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Abstract

Simultaneous speech-to-speech translation is
widely useful but extremely challenging, since
it needs to generate target-language speech
concurrently with the source-language speech,
with only a few seconds delay. In addition,
it needs to continuously translate a stream
of sentences, but all recent solutions merely
focus on the single-sentence scenario. As
a result, current approaches accumulate la-
tencies progressively when the speaker talks
faster, and introduce unnatural pauses when
the speaker talks slower. To overcome these
issues, we propose Self-Adaptive Translation
(SAT) which flexibly adjusts the length of
translations to accommodate different source
speech rates. At similar levels of translation
quality (as measured by BLEU), our method
generates more fluent target speech (as mea-
sured by the naturalness metric MOS) with
substantially lower latency than the baseline,
in both Zh<+En directions.

1 Introduction

Simultaneous speech-to-speech translation, which
mimics the human interpreter’s practice to trans-
late the source speech into a different language
with 3 to 5 seconds delay, has wide usage sce-
narios such as international conference meetings,
traveling and negotiations as it provides more
natural communication process than simultane-
ous speech-to-text translation. This task has been
widely considered as one of the most challenging
tasks in NLP with (but not limited to) following
reasons: on one hand, the simultaneous transla-
tion is a hard task due to the word order differ-
ence between source and target languages, e.g.,

* See our speech-to-speech simultaneous translation

demos (including comparison with human interpreters) at
https://sat-demo.github.io.
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Figure 1: Slower source speech causes unnatural

pauses (<) between words. Faster source speech prop-
agates extra latencies (<) to the following sentences.

SOV languages (German, Japanese, etc.) and SVO
languages (English, Chinese, etc.); on the other
hand, simultaneous speech-to-speech translation
escalates the challenge by considering the smooth
cooperation between the modules of speech recog-
nition, translation and speech synthesis.

In order to achieve simultaneous speech-to-
speech translation (SSST), to the best of our
knowledge, most recent approaches (Oda et al.,
2014; Xiong et al., 2019) dismantle the entire sys-
tem into a three-step pipelines, streaming Auto-
matic Speech Recognition (ASR) (Sainath et al.,
2020; Inaguma et al., 2020; Li et al., 2020), simul-
taneous Text-to-Text translation (sT2T) (Gu et al.,
2017; Ma et al., 2019; Arivazhagan et al., 2019;
Ma et al., 2020b), and Text-to-Speech (TTS) syn-
thesis (Wang et al., 2017; Ping et al., 2017; Oord
et al.,, 2017). Most recent efforts mainly focus
on sT2T which is considered the key component
to further reduce the translation latency and im-
prove the translation quality for the entire pipeline.
To achieve better translation quality and lower la-
tency, there has been extensive research efforts
which concentrate on the sT2T by introducing
more robust models (Ma et al., 2019; Arivazha-
gan et al., 2019), better policies (Gu et al., 2017;
Zheng et al., 2020a, 2019b,a), new decoding algo-
rithms (Zheng et al., 2019¢, 2020b), or multimodal
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Figure 2: Average Chinese and English speed rate dis-
tribution for different speakers.

information (Imankulova et al., 2019). However,
is it sufficient to only consider the effectiveness
of sT2T and ignore the interactions between other
different components?

Furthermore, in practice, when we need to
translate multiple sentences continuously, it is not
only important to consider the cooperations be-
tween sT2T and other speech-related modules, but
also essential to take the effects between current
and later sentence into consideration as shown in
Fig. 1. Unfortunately, all the aforementioned tech-
niques ignore other speech modules and merely
establish their systems and analysis on single-
sentence scenario, which is not realistic. To
achieve fluent and constant, low-latency SSST, we
also need to consider speech speed difference be-
tween target and source speech.

Fig. 2 shows the speech rate distributions for
both Chinese and English in our speech corpus.
The speech rate varies especially for different
speakers. As shown in Fig. 1, when we have vari-
ous source speech speed, the number of unnatural
pauses and the latency vary dramatically. More
specifically, when speaker talks slowly, TTS of-
ten needs to make more pauses to wait for more
tokens from sT2T which usually does not out-
put new translations with limited source informa-
tion. These unnatural pauses lead to semantic
and syntactic confusion (Lege, 2012; Bae, 2015).
On the contrary, when speaker talks fast, the tar-
get speech synthesized from previous sT2T mod-
els (e.g. wait-k) always introduce large latency
which accumulates through the entire paragraph
and causes significant delays.Therefore, in realis-
tic, the latency for the latter sentences are far more
than the claimed latency in the original system.
Fig. 3 supports the above hypothesis when source
side speech rate varies while using one wait-k
translation model and iTTS model.

To overcome the above problems, we propose
Self-Adaptive Translation (SAT) for simultaneous
speech-to-speech translation, which flexibly deter-
mines the length of translation based on differ-
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Figure 3: Relationship between source speech rate with
latency and number of unnatural pauses by naively us-
ing wait-k£ model in simultaneous Chinese-to-English
speech-to-speech translation in our dev set.

ent source speech rate. As it is shown in Fig-
ure 6, within this framework, when the speakers
talk very fast, the model is encouraged to generate
abbreviate but informative translation. Hence, as
a result of shorter translation, the previous trans-
lation speech can finish earlier and alleviate their
effects to the latter ones. Similarly, when the
speakers have slower speech rate, the decoder will
generate more meaningful tokens until a natural
speech pause. The speech pauses can be under-
stood as a natural boundary between sentences or
phrase which does not introduce ambiguity to the
translation. In conclusion, we make the following
contributions:

o We propose SAT to flexibly adjust translation
length to generate fluent and low-latency tar-
get speeches for the entire speech (Sec. 3).

e We propose paragraph based Boundary
Aware Delay as the first latency metric
suitable for simultaneous speech-to-speech
translation (Sec. 4).

e We annotate a new simultaneous speech-
to-speech translation dataset for Chinese-
English translation, together with profes-
sional interpreters’ interpretation (Sec 5).

e Qur system is the first simultaneous speech-
to-speech translation system using iTTS (as
opposed to full-sentence TTS) to further re-
duce the latency (Sec. 2).

e Experiments show that our proposed system
can achieve higher speech fluency and lower
latency with similar or even higher trans-
lation quality compared with baselines and
even human interpreters (Sec. 5).

2 Preliminaries

In this section, we first introduce each component
of three-step pipeline, which are streaming ASR,
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streaming simultaneous incremental
... text-to-text mEVAS TR, text-to-
source speech stream recognition source text stream translation target text stream speech target speech stream

Figure 4: Pipeline of Speech-to-speech simultaneous translation.

# | Incremental Transcription Time (ms)
1 | thank you 960
2 | thank you miss 1120
3 | thank you Mr chair 1600
4 | Thank you, Mr chairman . 2040
Table 1: Example of English streaming ASR. Red

words are revised in latter steps. Punctuations only ap-
pear in the final step.

simultaneous translation models and incremental
TTS techniques.

2.1 Streaming Automatic Speech Recognition

We use anonymous real-time speech recognizer
as the speech recognition module. As shown in
Fig. 4, streaming ASR is first step of the entire
pipeline which converts the growing source acous-
tic signals from speaker into a sequence of tokens
x = (x1,x9,...) timely with about 1 second la-
tency. Table 1 demonstrates one example of En-
glish streaming ASR which generates the English
outputs incrementally. Each row in the table rep-
resents the streaming ASR outputs at each step.
Note that streaming ASR sometimes revises some
tail outputs from previous step (e.g. 3th and 4th
steps in Table 1). To get stabler outputs, we ex-
clude the last word in ASR outputs (except the fi-
nal steps) in our system.

2.2 Simultaneous Machine Translation
As an intermediate step between source speech

recognition and target speech synthesis modules,
the goal of this step is to translation all the avail-
able source language tokens from streaming ASR
into another language. There are many Text-to-
Text simultaneous translation models (Gu et al.,
2017; Ma et al., 2019; Arivazhagan et al., 2019;
Ma et al., 2020b) that have been proposed recently.

Different from conventional full-sentence trans-
lation model, which encodes the entire source sen-
tence * = (z1,...T,,) into a sequence of hid-
den states, and decodes sequentially conditioned
on those hidden states and previous predictions as
ply | x) = H'ty:|1 p(yt | @, y<¢) to form the final
hypothesis y = (y1, ..., ¥+), simultaneous trans-
lation makes predictions with partial, growing in-
puts before the source sentence finishes.

Without loss of generality, regardless the actual
design of translation policy, simultaneous transla-
tion can be represented with prefix-to-prefix fash-

ion as follows:

Po(y | @) = [T Pyt | @y y<t) (D
where ¢(t) can be used to represent any arbitrary
fixed or adaptive policy, denoting the number of
processed source tokens at time step t. We choose
the wait-k policy (Ma et al., 2019) as our baseline
for its simplicity and great performance.

More specifically, in this paper, our wait-k pol-
icy is defined as follows:

Gwaick(t) =min{k + ¢t — 1, |z[} ()
This policy starts to decode after the first k£ source

words, and then translates one token every time
when one more source token is received.

2.3 Incremental Text-to-Speech

As the last step of the entire pipeline the goal of
iTTS is to incrementally generate the target speech
audio and play it to the audience instantly with
available translated words. Different from conven-
tional full-sentence TTS, which requires the avail-
ability of the entire sentence, iTTS usually has 1-2
words delay but with similar audio quality com-
pared with the full-sentence TTS. Compared with
previous source sentence segment-based SSST
systems (Oda et al., 2014; Xiong et al., 2019), our
system can achieve word-level latency. We adapt
the iTTS framework from Ma et al. (2019) to our
pipeline to generate target speech audio with trans-
lated tokens y; at ¢ time step.

3 Self-Adaptive Translation

To overcome the above practical problems, we
propose Self-Adaptive Translation (SAT) tech-
nique to enable the ability of adjusting the length
of the translation based on the demand of latency
and fluency. We first demonstrate the problem of
one naive solution. Then, we introduce our train-
ing framework and talk about how to apply this
technique in practice during inference time.

3.1 Naive Solution is Problematic

To alleviate the various speech rate problem, one
naive solution is to adjust the target side speech
speed based on the source speaker’s speed. How-
ever, as shown in Table 2, this solution is problem-
atic as it usually requires the audience to be more

3930



Speech Rate MOS
0.5% 2.00 +0.08
0.6x 2.32+£0.08
0.75% 2.95 +0.07

Original 4.01 +0.08
1.33%x 3.34+0.08
1.66x 2.40 +£0.09
2.0x 2.06 +0.04

Table 2: Mean Opinion Score (MOS) evaluations of
naturalness for different speech speed changed by ffm-
peg. Original English speeches are synthesized by our
incremental Text-to-speech system.
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Figure 5: Tgt/src length ratio for English-to-Chinese
task in training data (red) and ideal testing cases (blue).

focus on the translated speech when we speed up
the speech rate on target side, and sometimes it
will disrupt the audiences’ comprehension of the
translation (Gordon-Salant et al., 2014). Simi-
larly, slowing down the speech only creates over-
long phoneme pronunciation which is unnatural
and leads to confusion.

Inspired by human interpreters(He et al., 2016;
Al-Khanji et al., 2000) who often summarize the
contexts in order to catch up the speaker, or make
wordy translation to wait the speaker, the optimal
translation model should be enable to adjust the
length of translated sentence to change the speech
duration on target side to avoid further delays or
unnatural pauses fundamentally.

3.2 Self-Adaptive Training

Translation between different language pairs have
various tgt/src length ratios, e.g., English-to-
Chinese translation ratio is roughly around 0.85
(small variations between different datasets).
However, this length ratio merely reflects the av-
erage statistics for the entire dataset, and as it is
shown with red line in Fig. 5, the ratio distribu-
tion for individual sentence is quite wide around
the average length ratio.

As shown in Fig. 6 and discussed in earlier sec-
tions, over short and long translations are not pre-
ferred in simultaneous speech-to-speech transla-
tion. Ideally, we prefer the system to have a similar

source ASR

wait-k +iTTS b [} X X J

SAT +iTTS

(a) slow source speech

source ASR

wait-k +iTTS (X X X ¥ ]

SAT +iTTS

(b) moderate source speech
source ASR
wait-k +iTTS X xX X I X L X )

SAT +iTTS

(c) fast source speech

Figure 6: Illustration of conventional wait-k (red) and
SAT-k (yellow) training policy. In SAT, we force the
length of tail to be k& which equals the latency k. In the
above example, we have k£ = 1.

amount of initial wait with delay in the tail during
translation of each sentence. Following this de-
sign, the translation tail of previous sentence will
fit perfectly into the beginning delay window for
the following sentence, and will not cause any ex-
tra latency and intermittent speech.

Based on the above observation, we propose
to use different training policies for different sen-
tences with different tgt/src ratios. As shown in
Fig. 6, We start from a fixed delay of &k tokens
and then force the model to have the same number
of tokens in initial wait and final tail by amortiz-
ing the extra tokens into the middle steps. More
specifically, when we have longer tail than the
fixed initial wait, we move extra words into former
steps, and some steps before tail will decode more
than one word at a time. As a result, there will
be some one-to-many policies between source and
target and the model will learn to generate longer
translations with shorter source text. On the con-
trary, when we have shorter tail, we perform ex-
tra reading on the source side and the model will
learn to generate shorter translation through this
many-to-one policy. Formally, we define our SAT
training policy as follows:

Gwait-k, c(t) = min{k +i—-1- I_CtJ7 |£B|} (3)

where c is the compensation rate which is de-
cided by the tgt/src length ratio after deduction
of k tokens in source initial and target tail. For
example, when tgt/src length ratio is 1.25, then

= H;ﬁﬁ‘:i —1 =125 —1 = 0.25, represent-
ing to decode 5 target words for every 4 source
words, and model learn to generate wordy transla-
tion. When target side is shorter than source side, ¢
becomes negative, and model learn to decode less
tokens than source side.

Note that the tgt/src length ratio in our case
is determined by the corresponding sentence it-
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Figure 7: Different translation policy with different
choice of c. Green boxes represent many-to-1 policy;
yellow boxes denote 1-to-1 policy; purple boxes show
1-to-many translation policy.

self instead of the corpus level tgt/src length ra-
tio, which is a crucial different from catchup al-
gorithm from (Ma et al., 2019) where some short
translations is trained with inappropriate positive
c. It seems to be a minor difference, but it actually
enables the model to learn totally different thing
other than catchup.

The blue line in Fig. 5 represents the tgt/src
length ratio for the ideal simultaneous speech-to-
speech translation examples in our training set
which have the same speech time between source
and target side. When we have the same speech
time between source and target side, there will be
no accumulated latency from previous sentences
to the following sentences. As we notice, our
training data covers all the tgt/src length ratio dis-
tribution for the ideal cases, indicating that by ad-
justing the compensation rate ¢ from our training
corpus, our model learns to generate appropriate
length of translation on the target side to avoid ac-
cumulated latency.

As shown in Fig. 5, there are many different
choices of ¢ for different sentences, and each sen-
tence is trained with their own corresponding com-
pensation rate which makes the training policy dif-
ferent from others with different ¢. Hence, As
shown in Fig. 7, our trained model is implicitly
learned many different policies, and when you
choose a compensation rate ¢ during inference,
the model will generate certain length of trans-
lation corresponding to that compensation rate ¢
in training. More specifically, assume we have
a source sentence, for example in Chinese, with
length of m, and the conventional full-sentence or
wait-k model normally would translate this into a
English sentence with length of 1.25 x m. How-
ever, the output length from SAT can be changed
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a ‘\'—“\\\'—_—./‘
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(a) Tail length vs. test-time compensation rate
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(b) Translation length |y| vs. test-time compensation
rate

Figure 8: Translation length analysis on Chinese-to-
English task using one SAT-3 and wait-k£ model.

by c following the policy in Eq. 3 during decoding.
When c is negative, SAT generates shorter transla-
tion than 1.25 x m. On the contrary, if we choose
c that is positive, SAT generates longer translation
than 1.25 x m. The compensation rate ¢ functions
as the key of model selection to generate outputs
of different lengths.

Fig. 8(a)-8(b) show the effectiveness of our pro-
posed model which has the ability to adjust the tail
length of the entire translation with different c’s.

3.3 Self-Adaptive Inference

The above section discusses the importance of c,
which is easily to obtain during training time, but
at inference time, we do not know the optimal
choice of ¢ in advance since the fluency and la-
tency criteria also rely on the finish time for each
word on both sides. Therefore, the streaming ASR
and iTTS plays important roles here to determine
the decoding policy to form fluent and low-latency
translation speech and we use the knowledge of
streaming ASR and iTTS for selecting the appro-
priate policy on the fly.

When we have a faster speech, streaming ASR
will send multiple tokens to SAT at some steps.
But SAT only generates one token at a time on the
target side and pass it to iTTS instantly. This de-
coding policy has a similar function to a negative
¢, which has many-to-one translation policy. In
this case, SAT will generate succinct translation
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and iTTS therefor can finish the translation speech
with shorter time since there are less tokens.

Contrarily, when the speaker talks with slower
pace, there is only one token that is feed into SAT.
SAT translates it into a different token and delivers
it to iTTS. This is one-to-one translation policy.
When iTTS is about to finish playing the newly
generated speech, and there is no new incoming
token from steaming ASR, SAT will force the de-
coder to generate one extra token, which becomes
one-to-many translation policy (including the de-
coded token in previous step), and feeds it to iTTS.
When the speaker makes a long pause, and there
is still no new tokens from streaming ASR, the de-
coder of SAT continues to translate until a pause
token (e.g. any punctuations) generated. This
pause token forms a necessary, natural pause on
speech side and will not change the understanding
for the translated speech.

4 Paragraph-Based Boundary Aware
Latency

As mentioned frequently above, latency is another
essential dimension for simultaneous speech-to-
speech translation performance. However, the
measurement of speech delay from source speech
to each synthesized word in target speech is chal-
lenging and there is no direct metric that is suitable
for simultaneous speech-to-speech translation.
Human interpreters use Ear-Voice-Span (EVS)
(Gumul, 2006; Lee, 2002) to calculate transla-
tion delay for some landmark words from source
speech to target source. However, this requires the
target-to-source word correspondence. In prac-
tice, the translation model sometimes makes errors
during translation which includes miss transla-
tion of some words or over translated some words
that source does not include. Thus, an automatic
fully word-to-word alignment between target and
source is hard to be accurate. Human annotation
is accurate but expensive and not practical.
Inspired by Ari et al. (2020) who proposed
Translation Lag (TL) to ignore the semantic cor-
respondence between words from target to source
side and only calculate each target delay propor-
tionally to each source words regardless the ac-
tually meaning of word in the task of simultane-
ous “speech-to-text” translation, we use a similar
method to calculate the latency for each sentence.
Nevertheless, TL is only designed for single-
sentence latency ,while we need to measure the
latency of a paragraph of speech. Thus, we pro-

pose paragraph based Boundary Aware Latency
(pBAL) to compute the latency of long speech si-
multaneous translation. In pPBAL, we first align the
each sentence, make each word’s correspondence
within the sentence boundary. Then we compute
the time differences of the finished time between
each target word’s audio and its proportion corre-
sponding source word’s finish time in source side.
In experiments, we determine the finish time of
each source and target words by forced aligner
(Yuan and Liberman, 2008) and align the transla-
tion and source speech by using the corresponding
streaming ASR as a bridge.

5 Experiments

5.1 Datasets and Systems Settings

We evaluate on two simultaneous speech-to-
speech translation directions: Chinese<+>English.
For training, we use the text-to-text parallel cor-
pora available from WMTI18! (24.7M sentence
pairs). We also annotate a portion of Chinese and
English speeches from LDC United Nations Pro-
ceedings Speech 2 (LDC-UN) as a speech-to-text
corpus. This corpus includes speeches recorded in
2009-2012 from United Nations conferences in six
official UN languages. We transcribe the speeches
and then translate the transcriptions as references.
The speech recordings include not only source
speech but also corresponding professional simul-
taneous interpreters’ interpretation in the confer-
ence. Thus, we also transcribe those human simul-
taneous interpretation of En—Zh direction which
will not be used in our model but compared to in
the following experiments.

En—Z7h | Zh—En
# of speeches 58 119
Train # of words 63650 61676
Total time 6.81h 9.68 h
# of speeches 3 6
Dev # of words 1153 2415
Total time 0.27h 0.35h
# of speeches 3 6
Test # of words 3053 1870
Total time 0.39h 0.30h

Table 3: Statistics of LDC-UN dataset (source-side).

Table 3 shows the statistics of our speech-to-
text dataset. We train our models using both the
WMT18 training set and the LDC UN speech-to-
text training set. We validate and test the mod-
els only in the LDC-UN dataset. For Chinese side

Ihttp://www.statmt.org/wmt18/translation—task.
html

2https ://catalog.ldc.upenn.edu/LDC2014S08
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text, we use jieba > Chinese segmentation tool. We
apply BPE (Sennrich et al., 2015) on all texts in or-
der to reduce the vocabulary sizes. We set the vo-
cabulary size to 16K for both Chinese and English
text. Our Transformer is essentially the same with
base Transformer model (Vaswani et al., 2017).

As mentioned in Section 2.1, we use an anony-
mous real-time speech recognizer from a well-
known cloud platform as the speech recognition
module for both English and Chinese. During
speech-to-speech simultaneous translation decod-
ing, after receiving an ASR input, we first nor-
malize the punctuations and tokenize (or do Chi-
nese segmentation for Zh—En translation) the in-
put. The last tokens are always removed in the en-
coder of translation model because they are very
unstable. In the latency measurement we use Penn
Phonetics Lab Forced Aligner (P2FA) (Yuan and
Liberman, 2008) as the forced aligner to automati-
cally annotate the time-stamp for both Chinese and
English words in source and target sides.

For the incremental Text-to-speech system, we
follow Ma et al. (2020a) and take the Tacotron
2 model (Shen et al., 2018) as our phoneme-to-
spectrogram model and train it with additional
guided attention loss (Tachibana et al., 2018)
which speeds up convergence. Our vocoder is
the same as that in the Parallel WaveGAN pa-
per (Yamamoto et al., 2020), which consists of 30
layers of dilated residual convolution blocks with
exponentially increasing three dilation cycles, 64
residual and skip channels and the convolution
filter size 3. For English, we use a proprietary
speech dataset containing 13,708 audio clips (i.e.,
sentences) from a female speaker and the corre-
sponding transcripts. For Chinese, we use a pub-
lic speech dataset* containing 10,000 audio clips
from a female speaker and the transcripts.

5.2 Speech-to-Speech Simul. Translation

Fig. 9 show the final results of our proposed mod-
els and baselines. For translation quality mea-
surement, we use the “multi-bleu.pl” > script to
calculate BLEU scores. Since different punctua-
tions are soundless, we remove all of them before
BLEU evaluation for both hypotheses and refer-
ences. We follow (Xiong et al., 2019) to concate-
nate the translations of each talk into one sentence
to measure BLEU scores.

3https ://github.com/fxsjy/jieba
https://www.data-baker.com/open_source.html

5https ://github.com/moses—-smt//mosesdecoder/blob/
master/scripts/generic/multi-bleu.perl
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Figure 9: Translation quality and latency (pBAL)
of proposed simultaneous speech-to-speech translation
systems compared with baselines. For all those SAT-%
and wait-k models, k = {3, 5, 7} from bottom to top.

For Chinese-to-English simultaneous transla-
tion, we compare our models with naive wait-k,
wait-k with SAT decoding (only use Self-adaptive
inference in Sec. 3.3), segment based models (Oda
et al., 2014; Xiong et al., 2019) and full sentence
translation model. All these models share one
iTTS system. For segment based model, since our
streaming ASR API doesn’t provide any punctua-
tion before the final step, we use the final punc-
tuations to segment the partial streaming inputs
and then use a full-sentence translation model to
translate the partial segment as a full sentence.
The results show that our proposed SAT-k models
can achieve much lower latency without sacrific-
ing quality compared with those baselines.

Fig. 9(b) shows the results of En—Zh simulta-
neous translation. Besides the baselines used in
Zh—En experiments, we also compare our system
with professional human interpreters’ translation.
Our proposed models also outperform all the base-
lines and human interpreters. Our models reduce
more latency in Zh—En than En—Zh compared
with wait-k because English sentences is always
longer than Chinese thus it’s more easily to accu-
mulate latency in Zh—En (also shown in Fig. 10).
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5.3 Human Evaluation on Speech Quality

Method En—Zh Zh—En
wait-3 3.56 £0.09 | 3.68 +£0.08
wait-3 + SAT decoding | 3.81 +0.08 | 3.96 £+ 0.04
SAT-3 3.83£0.07 | 3.97 +0.07
Segment-based 3.79+0.15 | 3.99 +0.07
Full sentence 3.98 +0.08 | 4.03 £0.03
Human 3.85£0.05 -

Table 4: MOS evaluations of fluency for different target
speeches generated by different methods.

In Table 4, we evaluate our synthesized
speeches by Mean Opinion Scores (MOS) with na-
tive speakers, which is a standard metric in TTS.
Each speech received 10 human ratings scaled
from 1 to 5, with 5 being the best. For both
Zh<En directions, wait-3 models have the low-
est MOS due to the many unnatural pauses (see
Sec. 3.1). Our proposed model SAT-3 and wait-3
with SAT decoding achieve similar fluency to full
sentence models and even human interpreters.

5.4 Examples

Fig. 11 shows a Zh—En decoding example. Here
the wait-3 models’ outputs have a much longer
latency compared with SAT-3 because their be-
ginnings are delayed by the translation of pre-
vious sentence(s) and their tails are also very
long. The En—Zh example in Fig. 12 is similar.
While streaming ASR has a very long delay, SAT-
3 model still controls the latency to roughly 4.5s;
all pauses on the target side are natural ones from
punctuations. By contrast, the human interpreter’s
translation has the longest latency.

6 Conclusions

We proposed Self-Adaptive Translation for simul-
taneous speech-to-speech translation which flexi-
bly adjusts translation length to avoid latency ac-
cumulation and unnatural pauses. In both Zh<+En
directions, our method generates fluent and low la-
tency target speeches with high translation quality.
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