provides
substantial gains for OOD clients. For the first two
OOD clients (BC/CCTV,Phoenix), the baseline F1
score jumps from 63.8 to 71.8. MoE performs
worse than baseline. We conjecture this is because

OOD ID

OOD Clients Base MoE KYC Base MoE KYC

Electronics+Games 86.9 87.4 87.7 88.6 88.7 89.0
Industrial+Tools 87.6 88.3 87.7 88.4 88.8 88.9
Books+Kindle Store 83.4 84.6 84.1 88.2 88.8 88.7
CDs+Digital Music 82.4 83.0 83.2 89.0 88.9 88.9
Arts+Automotive 90.2 90.6 90.4 88.4 88.6 88.6
Average 86.1 86.8 86.6 88.5 88.8 88.9
Table 2: Test Accuracy on Amazon Sentiment Data.

separate softmax parameters over the large NER
label space is not efficiently learnable.
Sentiment Classification We use the popular
Amazon dataset (Ni et al., 2019) with each product
genre simulating a client. We retain genres with
more than 1000 positive and negative reviews each
and randomly sample 1000 positive and negative
reviews from these 22 genres. We perform leave-
2-out evaluation five times and Table 2 shows the
five OOD genre pairs. We use an uncased BERT
model for classifcation (Sun et al., 2019).

Table 2 shows that average OOD client accuracy
increases from 86.1 to 86.8 with KYC.
Auto-complete Task We model this task as a for-
ward language model and measure perplexity. We
used the 20 NewsGroup dataset and treat each of
the twenty topics as a client. Thus D is of size
20. We use the state-of-art Mogrifier LSTM (Melis
et al., 2020). We perform leave-1-topic-out evalua-
tion six times and OOD topics are shown in Table 3.
For MoE, the client-specific parameter is only the
bias and not the full softmax parameters which
would blow up the number of trainable parameters.
Also it did not perform well. Table 3 shows that

OOD OOD ID

Clients Base MoE KYC Base MoE KYC
sci.space 29.6 30.9 29.0 28.8 30.7 28.1
comp.hw 26.5 28.6 26.4 28.1 28.7 27.6
sci.crypt 29.7 29.8 29.6 27.8 28.1 27.7
atheism 28.3 28.1 28.1 27.9 28.2 28.0
autos 28.0 28.4 27.9 27.7 28.2 27.7
mideast 27.4 26.7 27.3 28.4 27.9 27.7
Average 28.2 28.7 27.9 28.0 28.8 27.7

Table 3: Perplexity comparison between the baseline
and KYC on 20-NewsGroup dataset.

KYC performs consistently better than the base-
line with average perplexity drop from 28.2 to 27.9.
This drop is particularly significant because the
Mogrifier LSTM is a strong baseline to start with.
MoE is worse than baseline.
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Figure 2: Proportion of true and predicted entity labels
on OOD client NW/Xinhua. Similar trends observed
on other OOD domains (Figure 4 of Appendix).

Figure 3: Fraction Positive Predicted versus average
review length by baseline and KYC. Each dot/cross is
a domain and the dotted lines indicate the best fit lines.

Statistical Significance We verify the statistical
significance of the gains obtained for the Sentiment
Analysis and Auto-complete tasks; the gains in
the case of NER are much larger than statistical
variation. Shown in Tables 4 and 5 are the sam-
ple estimate and standard deviation for three runs
along with the p value corresponding to the null
hypothesis of significance testing. In both cases,
we see that the gains of KYC over the baseline are
statistically significant.

Diagnostics We provide insights on why KYC’s
simple method of learning per-client label biases
from client sketches is so effective. One expla-
nation is that the baseline had large discrepancy
between the true and predicted class proportions
for several OOD clients. KYC corrects this dis-

OOD Clients Base KYC p-value

Electronics+Games 86.9(0.39) 87.7(0.33) 0.05
Industrial+Tools 87.6(0.19) 87.7(0.09) 0.14
Books+Kindle Store 83.4(0.03) 84.1(0.14) 0.01
CDs+Digital Music 82.4(0.24) 83.2(0.08) 0.02
Arts+Automotive 90.2(0.21) 90.4(0.31) 0.20
Average 86.1(0.16) 86.6(0.13) 0.02

Table 4: Statistical significance of results on the OOD
clients by KYC for Sentiment Classification. For every
entry contains the mean with the standard deviation in
parenthesis

OOD Clients Base KYC p-value

sci.space 26.5(0.4) 26.4(0.2) 0.39
comp.hw 29.6(0.4) 29.0(0.3) 0.07
sci.crypt 29.7(0.4) 29.6(0.7) 0.46
atheism 28.3(0.2) 28.1(0.2) 0.14
autos 28.0(0.5) 27.9(0.4) 0.34
mideast 27.4(0.4) 27.3(0.4) 0.37
Average 28.2(0.2) 27.9(0.0) 0.04

Table 5: Statistical significance of results on the OOD
clients by KYC for the Auto Complete task. For every
entry contains the mean with the standard deviation in
parenthesis

crepancy via computed per-client biases. Figure 2
shows true, baseline, and KYC predicted class pro-
portions for one OOD client on NER. Observe how
labels like date, GPE, money and org are under-
predicted by baseline and corrected by KYC. Since
KYC only corrects label biases, instances most
impacted are those close to the shared decision
boundary, and exhibiting properties correlated with
labels but diverging across clients. We uncovered
two such properties:

Ambiguous Tokens In NER the label of sev-
eral tokens changes across clients, E.g. tokens
like million, billion in finance clients like
NW/Xinhua are money 92% of the times whereas
in general only 50% of the times. Based on client
sketches, it is easy to spot finance-related topics
and increase the bias of money label. This helps
KYC correct labels of borderline tokens.

Instance Length For sentiment labeling, review
length is another such property. Figure 3 is a scat-
ter plot of the average review length of a client
versus the fraction predicted as positive by the base-
line. For most clients, review length is clustered
around the mean of 61, but four clients have length
> 90. Length of review is correlated with label: on
average, negative reviews contain 20 words more
than positive ones. This causes baseline to under-
predict positives on the few clients with longer
reviews. The topics of the four outlying clients
(video games, CDs, Toys&Games) are related so
that the client sketch is able to shift the decision
boundary to correct for this bias. Using only nor-
malized average sentence length as the client sketch
bridges part of the improvement of KYC over the
baseline (details in Appendix C) implying that aver-
age instance length should be part of client sketch
for sentiment classification tasks.
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Salience TF Binary Sum- Architecture
Concat IDF BOW mary Deep Decomp MoE-g

OD 80.1 80.0 81.0 75.4 80.9 76.0 74.9
ID 86.0 85.9 77.8 81.8 85.9 85.0 79.8

Table 6: Comparing variant client sketches (Sc) and
network architectures (

⊕
and Yθ) of KYC in Fig 1.

Ablation Studies We explored a number of alter-
native client sketches and models for harnessing
them. We present a summary here; details are in
the Appendix C and D. Table 6 shows average F1
on NER for three other sketches: TF-IDF, Binary
bag of words, and a 768-dim pooled BERT em-
bedding of ten summary sentences extracted from
client corpus (Barrios et al., 2016). KYC’s de-
fault term saliency features provides best accuracy
with TF-IDF a close second, and embedding-based
sketches the worst. Next, we compare three other
architectures for harnessing g in Table 6: Deep,
where module

⊕
after concatenating g and M

adds an additional non-linear layer so that now the
whole decision boundary, and not just bias, is client-
specific. KYC’s OOD performance increases a bit
over plain concat. Decompose, which mixes two
softmax matrices with a client-specific weight α
learned from g. MoE-g, which is like MoE but
uses the client sketch for expert gating. We observe
that the last two options are worse than KYC.

4 Conclusion

We introduced the problem of lightweight client
adaption in NLP service settings. This is a promis-
ing area, ripe for further research on more complex
tasks like translation. We proposed client sketches
and KYC: an early prototype server network for
on-the-fly adaptation. Three NLP tasks showed
considerable benefits from simple, per-label bias
correction. Alternative architectures and ablations
provide additional insights.
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