
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3805–3817
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

3805

Controllable Text Generation with Focused Variation
Lei Shu1∗ , Alexandros Papangelis2 , Yi-Chia Wang2 , Gokhan Tur2,

Hu Xu1 , Zhaleh Feizollahi2 , Bing Liu1 , Piero Molino3∗

1Department of Computer Science, University of Illinois at Chicago
2Uber AI,

3Stanford University and ML Collective
1shulindt@gmail.com, activebus@gmail.com, liub@uic.edu,

2al3x.papangelis@gmail.com, yichia.wang@gmail.com,
2gokhan.tur@ieee.org, zhaleh.feizollahi@gmail.com

3pmolino@cs.stanford.edu

Abstract

This work introduces Focused-Variation Net-
work (FVN), a novel model to control lan-
guage generation. The main problems in pre-
vious controlled language generation models
range from the difficulty of generating text ac-
cording to the given attributes, to the lack of di-
versity of the generated texts. FVN addresses
these issues by learning disjoint discrete la-
tent spaces for each attribute inside codebooks,
which allows for both controllability and diver-
sity, while at the same time generating fluent
text. We evaluate FVN on two text generation
datasets with annotated content and style, and
show state-of-the-art performance as assessed
by automatic and human evaluations.

1 Introduction

Recent developments in language modeling (Rad-
ford et al., 2019; Dai et al., 2019; Radford et al.,
2018; Holtzman et al., 2020; Khandelwal et al.,
2020) make it possible to generate fluent and
mostly coherent text. Despite the quality of the
samples, regular language models cannot be condi-
tioned to generate language depending on attributes.
Conditional language models have been developed
to solve this problem, with methods that either train
models given predetermined attributes (Shirish
Keskar et al., 2019), use conditional generative
models (Kikuchi et al., 2014; Ficler and Goldberg,
2017), fine-tune models using reinforcement learn-
ing (Ziegler et al., 2019), or modify the text on the
fly during generation (Dathathri et al., 2020).

As many researchers noted, injecting style
into natural language generation can increase the
naturalness and human-likeness of text by in-
cluding pragmatic markers, characteristic of oral
language (Biber, 1991; Paiva and Evans, 2004;
Mairesse and Walker, 2007). Text generation with

∗Work done while at Uber AI Labs.

style-variation has been explored as a special case
of conditional language generation that aims to map
attributes such as the informational content (usually
structured data representing meaning like frames
with keys and values) and the style (such as per-
sonality and politeness) into one of many natural
language realisations that conveys them (Novikova
et al., 2016, 2017; Wang et al., 2018). As the exam-
ples in Table 1 show, for one given content frame
there can be multiple realisations.When a style (a
personality trait in this case) is injected, the text
is adapted to that style (words in red) while con-
veying the correct informational content (words
in blue). A key challenge is to generate text that
respects the specified attributes while at the same
time generating diverse outputs, as most existing
methods fail to correctly generate text according to
given attributes or exhibit a lack of diversity among
different samples, leading to dull and repetitive
expressions.

Conditional VAEs (CVAE) (Sohn et al., 2015)
and their variants have been adopted for the task
and are able to generate diverse texts, but they suf-
fer from posterior collapse and do not strictly fol-
low the given attributes because their latent space
is pushed towards being a Gaussian distribution
irrespective of the different disjoint attributes, con-
flating the given content and style.

An ideal model would learn a separate latent
space that focuses on each attribute independently.
For this purpose, we introduce a novel natural
language generator called Focused-Variation Net-
work (FVN)1. FVN extends the Vector-Quantised
VAE (VQ-VAE) (van den Oord et al., 2017), which
is non-conditional, to allow conditioning on at-
tributes (content and style). Specifically, FVN:
(1) models two disjoint codebooks for content and
style respectively that memorize input text vari-

1The code is available at https://leishu02.
github.io/

https://leishu02.github.io/
https://leishu02.github.io/

3806

CMR Name[Fitzbillies], EatType[pub], Food[Italian], CustomerRating[decent], Area[Riverside], FamilyFriendly[No], Near[The Sorrento],
PriceRange[Moderate]

Text 1 Fitzbillies is a pub with a decent rating. It is a moderately priced Italian restaurant in riverside near The Sorrento. It is not family-
friendly.

Delex. Text 1 Name SLOT is a EatType SLOT with a CustomerRating SLOT rating. It is a PriceRange SLOT priced Food SLOT restaurant in
Area SLOT near Near SLOT. It is FamilyFriendly SLOT.

Agreeable
Let’s see what we can find on Name SLOT. I see, well, it is an EatType SLOT with a CustomerRating SLOT rating, also it is a
PriceRange SLOT priced Food SLOT restaurant in Area SLOT and near Near SLOT, also it is FamilyFriendly SLOT, you see?

Disagreeable
I mean, everybody knows that Name SLOT is an EatType SLOT with a CustomerRating SLOT rating. It is a PriceRange SLOT priced
Food SLOT restaurant in Area SLOT near Near SLOT. It is FamilyFriendly SLOT.

Delex. Text 2 Name SLOT is a Food SLOT place near Near SLOT in Area SLOT and PriceRange SLOT priced. It has a CustomerRating SLOT
rating. It is an EatType SLOT and FamilyFriendly SLOT kid friendly.

Conscientious
Let’s see what we can find in Name SLOT. Emm ... it is a Food SLOT place near Near SLOT in Area SLOT and PriceRange SLOT
priced. It has a CustomerRating SLOT rating. It is an EatType SLOT and FamilyFriendly SLOT.

Unconscientious
Oh god yeah, I don’t know. Name SLOT is a Food SLOT place near Near SLOT in Area SLOT and PriceRange SLOT priced. It has
a CustomerRating SLOT rating. It is an EatType SLOT and FamilyFriendly SLOT kid friendly.

Table 1: Text generation with focused variations (underlined red denotes personality, italics blue denotes content).
The styles are personality traits (dis/agreeable, un/conscientious, extrovert). The content meaning representation
and neutral text (Text 1 and 2) are shown at the top. When given a style, the generated text strictly follows it. Delex
denotes delexicalised text.

ations; (2) further controls the conveyance of at-
tributes by using content and style specific encoders
and decoders; (3) computes disjoint latent space
distributions that are conditional on the content
and style respectively, which allows to sample la-
tent representations in a focused way at prediction
time. This choice ultimately helps both attribute
conveyance and variability. As a result, FVN can
preserve the diversity found in training examples
as opposed to previous methods that tend to cancel
out diverse examples. FVN’s disjoint modeling of
content and style increases the conveyance of the
generated text, while at the same time generating
more natural and fluent text.

We tested FVN on two datasets, PersonageNLG
(Oraby et al., 2018) and E2E (Dušek et al., 2020)
that consist of content-utterance pairs with person-
ality labels in the first case, and the experimental
results show that it outperforms previous state-of-
the-art methods. A human evaluation further con-
firms that the naturalness and conveyance of FVN
generated text is comparable to ground truth data.

2 Related Work

Our work is related to CVAE based text generation
(Bowman et al., 2016; Shen et al., 2018; Zhang
et al., 2019), where the goal is to control a given
attribute of the output text (for example, style) by
providing it as additional input to a regular VAE.
For instance, the controlled text generation method
proposed by Hu et al. (2017) extends VAE and
focuses on controlling attributes of the generated
text like sentiment and style. Differently from ours,
this method does not focus on generating text from

content meaning representation (CMR) or on diver-
sity of the generated text. (Song et al., 2019) use a
memory augmented CVAE to control for persona,
but with no control over the content.

The works of (Oraby et al., 2018; Harrison et al.,
2019; Oraby et al., 2019) on style-variation gen-
erators adopt sequence-to-sequence based models
and use human-engineered features (Juraska and
Walker, 2018) (e.g. personality parameters or syn-
tax features) as extra inputs alongside the content
and style to control the generation and enhance text
variation. However, using human-engineered fea-
tures is labor-intensive and, as it is not possible to
consider all possible feature combinations, perfor-
mance can be sub-optimal. In our work we instead
rely on codebooks to memorize textual variations.

There is a variety of works that address the prob-
lem of incorporating knowledge or structured data
into the generated text (for example, entities re-
trieved from a knowledge base) (Ye et al., 2020),
or that try generate text that is in line with some
given story (Rashkin et al., 2020). None of these
works focuses specifically on generating text that
conveys content while at the same time controlling
style. Last, there are works such as (Rashkin et al.,
2018) that focus on generating text consistent with
an emotion (aiming to create an empathetic agent)
without, however, directly controlling the content.

3 Methodology

Our proposed FVN architecture (Figure 1) has the
goal to generate diverse texts that respect every
attribute provided as controlling factor. We de-
scribe a specific instantiation where the attributes

3807

6W
\O
H�
'
HF
RG

HU
&
RQ

WH
QW
�'
HF
RG

HU

7H[W�WR�
FRQWHQW�
HQFRGHU

7H[W�WR�VW\OH�
HQFRGHU

6W\OH�
FRGHERRN

H6� H61���

&RQWHQW�
HQFRGHU

6W\OH�
HQFRGHU

7H[W�
GHFRGHU

H&N

Y&

H6Q

Y6

7H[W�WR�
FRQWHQW�
HQFRGHU

7H[W�WR�VW\OH�
HQFRGHU

&RQWHQW�
FRGHERRN

H&� H&.���]&

]6

&RQWHQW�F

6W\OH�V

7H[W�W 7H[W�W¶���R/

&RQWHQW�F¶

6W\OH�V¶

:RUG�
HPEHGGLQJ

:RUG�
HPEHGGLQJV�
FRGHERRN

H9� H99���

&ODVVLILFDWLRQ

&ODVVLILFDWLRQ

Figure 1: Focused-Variation Network (FVN) has four encoders (text-to-content encoder, text-to-style encoder,
content encoder and style encoder), two codebooks (for content and style), and one text decoder. The training data
contains ground-truth text with associated content and style. The text decoder uses vC and vS , latent vectors of
content and style, as well as the latent vectors eCk and eSn from codebooks (the nearest to the zC and zS vectors
produced by the text-to-content and text-to-style encoders) to generate text back. To further control the content
and style of the generated text, we feed the oL output vectors of the generated text t′ to text encoders (content and
style). oL are aligned to a word embedding codebook.

are content (a frame CMR containing slots keys
and values) and style (personality traits). However,
the same architecture can be used with additional
attributes and / or with different types of content
attributes (structured data tables and knowledge
graphs for instance) and style attributes (linguistic
register, readability, and many others). To encour-
age conveyance of the generated texts, FVN learns
disjoint discrete content- and style-focused repre-
sentation codebooks inspired by VQ-VAE as extra
information along with the representations of in-
tended content and style, which avoids the posterior
collapse problem of VAEs.

During training, FVN receives as input an in-
tended content c and style s as well as a reference
text t. The reference text is passed through two
encoders (text-to-content and text-to-style), while
content and style are encoded with a content en-
coder and a style encoder. The text-to-content en-
coder maps input text t into a content latent vector
zC and the text-to-style encoder maps the input
text t into a latent style vector zS . The closest vec-
tors to zC and zS from the content codebook eC

and style codebook eS , eCk and eSn , are selected.
The content encoder encodes the intended content
frame into a latent vector vC and the style encoder
encodes the intended style into a latent vector vS

. A text decoder then receives eCk , eSn , vC and vS

and generates the output text t′. The generated text
is subsequently fed to a content and a style decoder
that predict the intended content and style.

At prediction time (Figure 2), only content c and
style s are given, and in order to obtain eCk and eSn
without an input text, we A) collect a distribution

over the codebook indices by counting, for each
training datapoint containing a specific value for c
and s, the amount of times a specific index is used,
and B) sample eCk and eSn from these frequency
distributions. These disjoint distributions allow
the model to focus on specific content and style
by using them for conditioning and the sampling
allows for variation, hence the name of focused
variation. vC and vS obtained from the content
and style encoders and the sampled eCk and eSn are
provided to the text generator that generates t′.

The rest of this section will detail each compo-
nent and the training and prediction processes.

3.1 Encoding and Codebooks

As shown in Figure 1, FVN uses four encoders and
one decoder during training: the text-to-content en-
coder EncTC(·), the text-to-style encoder EncTS(·),
the content encoder EncC(·), the style encoder
EncS(·), and the text decoder Dec(·).

Text-to-* encoders The text-to-content encoder
EncTC(·) encodes a text t to a dense representation
zC ∈ RD while the text-to-style encoder EncTS(·)
encodes a text t to a dense representation zS ∈ RD:
zC = EncTC(t) and zS = EncTS(t).

In order to learn disjoint latent spaces for the
different attributes we want to model, we train
two codebooks, one for content eC ∈ RK×D and
one for style eS ∈ RN×D. They are shown as
[eC1 , . . . , e

C
K] and [eS1 , ..., e

S
N] in Figure 1.

These two codebooks are used to memorize the
latent vectors for text-to-content variation and text-
to-style variation learned during training. Instead
of using the zC and zS vectors as inputs to the de-

3808

coder, we find their nearest latent vectors in the
codebooks eCk and eSn and use those nearest latent
vectors for decoding the text instead of the origi-
nal encoded dense representation. Formally, k =
argmini ‖zC−eCi ‖2 and n = argminj ‖zS−eSj ‖2.

Like in VQ-VAE, we use the l2-norm error to
move the latent vectors in the codebooks e towards
the same space of the encoder outputs z:

LC
VQ = ‖sg(zC)− eCk ‖22 + βC‖zC − sg(eCk)‖22, (1)

LS
VQ = ‖sg(zS)− eSn‖22 + βS‖zS − sg(eSn)‖22, (2)

where sg(·) stands for the stop gradient operator.
Style and content encoders The content en-

coder encodes a CMR c treating it as a sequence
of tokens and producing a matrix V C ∈ RL′×D,
where L′ is the length of c, from which the last
element vC ∈ RD is returned. The style encoder
encodes a style s and obtains a dense representation
vS ∈ RD selecting the last element of the matrix
V S ∈ RL′′×D. Ultimately, vC = EncM (m) and
vS = EncS(s).

Both sets of vectors, e and v are needed as the
former learn to memorize the encoded inputs z,
while the latter learn regularities in the attributes.

3.2 Text Decoder

The decoder takes the eCk , eSn , vC and vS , which
encode content and style, as input and decodes
text t′. We use an LSTM network to model our
decoder and provide the initial hidden state h0 and
initial cell state c0. The initial hidden state is the
concatenation of eCk and eSn , while the initial cell
state is the concatenation of vC and vS : c0 = vC ◦
vS and h0 = eCk ◦ eSn .

When we decode the l-th word, we encode the
previous word t′l−1 and pay attention to the encoded
sequence of content vC and style vS using the last
hidden state as a query. Since both content and
style are sequences of words, the attention mech-
anism can help figure out which part of them is
important for decoding the current word. We con-
catenate the embedded previous output word and
the attention output as the input for LSTM xl. The
LSTM updates the hidden state, cell state and pro-
duces an output vector gl ∈ R2D. Since we want
to feed the generated text back to text encoders for
additional control, we reduce gl to a word embed-
ding dimension vector ol by a linear transformation.
Finally, we map ol to the size of the vocabulary and
apply softmax to obtain a probability distribution
over the vocabulary.

xl = Emb(t′l−1) ◦ Attn(hl−1, V
C ◦ V S), (3)

gl, (hl, cl) = LSTM
(
xl, (hl−1, cl−1)

)
, (4)

ol =Wemb · gl + bemb, (5)

P (t′l) = softmax(WV · ol + bV). (6)

The loss for text decoding is the sum of cross en-
tropy loss of each word os LDec = −

∑
l logP (t

′
l).

3.3 Content and Style Decoders
To ensure the generated text t′ conveys the cor-
rect content and style, we feed them to content
and style decoders to perform backward predic-
tion tasks that better control the generator. The de-
coders contain two components: we first reuse the
text-to-content and text-to-style encoders to encode
the embedded predicted text oL and obtain latent
representations z′C and z′S , and then we classify
them to predict content c′ and style s′, as shown in
the right side of Figure 1: z′C = EncTC(oL) and
z′S = EncTS(oL). EncTC(·) and EncTS(·) denote
the same text-to-content and text-to-style encoders
we defined previously. This design is inspired by
work on text style transfer (dos Santos et al., 2018).

Both z′ vectors and e vectors are used by
two classification heads FC (multi-label) and FS

(multi-class) for predicting content and style re-
spectively in order to force those vectors to encode
attribute information. We use g to denote the g-th
element in the set of possible key-value pairs in
the CMR and m(·) to represent an indicator func-
tion that returns whether the g-th element is in the
ground-truth CMR.

P
(
yCz (g) = m(g)

)
= FC(z′C), (7)

P (ySz = s) = FS(z′S), (8)

P
(
yCe (g) = m(g)

)
= FC(eCk), (9)

P (ySe = s) = FS(eSn). (10)

The loss for training the two prediction heads is:

LCTRL = −
∑
g

logP
(
y
C
e (g) = m(g)

)
− logP (y

S
e = s)

−
∑
g

logP
(
y
C
z (g) = m(g)

)
− logP (y

S
z = s). (11)

Finally, we also adopt vector quantization by
mapping each generated word’s representation ol
to the word embedding eV ∈ R|V |×D to map the
output of the decoder and the input of text encoders
in the same space. This is needed because the text-
to-* encoders expect as input text embedded using

3809

&RQWHQW�
HQFRGHU

6W\OH�
HQFRGHU

7H[W
GHFRGHU

H&N

Y&

H6Q

Y6

&RQWHQW�
FRGHERRN�
GLVWULEXWLRQ

H&� H&.���&RQWHQW�F

6W\OH�V

7H[W�W¶

6W\OH
FRGHERRN�
GLVWULEXWLRQ

H6� H61���

Figure 2: At prediction time we encode c and d with
encoders to obtain vC and vS and we select eCk by
sampling k ∼ P (K|C = c) and eSn by sampling
n ∼ P (N |S = s). Those four vectors are provided
as input to the text decoder to generate text.

word embeddings, but in this case we are providing
oL as input, and without this vector quantization
loss, oL will not be in the same space of the em-
beddings. As a result, there is another VQ loss:
LVVQ = ‖sg(ol)− eVv ‖22 + βV ‖ol − sg(eVv)‖22.

The total loss minimized during training is the
sum of the losses for decoding the text, predict-
ing the content and style, the VQ-loss from two
codebooks, and the VQ-loss for word embedding:
L = LDec + LCTRL + LCVQ + LSVQ + LVVQ.

3.4 Prediction

The whole prediction process is depicted in Figure
2. The trained text decoder expect four inputs: vC ,
vS , eCk , and eSn . At prediction time, only content
c and style s are given. We can obtain vC , vS by
providing c and s to their respective encoder, but
we also need to obtain eCk and eSn without input text.
At the end of the training phase, we map each con-
tent c ∈ C and style s ∈ S to the indices in the eC

and eS codebooks by first obtaining zS and zC vec-
tors from the training data associated with c and s,
we find the index of the closest codebooks vectors
by argmink ‖eCk − zC‖2 and argminn ‖eSn − zS‖2
and count how many times each index k ∈ K was
the closes to each c ∈ C and likewise for indices
n ∈ N for each s ∈ S. By normalizing the counts,
we obtain a distribution P (K|C) for content and a
distribution P (N |S) for style. The construction of
the two distributions is performed only once at the
end of the training phase.

To obtain eCk at prediction time, we select
the k vector of the codebook by sampling k ∼
P (K|C = c) and likewise to obtain eSn with
n ∼ P (N |S = s). Sampling from those distri-

Module Layers (in, out)
content codebook Emb(K, D)

style/slot-value codebook Emb(N, D)
text-to-content encoder Emb(|V |, D), Bi-LSTM(D, D)

text-to-style encoder Emb(|V |, D), Bi-LSTM(D, D)
content encoder Emb(|V |, D), Bi-LSTM(D, D)

style encoder Emb(|V |, D), Bi-LSTM(D, D)
content decoder Dense(D, D/2), Dense(D/2, 8)

style decoder Dense(D, D/2), Dense(D/2, 5)
slot-value decoder Dense(D, D/2), Dense(D/2, 36)

text decoder
Emb(|V |, D), LSTM(D,2D), Attn(2D, 2D)
Dense(2D, D), Dense(D,|V |)

Table 2: Details of Modules in FVN: D = 300, K =
512, N = |V |

butions allows to both focus on specific content
and style disjointly by conditioning on them, while
at the same time allowing variability because of
the sampling (we refer to this procedure as focused
variation). vC , vS , eCk , and eSn are finally provided
as inputs to the decoder to generate the text t′. Con-
tent and style decoders mentioned in the training
section are not needed for prediction.

4 Experiments

To test the capability of FVN to generate diverse
texts that convey the content while adopting a cer-
tain style, we use the PersonageNLG text gener-
ation dataset for dialogue systems that contains
CMR and style annotations. To test if FVN can
convey the content (both slots and values) correctly
on an open vocabulary, with complex syntactic
structures and diverse discourse phenomena, we
use the End-2-End Challenge dataset (E2E), a text
generation dataset for dialogue systems that is an-
notated with CMR.

4.1 Datasets and Baselines

PersonageNLG contains 88,855 training and
1,390 test examples. We reserve 10% of the train
set for validation. There are 8 slots in the CMR and
5 kinds of style: agreeable, disagreeable consci-
entious, unconscientious, and extravert personality
traits. The styles are evenly distributed in both
train and test sets. All slots’ values are delexical-
ized. We model the focused variation distribution
of the content by jointly modeling the presence of
slot names in the CMR, e.g. P (K|PriceRange ∈
c and FoodType ∈ c), because there are no slot
values. Style is modeled as a single categorical
variable, e.g. P (N |s = Agreable).

E2E contains 42,061 training examples (4,862
CMRs), 4,672 development examples (547 CMRs)
and 4,693 test examples (630 CMRs). Like in

3810

the PersonageNLG dataset, there are 8 slots in the
CMR. Each CMR has up to 5 realisations (refer-
ences) in natural language. Differently from Per-
sonageNLG, the CMRs in the different splits are
disjoint and the texts are lexicalized. Following
the challenge guidelines (Dušek et al., 2018), we
delexicalized only ‘name’ and ‘near’ keeping the
remaining slots’ values. Since the E2E dataset does
not have style annotations but has lexicalized texts,
we model the CMR in the same way we did for
PersonageNLG, but we replace the style codebook
with a slot-value codebook that help the text de-
coder generating the slot values in the CMR. We
build the focused variation distribution for every
slot-value independently over the codebook indices,
e.g. P (N |s = PriceRange[high])P (N |s =
FoodType[French]).... During prediction we
sample codes for each slot value in the CMR and
use their average to condition text decoding. This
is particularly useful when the surface forms in the
output text are not the slot values themselves, e.g.
when “PriceRange[high]” should be generated as
“expensive” rather than “high”.

We use NLTK (Bird et al., 2009) to tokenize
each sentence and de-lexicalize the text as de-
scribed in (Dušek and Jurcicek, 2016a). We use
300-dimensional GloVe embeddings (Pennington
et al., 2014) trained on 840B words. Words not in
GloVe are initialized as the averaged embeddings
of all other embeddings plus a small amount of ran-
dom noise to make them different from each other.
The details of each module in the FVN are listed
in Table 2. We set D = 300, K = 512, N = |V |.
The encoders are three-layer stacked Bi-LSTM and
the text decoder is one-layer LSTM. The style/slot-
value codebook is initialized as pre-trained word
embedding. The content codebook is uniformed
initialized in the range of [−1/K, 1/K]. We use
the Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 0.001 for minimizing the total
loss. More dataset details are shown in Appendix A
Table 13 and Table 14.

We compare our proposed model against the best
performing models in both datasets. All of them
are sequence-to-sequence based models. For Per-
sonageNLG, TOKEN, CONTEXT (from (Oraby
et al., 2018)) are variants of the TGEN (Novikova
et al., 2017) architecture, while token-m* and
context-m* are from (Harrison et al., 2019) (which
adopt OpenNMT-py (Klein et al., 2017) as the ba-
sic encoder-decoder architecture). token-* base-

lines use a special style token to provide style
information while context-* baselines use 36 hu-
man defined pragmatic and aggregation-based fea-
tures to provide style information ‘-m*’ indi-
cates variants of how the style information is in-
jected into the encoder and the decoder. For the
E2E challenge dataset, TGEN (Novikova et al.,
2017), SLUG (Juraska et al., 2018), and Thomson
Reuters NLG (Davoodi et al., 2018; Smiley et al.,
2018) are the best performing models. They have
different architectures, re-rankers, beam search and
data augmentation strategies. More details are pro-
vided in Appendix B.

The results of the baselines (Oraby et al., 2018;
Harrison et al., 2019) are taken from their original
papers, but it’s unclear if they were evaluated using
a single or multiple references (for this reason they
are marked with †), but since these models are not
dependent on sampling from a latent space, we
would not expect that to change performance.

We also compare to conditional VAEs: CVAE
implements the conditional VAE (Sohn et al., 2015)
framework. Controlled CVAE implements the
controlled text generation (Hu et al., 2017) frame-
work. The architecture and hyper-parameters of
CVAE and controlled CVAE are the same as FVN.

The FVN ablations used in our evaluation are:
(1) FVN-ED does not use the codebooks, only uses
the content and style encoders and decoders, and
is equivalent to an attention-augmented sequence-
to-sequence model; (2) FVN-VQ does not use the
content and style encoders and decoders, it directly
uses the sampled latent vector for text decoding
(3.3); (3) FVN-EVQ does not use content and style
decoders; (4) FVN is the full network. Refer to Ta-
ble 2 for architecture details. All VAEs and FVN
variants are evaluated using multiple references be-
cause the sampling from latent space may lead to
generate a valid and fluent text that n-gram over-
lap metrics would not score high when evaluated
against a single reference.

4.2 Automatic Evaluation

We evaluate the quality and diversity of the gener-
ated text on both dataset. PersonageNLG is style-
annotated and delexicalized, so we also report style
and content correctness for it.

To evaluate quality in the generated text, we use
the automatic evaluation from the E2E generation
challenge, which reports BLEU (n-gram precision)
(Papineni et al., 2002), NIST (weighted n-gram pre-

3811

Model BLEU NIST METEOR ROUGE-L
TOKEN† 0.3464 4.9285 0.3648 0.5016

CONTEXT† 0.3766 5.3437 0.3964 0.5255
token-m1† 0.4904 - - -
token-m2† 0.4810 - - -
token-m3† 0.4906 - - -

context-m1† 0.5530 - - -
context-m2† 0.5229 - - -
context-m3† 0.5598 - - -

CVAE 0.9 9.766 0.449 0.702
Controlled CVAE 0.928 9.957 0.463 0.721

FVN-ED 0.802 7.872 0.378 0.696
FVN-VQ 0.887 8.985 0.423 0.715

FVN-EVQ 0.94 10.129 0.476 0.748
FVN 0.965 9.946 0.486 0.768

Table 3: Quality Evaluation for PersonageNLG.

Model Precision Recall F1 score
CVAE 0.961 0.942 0.952

Controlled CVAE 0.961 0.969 0.965
FVN-ED 0.997 0.748 0.855
FVN-VQ 0.87 0.799 0.833

FVN-EVQ 0.963 0.989 0.976
FVN 0.987 1.0 0.994

Table 4: Content Correctness Evaluation for Peron-
ageNLG. Micro precision, recall and F1 score for
“* SLOT” tokens.

Model Precision Recall F1 score
CVAE 0.973 0.973 0.973

Controlled CVAE 0.981 0.981 0.981
FVN-ED 0.996 0.996 0.996
FVN-VQ 1.0 1.0 1.0

FVN-EVQ 1.0 1.0 1.0
FVN 1.0 1.0 1.0

Table 5: Style Evaluation on PersonageNLG. Macro
precision, recall and F1 score for the style of generated
text based on a separately trained style classifier.

Model 1-gram 2-gram 3-gram 4-gram
ground truth 0.74 0.902 0.924 0.905

CVAE 0.738 0.896 0.919 0.902
Controlled CVAE 0.715 0.869 0.902 0.899

FVN-ED 0.508 0.618 0.668 0.71
FVN-VQ 0.68 0.849 0.896 0.894

FVN-EVQ 0.738 0.883 0.907 0.901
FVN 0.720 0.870 0.906 0.904

Table 6: Diversity Evaluation on PersonageNLG. Dis-
tinct n-grams between generated texts and ground truth.

Model BLEU NIST METEOR ROUGE-L
TGEN 0.659 8.609 0.448 0.685
SLUG 0.662 8.613 0.445 0.677

Thomson Reuters NLG 0.681 8.778 0.446 0.693
Thomson Reuters NLG 0.674 8.659 0.450 0.698

CVAE 0.377 6.624 0.336 0.525
Controlled CVAE 0.404 6.852 0.346 0.544

FVN-ED 0.665 8.359 0.428 0.699
FVN-VQ 0.681 8.864 0.422 0.698

FVN-EVQ 0.711 9.066 0.453 0.721
FVN 0.714 9.004 0.451 0.719

Table 7: Quality Evaluation on E2E.

Model 1-gram 2-gram 3-gram 4-gram
ground truth 0.878 0.949 0.915 0.876

CVAE 0.841 0.931 0.900 0.859
Controlled CVAE 0.834 0.927 0.900 0.859

FVN-ED 0.839 0.924 0.898 0.858
FVN-VQ 0.855 0.943 0.91 0.869

FVN-EVQ 0.855 0.943 0.914 0.876
FVN 0.841 0.935 0.913 0.878

Table 8: Diversity Evaluation on E2E. Distinct n-grams
between generated texts and ground truth.

Personality GT FVN p

agreeable 2.8309 2.4412 ***
conscientiousness 2.9808 2.9976 **

disagreeable 2.8345 2.9388 ***
extravert 2.9221 2.8933

unconscientiousness 2.9365 2.7962 ***
overall 2.9001 2.8134 ***

*:p < 0.05, **:p < 0.01, ***:p < 0.001

Table 9: The analysis result of Question A - grammati-
cality / naturalness.

cision) (Doddington, 2002), METEOR (n-grams
with synonym recall) (Banerjee and Lavie, 2005),
and ROUGE (n-gram recall) (Lin, 2004) scores us-
ing up to 9-grams. To evaluate content correctness,
we report micro precision, recall, and F1 score of
slot special tokens in the generated text, with re-
spect to the slots in the given CMR c. To evaluate
diversity, we report the distinct n-grams of ground-
truth and baselines’ examples. For style evaluation,
we separately train a personality classifier (with
GloVe embeddings, 3 bi-directional LSTM layers,
2 feed-forward linear layers) on the PersonageNLG
training data. The macro precision, recall, and F1

score of the personality classifier on the test set is
0.996. We use this classifier to evaluate the style of
the generated text and report our results in Table 5.

4.3 PersonageNLG Human Evaluation

In addition to automatic evaluation, we conducted
a crowdsourced evaluation to compare our model
against the ground truth on the entire test set. We
did not compare our model with baselines since a
pilot evaluation on a random sample of 100 data
points from the test set suggested that baselines
did not produce fluent enough text to compare with
FVN. We considered the ground truth to be a perfor-
mance upper bound and compared against it to find
how close FVN is to it. Crowdworkers were pre-

3812

Personality GT equal FVN equal or FVN
agreeable 24.46 22.30 53.24 75.54

conscientiousness 23.38 9.71 66.91 76.62
disagreeable 61.87 12.95 25.18 38.13

extravert 70.14 9.35 20.50 29.86
unconscientiousness 68.71 4.32 26.98 31.29

overall 49.71 11.73 38.56 50.29

Table 10: The analysis result of Question B - person-
ality. The percentage frequency distribution (%) over
three possible answers (GT, equal, FVN) for each per-
sonality is reported, with an additional column report-
ing the sum of equal and FVN. In this column, under-
lined values are those that exceed the ones reported in
the GT column.

sented with a personality and two sentences (one
is ground truth and the other one was generated by
FVN) in random order, and were asked evaluate A)
the fluency of the sentences in a scale from 1 to 3
and B) which of the two sentences was most likely
to be uttered by a person with a given personality
(more details in Appendix C). This evaluation was
conducted on the entire test set consisting of 1,390
data points, 278 per personality, and each data point
was judged by three different crowdworkers.

We report the result of Question A in Table 9.
For each sentence, we averaged the scores across
three judges. The overall performance of FVN is
very close to the ground truth (2.81 vs. 2.9), which
suggests that FVN can generate text of comparable
fluency with respect to ground truth texts.

We evaluated Question B using a majority vote
of the three crowdworkers. Considering the overall
performance, 50.29% of times human evaluators
considered FVN generated text equal or better at
conveying personality than the ground truth. This
suggests that FVN can generate text with compara-
ble conveyance with respect to ground truth.

More details and a full breakdown on the human
evaluation are available in Appendix C.

4.4 Results and Analysis

Tables 3, 4 and 5 show the results on text quality,
content correctness, and style. As shown in Ta-
ble 3, FVN significantly outperforms the state-of-
the-art methods (context-m), especially on BLEU
and NIST, which evaluate the precision of gen-
erated text, with the caveat regarding single or
multiple references explained above. We believe
this is due to the fact that FVN explicitly mod-
els CMR and style, while context-m depends on
human-engineered features. Comparing FVN with
CVAE and controlled CVAE, which are similar

methods that also sample from the latent space,
FVN performs better on all the metrics. Human
evaluation results in Section 4.3 show that FVN is
close to the ground truth in fluency and style.

Regarding the content correctness evaluation
in Table 4, FVN overall performs much better
than other baselines, especially on the recall score.
Methods with explicit control decoders (controlled
CVAE and FVN) perform better than CVAE and
FVN-EVQ, which suggests that the controlling
module is useful to enhance the content conveyance.
Regarding the style evaluation in Table 5, all meth-
ods have good performance. Style is likely easy to
convey in the text (the markers are pretty specific)
and easy to identify for the separately trained per-
sonality classifier. Nevertheless, FVN is the best
performing model. The text diversity comparison
in Table 8 shows how FVN and its ablations have
a diversity of generated texts with respect to the
ground truth texts, but so do VAE-based methods.
The combination of these findings suggests that
FVN can produce text with comparable or better
diversity than VAEs and ground truth, while con-
veying content and style more accurately.

Comparing with the ablations, the full FVN al-
ways performs better than FVN-ED and FVN-VQ,
especially on the recall of slot tokens. FVN-VQ
is able to precisely generate slot tokens from the
CMR, but it cannot generate all required slot tokens,
while FVN can generate them with high precision
and substantially higher recall. An explanation is
that the latent vectors in the content codebook only
memorize the representations of texts without gen-
eralizing properly to new CMRs: since FVN is able
to generate text containing most of the required
slots, that text is usually longer than FVN-VQ’s,
which also explains why FVN performs better than
FVN-VQ on METEOR and ROUGE-L that eval-
uate the recall of n-grams, and suggests that all
encoders and codebooks are indeed needed for ob-
taining high performance.

The comparison between FVN and FVN-EVQ
shows how in some cases FVN-EVQ has higher
quality, but FVN obtains better scores on correct-
ness and style, suggesting the additional decoder
improves conveyance sacrificing some fluency.

In Table 7, we compare our proposed model and
variants against the best performing models in the
E2E challenge: TGEN (Novikova et al., 2017),
SLUG (Juraska et al., 2018), and Thomson Reuters
NLG (Davoodi et al., 2018; Smiley et al., 2018).

3813

extravert Name EatType Food PriceRange CustomerRating Area FamilyFriendly Near

same eCk

let ’s see what we can find on Name SLOT . yeah, it is FamilyFriendly SLOT with a CustomerRating SLOT
rating , it is a EatType SLOT , it is a Food SLOT place in Area SLOT , it is pricerange SLOT near Near SLOT .

different eSn
i do n’t know . Name SLOT is a EatType SLOT with a CustomerRating SLOT rating , also it is a FamilyFriendly SLOT
, Area SLOT , and it is a Food SLOT place near Near SLOT , also it has a price range of pricerange SLOT .
Name SLOT is a EatType SLOT , it is a FamilyFriendly SLOT , it ’s a Food SLOT place , it is near Near SLOT ,
it has a CustomerRating SLOT rating , you know pal! it is in Area SLOT and has a price range of pricerange SLOT .

different eCk

Name SLOT is a EatType SLOT with a CustomerRating SLOT rating , also it is a Food SLOT place , you know !
and it is Area SLOT , also it is FamilyFriendly SLOT near Near SLOT , also it has a price range of pricerange SLOT .

same eSn
Name SLOT is a EatType SLOT , it is a FamilyFriendly SLOT , it ’s a Food SLOT place , it is near Near SLOT ,
it has a CustomerRating SLOT rating , you know and it is in Area SLOT and pricerange SLOT .
Name SLOT is a EatType SLOT , it is a Food SLOT place , it is FamilyFriendly SLOT , it ’s in Area SLOT ,
it is near Near SLOT , it has a CustomerRating SLOT rating and a price range of pricerange SLOT, you know! .

Table 11: Diversity in FVN-generated PersonageNLG examples. Given the CMR and style the the generated text
varies depending on the vector sampled from the codebook.

agreeable “let ’s see what we can find on” “well , i see” “did you say ?” “i suppose” “right” “okay ?” “ you see ?” “it is somewhat”
disagreeable “oh god i mean , everybody knows” “oh god” “i do n’t know .” “i am not sure .”

conscientious “let ’s see what we can find on” “well , i see” “did you say ” “ sort of ” “you see ?” “let ’s see, ” “...”
unconscientious “oh god i , i do n’t know .” “darn” “ i mean .” “i ... i , i do n’t know .” “i mean , i am not sure .” “damn” “!” “it has like a ”

extravert “oh god i am not sure .” “let ’s see ,” “...” “alright ?” “yeah” “i do n’t know” “did you say ?” “you know !” “you know and” “pal” “! ”

Table 12: Top codes’ linguistic pattern of each style

We can see from the results that FVN performs bet-
ter than all these state-of-the-art models. The rea-
son of the low performance of CVAE-based meth-
ods on the E2E dataset is that the CMR are disjoint
in the train and test sets (while in PersonageNLG
they are overlapping) and CVAEs struggle to han-
dle unseen CMRs. FVNs performs well because
it builds focused variations for each attribute inde-
pendently instead of the entire CMR.

Table 11 shows texts generated by FVN under
the same CMR (given 8 attributes, rare in training
data) and extravert style. The first three samples
have the same CMR latent vector, but different
sampled style latent vectors. The remaining three
examples have different sampled CMR latent vec-
tors, but the same style latent vector. In the first
three examples, the generated texts and the words
representing the extravert style are different (“let
’s see what we can”, “I don’t know”, “you know”).
In the latter three examples, the words representing
style are similar (“you know”), but the aggregation
of attributes is different. These examples suggest
that the two codebooks learn disjoint information
and that the sampling mechanism introduces the
desired variation in the generated texts. Table 11
shows that FVN learns disjoint content and style
codebooks and that the vectors in the codebook
can be explicitly interpreted by sampling multiple
texts and observing the generated patterns. This
is useful because, beyond sampling correct style
vectors, we can select the realization of a style we
prefer(Table 12 shows linguistic patterns associated

with the top codes of each style). These patterns
are automatically learnt and suggest that there is no
need to encode them with manual features. Condi-
tional VAEs do not provide this capability.

Samples obtained providing the same CMR and
style to different models and examples of the lin-
guistic patterns learned by FVN’s style codebook
are provided in Appendix D. Diverse samples ob-
tained from FVN by sampling different latent codes
are shown in Table 15.

5 Conclusion

In this paper, we studied the task of controlling lan-
guage generation, with a specific emphasis on con-
tent conveyance and style variation. We introduced
FVN, a novel model that overcomes the limitations
of previous models, namely lack of conveyance and
lack of diversity of the generated text, by adopting
disjoint discrete latent spaces for each of the de-
sired attributes. Our experimental results show that
FVN achieves state-of-the-art performance on Per-
sonageNLG and E2E datasets and generated texts
are comparable to ground truth ones according to
human evaluators.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International
Conference on Learning Representations, San Diego,
California, USA.

3814

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Douglas Biber. 1991. Variation across speech and writ-
ing. Cambridge University Press.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media, Inc.

Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew
Dai, Rafal Jozefowicz, and Samy Bengio. 2016.
Generating sentences from a continuous space. In
Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning, pages
10–21.

Ning Dai, Jianze Liang, Xipeng Qiu, and Xuanjing
Huang. 2019. Style transformer: Unpaired text style
transfer without disentangled latent representation.
CoRR, abs/1905.05621.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric C. Frank, Piero Molino, Jason Yosinski,
and Rosanne Liu. 2020. Plug and play language
models: A simple approach to controlled text gen-
eration. ArXiv, abs/1912.02164.

Elnaz Davoodi, Charese Smiley, Dezhao Song, and
Frank Schilder. 2018. The e2e nlg challenge: Train-
ing a sequence-to-sequence approach for meaning
representation to natural language sentences. In in
prep. for INLG conference.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the second
international conference on Human Language Tech-
nology Research, pages 138–145.

Ondřej Dušek and Filip Jurcicek. 2016a. A context-
aware natural language generator for dialogue sys-
tems. In Proceedings of the 17th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 185–190.

Ondřej Dušek and Filip Jurcicek. 2016b. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
45–51.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the e2e nlg challenge. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 322–328.

Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the State-of-the-Art of End-to-End
Natural Language Generation: The E2E NLG Chal-
lenge. Computer Speech & Language, 59:123–156.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. In Proceedings of the Workshop on Stylistic
Variation, pages 94–104.

Vrindavan Harrison, Lena Reed, Shereen Oraby, and
Marilyn Walker. 2019. Maximizing stylistic control
and semantic accuracy in nlg: Personality variation
and discourse contrast. DSNNLG 2019, page 1.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. ArXiv, abs/1904.09751.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward
controlled generation of text. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1587–1596.

Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden,
and Marilyn Walker. 2018. A deep ensemble model
with slot alignment for sequence-to-sequence natu-
ral language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 152–162.

Juraj Juraska and Marilyn Walker. 2018. Characteriz-
ing variation in crowd-sourced data for training neu-
ral language generators to produce stylistically var-
ied outputs. In Proceedings of the 11th International
Conference on Natural Language Generation, pages
441–450.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. ArXiv, abs/1911.00172.

Yuta Kikuchi, Tsutomu Hirao, Hiroya Takamura, Man-
abu Okumura, and Masaaki Nagata. 2014. Single
document summarization based on nested tree struc-
ture. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 315–320, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations, San Diego,
California, USA.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

http://arxiv.org/abs/1905.05621
http://arxiv.org/abs/1905.05621
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.3115/v1/P14-2052
https://doi.org/10.3115/v1/P14-2052
https://doi.org/10.3115/v1/P14-2052
https://doi.org/10.18653/v1/P17-4012
https://doi.org/10.18653/v1/P17-4012
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013

3815

François Mairesse and Marilyn Walker. 2007. Person-
age: Personality generation for dialogue. In Pro-
ceedings of the 45th Annual Meeting of the Associa-
tion of Computational Linguistics, pages 496–503.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pages
201–206.

Jekaterina Novikova, Oliver Lemon, and Verena Rieser.
2016. Crowd-sourcing nlg data: Pictures elicit bet-
ter data. In Proceedings of the 9th International Nat-
ural Language Generation conference, pages 265–
273.

Aaron van den Oord, Oriol Vinyals, et al. 2017. Neu-
ral discrete representation learning. In Advances
in Neural Information Processing Systems, pages
6306–6315.

Shereen Oraby, Vrindavan Harrison, Abteen Ebrahimi,
and Marilyn Walker. 2019. Curate and generate: A
corpus and method for joint control of semantics and
style in neural nlg. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5938–5951.

Shereen Oraby, Lena Reed, Shubhangi Tandon,
TS Sharath, Stephanie Lukin, and Marilyn Walker.
2018. Controlling personality-based stylistic varia-
tion with neural natural language generators. In Pro-
ceedings of the 19th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 180–190.

Daniel S Paiva and Roger Evans. 2004. A framework
for stylistically controlled generation. In Interna-
tional Conference on Natural Language Generation,
pages 120–129. Springer.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318. ACL.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, pages 1532–1543. ACL.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020. Plotmachines: Outline-
conditioned generation with dynamic plot state
tracking. arXiv preprint arXiv:2004.14967.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2018. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. arXiv preprint arXiv:1811.00207.

Cı́cero Nogueira dos Santos, Igor Melnyk, and Inkit
Padhi. 2018. Fighting offensive language on so-
cial media with unsupervised text style transfer. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 2:
Short Papers, pages 189–194. Association for Com-
putational Linguistics.

Xiaoyu Shen, Hui Su, Shuzi Niu, and Vera Demberg.
2018. Improving variational encoder-decoders in di-
alogue generation. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
CTRL: A Conditional Transformer Language Model
for Controllable Generation. arXiv e-prints, page
arXiv:1909.05858.

Charese Smiley, Elnaz Davoodi, Dezhao Song, and
Frank Schilder. 2018. The e2e nlg challenge: End-
to-end generation through partial template mining.
in prep.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015.
Learning structured output representation using
deep conditional generative models. In Advances in
neural information processing systems, pages 3483–
3491.

Haoyu Song, Wei-Nan Zhang, Yiming Cui, Dong
Wang, and Ting Liu. 2019. Exploiting persona in-
formation for diverse generation of conversational
responses. arXiv preprint arXiv:1905.12188.

Yi-Chia Wang, Runze Wang, Gokhan Tur, and Hugh
Williams. 2018. Can you be more polite and posi-
tive? infusing social language into task-oriented con-
versational agents. In NeurIPS 2018 Workshop on
the Second Conversational AI,.

Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei,
and Lei Li. 2020. Variational template ma-
chine for data-to-text generation. arXiv preprint
arXiv:2002.01127.

Yuchi Zhang, Yongliang Wang, Liping Zhang,
Zhiqiang Zhang, and Kun Gai. 2019. Improve
diverse text generation by self labeling condi-
tional variational auto encoder. In ICASSP 2019-
2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
2767–2771. IEEE.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B.
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

https://doi.org/10.18653/v1/P18-2031
https://doi.org/10.18653/v1/P18-2031
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593

3816

Dataset Pairs Number of Slots in CMR
CMRs 3 4 5 6 7 8

Train 88,855 600 0.13 0.30 0.29 0.22 0.06 0.01
Test 1,390 35 0.02 0.04 0.06 0.15 0.35 0.37

Table 13: Distribution of slots in the CMR in both
training and test splits of PersonageNLG. Pairs refer
to content-utterance pairs.

Dataset Pairs CMRs Number of Slots in CMR
CMRs 3 4 5 6 7 8

Train 42061 4862 0.05 0.18 0.32 0.28 0.14 0.03
Dev 4672 547 0.09 0.11 0.05 0.35 0.30 0.10
Test 4693 630 0.01 0.03 0.08 0.17 0.34 0.37

Table 14: Distribution of slots in the CMR in both train-
ing, development and test splits of E2E. Pairs refer to
content-utterance pairs.

A Experiments details

These are the links to the adopted datasets and the
code for computing the metrics.

PersonageNLG text generation dataset:
https://nlds.soe.ucsc.edu/
stylistic-variation-nlg

End-2-End Challenge dataset (E2E):
http://www.macs.hw.ac.uk/
InteractionLab/E2E/

Automatic evaluation metrics code from the E2E
generation challenge: https://github.com/
tuetschek/e2e-metrics

Distinct n-grams metric
code: https://github.com/
neural-dialogue-metrics

Table 13 shows details of the PersonageNLG
dataset, while Table 14 shows details of the E2E
dataset.

B Baselines details

The first three baselines are taken from (Oraby
et al., 2018) and adopt the TGen architecture
(Dušek and Jurcicek, 2016b), an encoder-decoder
network, with different kinds of input.

TOKEN adds a token of additional supervision
to encode personality. Unlike other works that use
a single token to control the generator’s output (Hu
et al., 2017), the personality token encodes a sev-
eral different parameters that define style.

CONTEXT introduces a context vector that ex-
plicitly encodes a set of 36 manually-defined style
parameters encoded as a vector of binary values.
We then apply these style encoding approaches to
three state of the art models taken from (Harrison
et al., 2019), which extend (Oraby et al., 2018)

by changing the basic encoder-decoder network to
OpenNMT-py (Klein et al., 2017) in the following
ways.

m1 inserts style information into the sequence
of tokens that constitute the content c;

m2 incorporates style information in the content
encoding process by concatenating style represen-
tation with content representation before passing it
to the content encoder;

m3 incorporates style information into the gen-
eration process by additional inputs to the decoder.
At each decoding step, style representation is con-
catenated with each word’s embedding and passed
as input to the decoder.

token-m means that style (personality here) is
encoded with a single token;

context-m means that style is encoded via the
36 parameters.

TGEN (Novikova et al., 2017) adopts a seq2seq
model with attention (Bahdanau et al., 2015) with
added beam search and a reranker penalizing out-
puts that stray away from the input CMR.

SLUG (Juraska et al., 2018) adopts seq2seq-
based ensemble which uses LSTM/CNN as the
encoders and LSTM as the decoder); heuristic slot
aligner reranking and data augmentation. Both
TGEN and SLUG use partial (‘name’ and ‘near’
slot) de-lexicalized texts .

Thomson Reuters NLG (Davoodi et al., 2018;
Smiley et al., 2018) use fully de-lexicalized text
and a seq2seq model with hyperparameter tunning.

C Human evaluation details

Crowdworkers were presented with a personality
and two sentences (one is ground truth and the
other one was generated by our model) in random
order, and were asked to answer the following two
questions:

• Question A: On a scale of 1-3, how grammati-
cal or natural is this sentence? (please answer
for both sentences).

• Question B: Which of these two sentences do
you think would be more likely to be said by
a(n) person? (Fill in with the personal-
ity given, e.g. agreeable) Answers: Sentence
1, 2, equally

Question A asked the crowdworkers to assess the
degree of grammaticality / naturalness of a sentence
while Question B was designed to evaluate which
of the two sentences exhibits a specific personality.

https://nlds.soe.ucsc.edu/stylistic-variation-nlg
https://nlds.soe.ucsc.edu/stylistic-variation-nlg
http://www.macs.hw.ac.uk/InteractionLab/E2E/
http://www.macs.hw.ac.uk/InteractionLab/E2E/
https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics
https://github.com/neural-dialogue-metrics
https://github.com/neural-dialogue-metrics

3817

area[city centre] customer rating[5 out of 5] eatType[pub] familyFriendly[no] food[French] name[The Phoenix] near[Crowne Plaza Hotel] priceRange[more than £30]
-use the top frequent code of each value-
The Phoenix is a french pub near Crowne Plaza Hotel in the city centre . It is not children friendly and has a price range of more than £30 and has a customer rating of 5 out of 5 .
-use same area[city centre] code, other values’ codes are sampled-
The Phoenix is a pub in the city centre . It is a french food . It is located in the city centre .
The Phoenix is a pub in the city centre . It is a french food . It is a high price range and is not child friendly .
-use same customer rating[5 out of 5] code, other values’ codes are sampled-
The Phoenix is a french pub located in the city centre . It is a high customer rating and is not children friendly .
The Phoenix is a pub in the city centre near Crowne Plaza Hotel . It is a high customer rating and is not children friendly .
-use same eattype[pub] code, other values’ codes are sampled-
The Phoenix is a french pub near Crowne Plaza Hotel in the city centre . It is not children friendly and has a price range of more than £30 .
The Phoenix is a french pub in the city centre near Crowne Plaza Hotel . It is not child friendly and has a high price range and a customer rating of 5 out of 5 .
-use same familyFriendly[no] code, other values’ codes are sampled-
The Phoenix is a french pub located in the city centre near Crowne Plaza Hotel . It is not family-friendly and has a customer rating of 5 out of 5 .
The Phoenix is a french pub located in the city centre . It is not family-friendly and has a customer rating of 5 out of 5 .
-use same food[French] code, other values’ codes are sampled-
The Phoenix is a french pub in the city centre . It is a high customer rating and is not children friendly .
The Phoenix is a french pub located in the city centre . It is not family-friendly .
-use same priceRange[more than £30] code, other values’ codes are sampled-
The Phoenix is a french pub in the city centre . It is not children friendly and has a price range of more than £30 .
The Phoenix is a french pub near Crowne Plaza Hotel in the city centre . It is not children friendly and has a price range of more than £30 .

Table 15: Diversity in FVN-generated E2E examples.

We report the result of Question A in Table 9.
For each sentence, we averaged the scores across
three judges, and conducted a paired t-test between
the ground truth and our model for each person-
ality. The result shows that the FVN sentences
were considered significantly more grammatical /
natural on conscientiousness and disagreeableness,
the ground truth sentences were better on agree-
able and unconscientiousness, and no difference
was found for extravert. The overall performance
of FVN is very close to the ground truth (2.81 vs.
2.9), which suggests that FVN can generate text
of comparable fluency with respect to ground truth
texts.

We evaluated Question B using a majority vote
of the three crowdworkers. Table 10 shows the per-
centage frequency distribution for each personality
and the entire test set. We found that our FVN
model performs better than the ground truth on
agreeable and conscientiousness, while the ground
truth is better for the rest of the three personali-
ties. Specifically, 53% and 67% of the time, the
crowdworkers judge the agreeable and conscien-
tious sentences generated by our model to be better
than the ground truth sentences. This finding is
surprising, since we consider the ground truth be
an upper bound in this task, and our model outper-
forms it two out of five personalities. One possible
explanation about why FVN only performs bet-
ter on agreeable and conscientiousness is that the
language patterns of agreeableness and conscien-
tiousness are more systematic and thus easier to
learn by the model. In Table 10 we also report a
column that shows the percentage frequency of text
where the judgment was equal or in favor of FVN.
Underlined rows show when the number of equal

judgments or judgments favorable to FVN exceeds
the judgments that preferred the ground truth text.
Considering the overall performance, 50.29% of
times human evaluators considered FVN generated
text equal or better at conveying personality than
the ground truth. This finding suggests that FVN
can generate text with comparable conveyance with
respect to ground truth texts.

D Generated Samples and Linguistic
Patterns

Table 15 shows generated examples from FVN
trained on E2E. Given a CMR, we sample a code
for each slot value. The first part shows the gener-
ated text using the most frequent code for each slot
value. We can see that the text is fluent and conveys
the CMR precisely. In the remaining part, we keep
one slot-value’s code fixed and the remaining slot
codes are sampled. The fixed slot-value is present,
but some of the other slot-values are missing in the
generated text. One explanation is that in the train-
ing data the text associated with a CMR can also
contain missing values and therefore the codebook
memorizes this behavior.

