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Abstract

Preconditions provide a form of logical con-
nection between events that explains why
some events occur together and information
that is complementary to the more widely stud-
ied relations such as causation, temporal order-
ing, entailment, and discourse relations. Mod-
eling preconditions in text has been hampered
in part due to the lack of large scale labeled
data grounded in text. This paper introduces
PeKo, a crowd-sourced annotation of precon-
ditions between event pairs in newswire, an or-
der of magnitude larger than prior text annota-
tions. To complement this new corpus, we also
introduce two challenge tasks aimed at mod-
eling preconditions: (i) Precondition Identifi-
cation – a standard classification task defined
over pairs of event mentions, and (ii) Precon-
dition Generation – a generative task aimed
at testing a more general ability to reason
about a given event. Evaluation on both tasks
shows that modeling preconditions is challeng-
ing even for today’s large language models
(LM). This suggests that precondition knowl-
edge is not easily accessible in LM-derived
representations alone. Our generation results
show that fine-tuning an LM on PeKo yields
better conditional relations than when trained
on raw text or temporally-ordered corpora.

1 Introduction

Recognizing logical connections between events
in text is important for comprehensive document
understanding and to improve global coherence in
language generation systems. There is a rich body
of work in identifying relations between textual
events which covers causation (Mirza et al., 2014),
temporal relations (Pustejovsky et al., 2003), tex-
tual entailment (Dagan et al., 2005), and discourse
relations (Blair-Goldensohn and McKeown, 2006).

In this work, we focus on the precondition re-
lation, which offers a general view of why certain

events occur together in the world. This is not eas-
ily deduced from other event-event relations. Tem-
poral ordering systems can sequence the order in
which events occurred (Bethard, 2013; Chambers
et al., 2014; Han et al., 2019) but can’t explain why
they occurred at all. Which events in a sequence
were by chance, and which were required? Tex-
tual entailment identifies event paraphrases (Berant
et al., 2015) and some causation (Girju, 2003a),
but their view misses the broader look at enabling
events like preconditions. Let the following serve
as an example:

I heard a bird sing above as I turned the
key in the door. It opened with a push.

You can sequence these four events in order, but
an ordering does not understand the why of the
situation. One of these events (sing) is clearly not
relevant to the door opening. How do we know
that turning the key is a precondition to opened
and not push? Turning the key usually doesn’t
cause the door to open (perhaps on some doors,
but here a push was needed). Turning is simply
a precondition. Causation and entailment do not
apply to turn either. Preconditions thus provide a
unique and still fine-grained understanding of this
situation.

How do we build models that can recognize
(and learn from) this type of common-sense knowl-
edge in text? Do language models trained on
vast amounts of data already capture it? Since
there are no large scale datasets that can effectively
answer these questions, we introduce PeKo, the
Precondition Knowledge dataset. We also intro-
duce two tasks – one aimed at recognizing precon-
ditions in text, and the other at generating precon-
dition events for any given target event.

The core contribution in this paper is this new
publicly available crowd-sourced PeKo dataset. It
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consists of 28,948 event pairs annotated with pre-
condition relations. We will first present our work-
ing definition of preconditions, and then discuss
how to practically get crowd workers to identify
them in text. We provide analysis of the new corpus
and compare it against other existing corpora.

In addition to the corpus, this paper proposes
two new challenge tasks. The first is a traditional
classification task on the corpus itself. We thus
address critical questions of how to model precon-
dition knowledge. For instance, do today’s large
language models (e.g., BERT or XLNet) already
capture precondition knowledge, and how do they
perform on a precondition prediction task? Second,
does textual context assist in precondition predic-
tion? We experiment with varying levels of context
and show that identifying preconditions requires
careful modeling of the context.

The second proposed task is a precondition gen-
eration evaluation: models must generate necessary
preconditions for a given target event. This is a test
for how well models can reason about the neces-
sary preconditions for a given situation, which is a
useful capability for story generation and learning
generalized scripts. We show how PeKo can be
used to train (fine-tune) standard generative mod-
els, such as GPT-2, for this task. Empirical results
show that fine-tuning on the PeKo-derived training
set generates at least twice as many preconditions
as compared to training on general instances.

All code and data are available at https://

stonybrooknlp.github.io/PeKo/.

2 Related Work

There has been a vast amount of research on extract-
ing different types of relations between events in-
cluding temporal (Pustejovsky et al., 2003), causal
(Girju, 2003b), and paraphrasal relationships (Lin
and Pantel, 2001), but relatively less research into
precondition relationships. One of the early def-
initions and computational use of preconditions
comes from the STRIPS program (Fikes and Nils-
son, 1971). Preconditions were defined as a set
of conditions that MUST be met in order for the
action (event) to be allowed to take place.

Later work focused on aggregating precondi-
tion knowledge for a small class of action words,
leveraging FrameNet and a text corpus to generate
candidate precondition words using a PMI-based
heuristic (Sil et al., 2010; Sil and Yates, 2011). Us-
ing small amounts of labeled data, they use hand-

crafted PMI and wordnet based features to learn
a SVM-based classifier that scores preconditions
for a given action. Branavan et al. (2012) learned
domain-specific preconditions from written instruc-
tions for the game of Minecraft. The instructions
are procedural and well suited for identification.
These mostly target preconditions that are event-
state relations as opposed to our goals of textual
event-event identification.

ATOMIC (Sap et al., 2019) is a related crowd-
sourced dataset of event-event relations, where
given a simple target event (verb phrase and its ar-
guments), crowd workers provided various types of
common-sense knowledge. This included ‘NEED’
events analogous to our precondition events for a
target. The main difference is our work grounds
both target and precondition events in news text,
whereas ATOMIC elicits general world knowledge,
a complementary approach with different trade-
offs. Interestingly, we find that the precondition re-
lations learnt from textually grounded news events
generalize to story events in ATOMIC for our gen-
eration task.

Annotated Text Corpora Three existing datasets
capture some form of precondition knowledge
in their annotations: the Rich Event Description
(RED) dataset (O’Gorman et al., 2016), CaTeRS
(Mostafazadeh et al., 2016), and Event StoryLine
(Caselli and Vossen, 2017). These are generally
too small for learning text classifiers as we briefly
describe now.

RED is the most directly related, created to
model a broad set of event-event relations in news.
Preconditions are not their sole focus, though, so
this dataset only contains ~1000 precondition in-
stances. CaTeRs shares a similar problem to RED.
It has an enables relation similar to precondition,
but since the domain is 5-sentence short stories and
preconditions aren’t the main focus, it only has
~400 instances. The Event StoryLine dataset is
small in size too, but also doesn’t have a precise
precondition relation. The dataset instead has RIS-
ING_ACTION that includes preconditions in its
definition, but the same label captures other con-
cepts like subevents and entailment. There are
~5000 instances, but only a fraction are precondi-
tions and it is not possible to separate them out.

This paper is thus unique to prior work by anno-
tating grounded written text at a scale large enough
to enable machine learning solutions. This enables
our target tasks: text classification and generation.

https://stonybrooknlp.github.io/PeKo/
https://stonybrooknlp.github.io/PeKo/
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3 Preconditions as Relations

Our goal is to develop a resource that can help
models reason about the necessary preconditions
for events mentioned in text. This is useful for
planning towards a goal, explaining how a certain
situation came about, and predicting what future
events are plausible. We make two important de-
sign choices in building such a resource: Ground-
ing – the resource is grounded in text, particularly
over events in the news domain, and Framing – we
construct the resource with preconditions framed as
event-to-event relation pairs in a specific context.

Grounding: We ground the resource to text so that
we can leverage the full context of the events, and
we choose the news domain due to its common use
in other event-related tasks such as event extraction,
schema generation, and temporal reasoning.

Framing: Broadly speaking, preconditions specify
what must exist/happen before something else can
exist/happen (Fikes and Nilsson, 1971; Sap et al.,
2019). It is natural to think of a precondition as a
state of the world that must be satisfied for an event
to happen i.e. a state-event relation. However, the
state of the world is hard to circumscribe for most
real world events, and more importantly the precon-
dition state is often left unsaid in a story. Rather,
the author will more often mention an event from
which it follows that the precondition state is satis-
fied. Thus, it makes sense to frame preconditions
as relations between two events described in their
specific textual context.

We first present a formal definition based on this
notion and then describe a crowdsourcing method-
ology for obtaining this knowledge at scale.

Definition: Given a target event mention t and a
candidate event mention p, we assert p is a precon-
dition event for t if p is necessary for t to happen
i.e., t likely would not have occurred without p, in
the current text context.

Using the example of opening a door from the
Introduction, turning the key is a precondition event
(for opening the door) because it results in a state
where the door is unlocked. The opening event
cannot occur without such a state. Importantly, we
do not define a precondition event as an absolute
requirement for the target (the door opening) to
occur in all scenarios. However, we do require that
the target event likely would not have occurred in

the current context. This allows another story with
an alternate event, such as “I picked the lock”. Both
picking-lock and turning-key are preconditions in
their own story contexts. Strict logicians might
take issue, but language understanding requires a
looser definition that uses likelihood of occurrence
when interpreting real-world scenarios.

4 Preconditions Dataset

This section describes our methodology to annotate
news articles with the previous section’s definitions.
One problem with annotating preconditions in text
is the large number of event mentions in each arti-
cle, which means annotation of all possible event
pairs is infeasible. The temporal community has
struggled with this same dilemma (Chambers et al.,
2014; Vashishtha et al., 2019).

We address the question of which pairs to an-
notate with two approaches. First, instead of at-
tempting a dense annotation of few articles, we
sub-sample candidate pairs of events across many
articles. Second, we use an automatic temporal
relation classifier to filter pairs by identifying pos-
sible candidates. We then ask crowd-workers to
annotate the resulting pairs for preconditions.

4.1 Candidate Event Pair Extraction

Sub-sampling event pairs at random from a doc-
ument can result in a large number of pairs that
are not preconditions. Because precondition event
pairs ought to be temporally related (i.e., the pre-
condition should precede the target event), we can
filter the candidate event pairs to only those that
are in a BEFORE or AFTER relationship.

As a first step, we extract events and
their temporal relations from news articles us-
ing CAEVO (Chambers et al., 2014), a temporal
relation extraction system. We chose CAEVO over
other available systems for two main reasons, al-
though it’s not the only option out there: (1) it auto-
matically extracts both events and their temporal re-
lations, and (2) it extracts events in any form (verbs,
nouns, and adjectives), which gives a broader cov-
erage than some other recent systems that only con-
sider verbs as events (Ning et al., 2018). We used
CAEVO on a random sample of 6,837 articles in
the New York Times Annotated Corpus (Sandhaus,
2008).

On average CAEVO extracted around 63 events
per article, which yielded a total of 3,906 possible
relation candidates per document. We filtered these
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Figure 1: Example instances annotated by crowd-
workers. Each HIT included ten such instances.

to retain only pairs of events that have a BEFORE
or AFTER temporal relation between them. We
call the temporally preceding event the candidate
precondition, and the temporally subsequent event
in the pair the target event. We filtered out pairs
involving causative targets or reporting verb pre-
conditions to remove trivial context independent
preconditions (see Appendix for examples).

From the remaining, we randomly sampled
40,500 pairs for annotation. We used the first 500
in a pilot annotation to help us improve the task
instructions. We then used the remainder for the
actual annotation.

4.2 Crowdsourcing

The annotators were presented with a text snip-
pet and two event mentions highlighted. Figure 1
shows two examples. To prune out event extrac-
tion errors from CAEVO, the annotators were first
asked if the highlighted text denoted valid events.
An event was deemed valid only if it describes an
action that occurs in the world. 1 If both triggers
were deemed valid, then the annotators evaluated
whether or not the candidate precondition event
was an actual precondition for the target event.
Specifically they check if the candidate event is
necessary for the target event to happen.2

1We left the decision for event validity up to annotators
on their own. We asked annotators to consider an event with
its context rather than the meaning of the word alone. This
includes the negation of an event, which might imply a pre-
vention relation.

2We expected annotators to make decisions on the given
CAEVO output, and they were not allowed to suggest a direc-
tional change. We limited the number of labeling options to

Precond. Non-Precond.
#Evaluated 200 200
Errors 13.5% 9%
- Event Validity 1.5% 3.5%
- Relation 12% 5.5%

Table 1: Expert review of PeKo annotations. "Event Va-
lidity" indicates annotation error on validity labels, "Re-
lation" indicates errors on identifying the event-event
relation.

We used a pilot task to refine the instructions
and the examples to improve consistency amongst
the annotators. For the main annotation task, we
used four crowd-workers to annotate each instance.
For quality control, each HIT included control in-
stances whose labels we knew a priori. We re-
tained only those event pairs where a majority (i.e.,
at least three) of the annotators agreed on the label
and use the majority label as the gold label for each
instance.

4.3 Dataset Quality and Analysis

The resulting dataset, which we call PeKo, contains
more than 30K annotated relations (~10k precondi-
tions, ~20k not).

Annotation Quality: The annotators had fair inter-
annotator agreement with a Fleiss Kappa value
κ = 0.387. We used 4 Turkers per event pair
to ensure accuracy and filter out disagreements.
To further measure the quality of the annotation,
we randomly sub-sampled 400 instances from the
annotated data and re-annotated them using four
“expert” graduate students trained to recognize pre-
conditions. A post-analysis of the expert and crowd
annotations shows the annotation to be of high qual-
ity. Table 1 summarizes the quality statistics. Ex-
perts disagree with the crowd-sourced annotations
in only 11.75% of the cases, with a slightly higher
disagreement for precondition instances at 13.5%.
A small percentage of these disagreements are on
determining when an event is valid.

We also analyzed the discarded instances that
received conflicting votes. Only 10% of these in-
stances can be considered as preconditions and
some of them are arguable based on their context.
Here’s an example:

Before he was hired in 2005, before his
team upset Texas last season, he edu-
cated himself on the college culture.

keep the annotation instructions as straightforward as possible.
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According to the context with discourse cues, one
can reasonably conclude that educated is neces-
sary for the event hired to happen. However, one
might also disagree based on the fact that the con-
nection is not perfectly clear.

Text Position: As with temporal and other event-
event relations, one might ask if position in text
is an indicator of a precondition relation. We thus
tallied our annotations and identified how many
intervening verbs occurred between the annotated
event pairs, as well as how far apart they are in the
document based on token distance. Figure 2 shows
these distributions. The negative numbers indicate
distance when the precondition event occurs after
the target event. As the graphs show, the majority
of preconditions occur first in the text, but a sizable
amount are actually reversed with an evenly spread
out distribution over distance.

Precondition Predicate → Target Predicate
pay → provide try → get
know → miss ask → make
use → provide love → miss
go → provide delay → mean
look → find find → use
take → get ask → take

work → make tell → take
use → find know → get
born → die agree → pay
use → help touch → miss
go → find get → help

move → take lose → help
leave → take

Table 2: The 25 most frequent predicate pairs in the
annotated event pairs.

For further insight into the dataset, Table 2 lists
the most frequent verbs that were annotated as
precondition-target pairs. While there are a few
pairs that can be readily interpreted without other
context (e.g. everyone is born before they can die,
and you must look before you can find), most other
pairs require additional context from the text itself.

4.4 Comparison to Other Datasets

Section 2 described how this new dataset differs
from prior work. We now include Table 3 to further
illustrate the size difference, showing an order of
magnitude more precondition instances than prior
corpora with specific precondition annotations.

We consider our precondition as a broader con-
cept than that in the RED. We focus on necessary
events, which covers both precondition and causal
relations in the RED dataset.

Dataset #Instances #Precond.
RED (news/forums) 4,969 1,055
CaTeRS (stories) 2,715 488
StoryLine (news) 12,423 < 5, 519*
PeKo (news) 28,948 10,806

Table 3: Comparison of labeled corpora. The instances
are how many total labels, and precondition is how
many precondition-related instances. We included cau-
sation+precondition labels in the total counts if causa-
tion exists. *Event StoryLine mixes preconditions with
many other relations, so the 5,519 is an upper bound.

5 PeKo Tasks and Evaluation

Having created the PeKo annotated corpus, we now
propose two tasks that test for the ability to recog-
nize and generate preconditions in textual contexts.
Here we describe evaluations to benchmark the per-
formance of current models on these tasks and to
better understand the challenges involved.

5.1 PeKo Task 1: Precondition Identification
Given a text snippet with a target and candidate
event pair, the task is to classify if the candidate
event is a precondition for the target in the context
described by the text snippet. This is a standard
sentence-level classification task. We evaluate two
strong and widely-used large transformer-based
language models – fine-tuned BERT (Devlin et al.,
2019) and XLNet (Yang et al., 2019) base models.
For each model, we take the final representation
of each event trigger, concatenate together, and
then feed into a linear classification layer. We also
evaluate a 1-layer GRU sequence model (Cho et al.,
2014) with GloVe embeddings (Pennington et al.,
2014) to calibrate against a much simpler baseline.
See the Appendix for more details on parameters,
layer sizes, and training time.

Precondition identification is a difficult task.
Table 4 shows the results. The GRU-based se-
quence model trained from scratch on PeKo is bet-
ter than a prior-based random baseline3 but still
leaves a large room for improvement. BERT and
XLNet both perform substantially better (> 71 F1)
than the GRU model (63.7 F1) but their F1 score of
71 illustrates that this is a difficult task not readily
solved by simply fine-tuning large LMs.

Precondition information is not readily avail-
able in BERT.
One premise for our work is that distributional

3Chooses a label at random from a binomial distribution
of labels estimated from the training data
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Figure 2: Distribution of distances between preconditions and target events. Negative numbers correspond to cases
where the target precedes the precondition, and positives for the other way around. The left plot shows the number
of intervening tokens and the right shows percentages of verb distances between precondition and target events.

Precondition Identification

Model Precision Recall F1
Random 37.34 50.00 42.75
GloVe-GRU 56.25 73.38 63.68
BERT-feature 59.80 81.15 68.84
XLNet 66.69 77.10 71.52
BERT 64.65 81.02 71.91

Table 4: Benchmarking performance of existing mod-
els on the precondition identification task. Simply fine-
tuning large language models is not enough.

Text Context Ablation

Context Precision Recall F1
Event Trigger 54.06 75.68 63.07
Event Tuple 64.02 76.97 69.90
Event Tuple(±1) 63.84 78.95 70.59
Sentence 64.65 81.92 71.91
Sentence(±1) 62.69 76.92 68.47
Sentence(±2) 61.65 77.33 68.60

Table 5: Precondition identification results with vary-
ing levels of context using our BERT classifier.

knowledge alone is insufficient to capture precondi-
tion relations. We conduct two sets of inoculation-
based probing experiments (similar to Liu et al.
(2019)) to get at how the information in the pre-
trained LM representations relate to precondi-
tions. We use BERT in the fine-tuning and feature-
extractor mode (the parameters for BERT are fixed
and only those in the classification layer are up-
dated) and measure performance with increasing
amounts of data. If the performance peaks early
with only small amounts of data then it tells us that
most of the information necessary for recognizing
preconditions is in a readily accessible form in the
original LM representations. On the other hand, if
performance keeps increasing then it suggests that
PeKo provides extra information.

Figure 3 shows that neither model plateaus
quickly. BERT, as a feature-extractor (dashed line)
plateaus around 50% of the data. The fixed features
from the LM pre-training BERT hits a performance
ceiling. Whereas fine-tuning BERT, which fine-
tunes the representation to the PeKo task, provides
continuous improvements for increasing amounts
of data. These together suggest that a substantial
amount of precondition knowledge is not easily
adapted from the language modeling information
captured in BERT but can be learned from PeKo.

Role of Context. Table 5 compares the perfor-

Figure 3: Inoculation: Performance of fine-tuning
(solid) and feature extractor (dotted) modes of BERT
with increasing amounts of PeKo training data. Neither
plateaus quickly suggesting that precondition knowl-
edge is not readily accessible in BERT.

mance of BERT when using different levels of con-
text. Using event triggers alone achieves moder-
ate performance. This suggests that the verb trig-
ger does carry a lot of the precondition knowledge
regardless of event arguments (e.g., canceling re-
quires scheduling first, but in most cases it doesn’t
matter what is canceled). However, if we use event
tuples4, which also captures the main entities of
the event, then we see a significant improvement
in performance (+6.9 points). In addition to the
tuples of the event pair, adding tuple representa-

4We used OpenIE(Stanovsky et al., 2018) to extract event
tuples implemented in AllenNLP(Gardner et al., 2018)
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tions of neighboring events provides an additional
gain (+1.5 points). Further inspection of the tuple-
based representation shows that automatic tuple
extraction sometimes introduces errors and misses
critical context and other important discourse cues.
The best results come from using the sentence(s)
that contain the event pair in its entirety – adding
further sentences leads to worse performance.

When is it difficult to identify preconditions?
The first plot in Figure 4 shows that F1 score is
highest where the target event is in the same sen-
tence as the precondition event, higher where the
target event is in the sentence that follows the pre-
condition event, and lowest when the target event
is in the previous sentence. A similar trend holds
for different verb distances as well, as seen in the
second plot. As the distance increases, the F1 score
decreases in either direction. However, on the neg-
ative side, F1 scores are lower compared to the pos-
itive side showing the difficulty of the task when
the target verb precedes the precondition.

Figure 4: F1 scores across different contexts. Top: F1
when the target event precedes, is in the same, or fol-
lows the precondition’s sentence. Lower: F1 for vary-
ing # of intervening verbs between the event pair.

5.2 PeKo Task 2: Precondition Generation

Here we introduce Precondition Generation as a
more general challenge that a dataset like PeKo
now enables. Given a target event t, generate an
event p that is a precondition for t. We first show
how to create instances for this task using the PeKo
dataset and then benchmark performance on eval-
uation instances drawn from both PeKo and an
out-of-domain dataset ATOMIC (Sap et al., 2019).

Generation Training Task. We created precon-
dition generation training instances by transform-
ing each PeKo instance as follows. The input is

the entire snippet of a PeKo instance (i.e, the en-
tire text snippet with a pair of events where one is
marked as a precondition of the other) but with the
precondition portion of the snippet replaced by a
[BLANK] slot. The output for the generation in-
stance is the entire sentence where the [BLANK] is
to be filled in with text representing a precondition
event. See Table 7 for examples. Note that because
the precondition portion can occur anywhere (ear-
lier or later) in the sentence, we do not frame this as
a typical left-to-right language model completion
task. Instead, the models have to generate the en-
tire sentence in addition to filling in the [BLANK]
slot with a plausible precondition. We use the text
chunk spanned by the precondition trigger node in
the constituency parse as the precondition portion.

We benchmark three variations of a large lan-
guage model GPT-2 (Radford et al., 2019) to show
how much of precondition information can be gen-
erated directly from general language models and
from temporal knowledge in comparison to learn-
ing from PeKo: (i) LM-GPT-2 – training instances
created from a random collection of sentences to
mimic fine-tuning GPT only for the format of this
task but with no special constraint on the relation
between the events in the instance. We randomly
select sentences with a pair of events, and choose
at random one event as target and the other as pre-
condition and then create the generative training
instances as described earlier. (ii) Temp-GPT-2 –
training on instances created from temporally BE-
FORE events, randomly sampled from the non-
precondition portion of PeKo dataset. (iii) PeKo-
GPT-2 – training on generation instances created
from the training portion of the PeKo dataset. LM-
GPT-2 trains on 18,000 instances (since it is not
limited by PeKo data), whereas Temp-GPT-2 and
PeKo-GPT-2 train on 6000 instances.

Testing on PeKo For testing, we transform in-
stances from the testing portion of PeKo. Be-
cause precondition instances can sometimes con-
tain strong linguistic and syntactic cues for pre-
conditions, we create test instances only from the
non-preconditions in PeKo. This is a stronger test
of models’ abilities that mitigates some of the con-
founds of how the sentence is structured.

Testing on ATOMIC We used the following
heuristics to address the peculiarities of ATOMIC
and improve compatibility with training. We fil-
tered instances such that they are full sentences,
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Precondition Generation

Dataset Model Sense Precond.

PeKo
LM-GPT-2 1.69 12.00% (12.87)
Temp-GPT-2 2.19 17.56% (17.21)
PeKo-GPT-2 2.32 35.81% (37.96)

ATOMIC
LM-GPT-2 2.20 10.40% (10.78)
Temp-GPT-2 2.30 21.33% (28.97)
PeKo-GPT-2 2.12 39.33% (50.43)

Table 6: Human evaluation of generation. Sense: Aver-
age sensibility rating on a 0-3 scale. Precond.: Percent-
age of instances with valid precondition outputs. Paren-
thetical numbers are precentages within instances with
sensible score ≥ 2. Bold face indicates best results.

with fully-specified arguments for events, and with
single participant instances. We replace Person
variable mentions with third-person pronouns.

Benchmarking Precondition Generation. Ta-
ble 6 shows results of a manual evaluation of the
generated preconditions5. Three of the authors of
this paper evaluated 150 instances of generated text
snippets from three systems. The snippets from the
systems were randomly swapped during the blind
evaluation. Each output was first rated for sensibil-
ity on a scale of 0 to 3, where 3 means the output is
perfectly sensible as English, and 0 means nonsen-
sical. The output, which contains the marked target
and precondition event pairs, were then rated on a
binary scale – 1 if the precondition relation holds;
0 otherwise. The same annotation guidelines de-
scribed in Section 4.2 were taken to ignore invalid
events, hypotheticals, and other noisy output.

Results in Table 6 shows that LM-GPT-2, the ver-
sion that trains on random event pairs, struggles. It
produces the least precondition outputs. Peko-GPT-
2 generates plausible preconditions nearly twice as
often as the Temp-GPT-2 baseline. These results
illustrate the need for PeKo as preconditions do not
easily fall out from today’s large LMs. The trends
also hold for the out-of-domain ATOMIC instances
indicating generalization to everyday events in the
ATOMIC dataset. On ATOMIC we see more pre-
conditions than on the original PeKo dataset. We
hypothesize that this is in part because in the PeKo
test set, we created harder cases where the models
have to generate preconditions to fit in text that

5Automatic evaluation against reference preconditions is
not informative since there can be multiple preconditions for
any given event. We found that using BLEU for instance
showed no difference between Temp-GPT2 and PeKo-GPT2
despite the huge difference in manual evaluation.

PeKo
INPUT [BLANK] that will enable consumers to

quickly download videos...
Temp-G2 The company has said that it will be able to

sell more phones in the coming months
PeKo-G2 The company also agreed on a plan
INPUT And finally a third will rebuild homes in the

historic older district. The foundations of
a temporary market are in place, to house
stores and stalls [BLANK]

Temp-G2 that have been sold for decades.
PeKo-G2 that were built in the 1880s.

ATOMIC
INPUT He is in dire need of money [BLANK]
Temp-G2 he said in an interview with The Daily.
PeKo-G2 because he has lost his job.
INPUT She moves to cambridge in 2013 [BLANK]
Temp-G2 when she became the first woman to walk the

halls of Congress.
PeKo-G2 she took a job as a waitress at a local restau-

rant.

Table 7: Generation Examples on PeKo and ATOMIC
test instances: INPUT is the system input: text with
the target event (italicised) and placeholder [BLANK].
Temp-G2 and PeKo-G2 are the generated outputs from
the Temporal and PeKo GPT-2 systems, with the pre-
condition event in bold.

originally contained a non-precondition event.
Table 7 shows some examples that illustrate the

differences between training on PeKo and other-
wise. As expected, the non-precondition trained
model outputs events that temporally precede the
target event but not necessarily preconditions.

Error Analysis. We evaluated the outputs for 50
instances from Peko-GPT-2 and found three main
categories of failures: (i) Difficulty in handling in-
put context (56%) – In some cases the input target
event context is too limited, whereas in others the
context is too complex with many intervening enti-
ties or a chained set of events after which the model
is supposed to generate a precondition. Another set
of cases have to do with the sentence structure of
the context sets up for a hypothetical precondition
event, or a reporting verb. (ii) Common Language
Generation Errors (28%) – Cases like repetition
or semantically implausible text and hallucinating
new entities whose relation to the original context
is not clear. (iii) Temporally related (16%) – Cases
where the outputs are temporally and topically re-
lated but are not preconditions, indicating failures
in generalizing precondition knowledge.

Overall, these first results on PeKo suggests that
training on this new dataset enables a generative
model to learn some common-sense precondition
knowledge beyond basic language modeling cues.
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We see room for improvement both in terms of
modeling as well as training approaches.

6 Conclusions

Knowing what conditions are necessary for an
event to happen is critical for understanding and
reasoning about events mentioned in text. In this
work, we address the lack of a large scale re-
source for learning precondition knowledge about
events. Our crowdsourcing methodology yielded
more than 10,000 precondition event relations (and
20,000 negative examples) from news domain texts.
We showed in both classification and generation
that these relations are not readily accessible in dis-
tributional knowledge encoded by large language
models, highlighting the challenges in learning
common-sense knowledge from text. We also pro-
posed two new challenge tasks based on PeKo and
hope it helps drive further research into rich event
understanding that touches a variety of areas from
schema learning, information extraction, and even
story generation.
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A Appendix

A.1 Candidate Filtering for Crowdsourcing

We discard event pairs that come from the same
sentence when the candidate precondition is a
causative verb or when the target is a reporting
verb. This is because both cases are always true
regardless of their context. Consider the following
examples:

(A) He said that his birth mother lived nearby.
(B) The president made his secretary create

copies of the report
As these examples show – A is a reporting verb

(‘said’) in the target position, and B is a causative
(‘made’) as the candidate precondition – the candi-
dates in both cases are reliable preconditions inde-
pendent of the context. For instance, in example in
(B) if we use a new context “not create copies of the
report”, the precondition relation would still hold.
Since we aim to collect precondition knowledge
that can be obtained at least partially from context,
we excluded these reporting and causative precon-
dition verb instances from our candidate pool.

A.2 Experimental Details

A.2.1 Data Split

We split our dataset into train/dev/test set with the
ratio of 6:2:2. Since the number of instances in
each class is imbalanced, we split the data sepa-
rately based on the class and then randomly shuffle
instances in each set together.

A.2.2 Infrastructure

All models are trained using NVIDIA Titan RTX
(24GB of GDDR6 VRAM).

A.2.3 Parameters

Identification Task: All models for identification
task are trained for 50 epochs with 16 of the batch
size. A model is picked based on the performance
(i.e., F1 score) on the dev set among 5 different
random seeds. All other parameters are describe in
Table 8.
Generation Task: All three models use the same
GPT-2 architecture, which has 163,047,936 train-
able parameters. The epochs are set to 100 with 16
as the batch size. Models are picked based on loss
on the dev set.

We use AdamW (Loshchilov and Hutter, 2019)
for the optimizer in both tasks.

Model Hidden size #Parameters
GloVe-GRU 512 9,675,154
BERT-feature 768 3,074
XLNet 768 116,721,410
BERT 768 108,313,346

Table 8: Parameters for the identification models. For
GloVe-GRU model, we use GloVe embeddings with
the size of 300.

A.2.4 Training Time
Table 9 shows the training time for each model.
The time is measured by the average elapsed time
for each epoch excluding testing time on the dev
set.

Task Model Time

Identification

GloVe-GRU 25.29s
BERT-feature 154.18s
XLNet 204.15s
BERT 235.85s

Generation
LM-GPT-2 574.99s
PeKo-GPT-2 126.83s
TEMP-GPT-2 130.20s

Table 9: Average training time for each model on an
epoch.

A.3 Testing on ATOMIC
We following heuristics to address the peculiarities
of the ATOMIC dataset and improve compatibility
with training: 1) We remove instances that do not
have a fully specified argument for the event (re-
ferred to as placeholders in their paper (Sap et al.,
2019)). 2) We only use ‘simple’ instances that men-
tion a single participant because the context often
contains enough information to fully understand
the target event. 3) We only use instances that are
complete sentences and not fragments. 4) To make
the inputs more natural, we replace the Person
variable mentions with a third-person pronoun and
added markers to the main verb and the placeholder
[BLANK] at the end:

“PersonX is in dire need of money” to “He <tar-
get> is </target> in dire need of money [BLANK]”


