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Abstract

Does neural machine translation yield transla-
tions that are congenial with common sense?
In this paper, we present a test suite to evalu-
ate the commonsense reasoning capability of
neural machine translation. The test suite
consists of three test sets, covering lexical
and contextless/contextual syntactic ambiguity
that requires commonsense knowledge to re-
solve. We manually create 1,200 triples, each
of which contain a source sentence and two
contrastive translations, involving 7 different
common sense types. Language models pre-
trained on large-scale corpora, such as BERT,
GPT-2, achieve a commonsense reasoning ac-
curacy of lower than 72% on target transla-
tions of this test suite. We conduct extensive
experiments on the test suite to evaluate com-
monsense reasoning in neural machine trans-
lation and investigate factors that have impact
on this capability. Our experiments and anal-
yses demonstrate that neural machine transla-
tion performs poorly on commonsense reason-
ing of the three ambiguity types in terms of
both reasoning accuracy ( 6 60.1%) and rea-
soning consistency (6 31%). We will release
our test suite as a machine translation com-
monsense reasoning testbed to promote future
work in this direction.

1 Introduction

Sixty years ago, the pioneering machine transla-
tion researcher and linguist Bar-Hillel published
his well-known argument on the non-feasibility of
general-purpose fully automatic high-quality ma-
chine translation (FAHQT) due to the inevitable
requirement of world knowledge to help machine
translation to infer correct translations for am-
biguous words or linguistic structures (Bar-Hillel,
1960a). The example that Bar-Hillel uses as an
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evidence for the need of commonsense knowl-
edge in machine translation is “The box is in the
pen”, where machine translation is expected to per-
form reasoning on the relative sizes of “box” and
“pen”. Bar-Hillel also doubts that a machine, even
equipped with extra-linguistic knowledge, would
be able to reason with such knowledge sponta-
neously as human translators do (Bar-Hillel, 1960a;
Macklovitch, 1995).

Modern natural language processing (NLP) has
made tremendous progress, not only in building
abundant resources to develop linguistic insights,
but also in plenty of methodological practices. On
the one hand, machine translation has been sub-
stantially advanced with large-scale parallel data
and statistical models. Recent results even suggest
that the quality of machine-generated translations
is approaching professional human translators (Wu
et al., 2016; Hassan et al., 2018). On the other hand,
a wide variety of efforts have been conducted to
either examine the commonsense reasoning capa-
bility of neural models in natural language under-
standing, establish commonsense reasoning chal-
lenges or enhance neural models in commonsense
reasoning (Zhang et al., 2018; Talmor et al., 2018;
Huang et al., 2019; Sap et al., 2019b).

Comparing with Bar-Hillel’s doubts and recent
progress on machine translation and commonsense
reasoning, it is natural for us to ask questions: do
we solve the machine translation impasse related
to commonsense reasoning? Or particularly, are
current neural machine translation models able to
learn common sense? And if so, how much do
they learn? Does neural machine translation ac-
quire sufficient commonsense knowledge and have
strong ability in commonsense reasoning to gener-
ate human-level high-quality translations? Method-
ological discussion on the feasibility of FAHQT
given the recent progress is far beyond the scope
of this work. Instead, we focus on empirically ana-
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(1) 这个 人 戴 的 表 走 了 3 分钟 。 

    The watch worn by this person went/walked for 3     
    minutes. 

(2) 吃 了 游客 的 鳄鱼 。 

    The crocodile who ate the tourist/Ate the tourist's 
crocodile. 

(3) 当 地震 袭击 中国 时 ， 援助 的 是 中国 。 

    When the earthquake hit China, China received aid/China 
provided aid. 

Figure 1: Examples of the lexical ambiguity (1), con-
textless syntactic ambiguity (2) and contextual syntac-
tic ambiguity (3). English Translations in bold are cor-
rect while underlined translations are incorrect.

lyzing the capability of state-of-the-art neural ma-
chine translation models in using extra-linguistic
commonsense knowledge to resolve ambiguity at
different linguistic levels and select correct transla-
tions after disambiguation.

In order to achieve this goal, we manually build
a machine translation commonsense reasoning test
suite on Chinese-to-English translation with three
types of commonsense-related ambiguities: lexi-
cal ambiguity, contextless and contextual syntactic
ambiguity (see Section 3.1 for more details). Exam-
ples are shown in Figure 1. With this test suite, we
thoroughly evaluate the commonsense reasoning
ability of state-of-the-art neural machine transla-
tion models, e.g., LSTM- and Transformer-based
NMT (Bahdanau et al., 2015; Vaswani et al., 2017).
We also conduct analyses on the commonsense
reasoning capability according to commonsense
knowledge types, sentence length and reasoning
consistency and the size of training data.

To the best of our knowledge, this is the first
work to understand and measure the commonsense
reasoning capability in neural machine translation.
The contributions of this paper can be summarized
as follows:

• We build a test suite1 to examine the abil-
ity of neural machine translation in common-
sense reasoning, which provides a benchmark
testbed for tracking progress in this direction.
• Based on our experiments and analyses on

evaluating commonsense reasoning in NMT,
we find that: 1) commonsense reasoning re-
lated to lexical ambiguity and contextual syn-
tactic ambiguity is more difficult than con-
textless syntactic ambiguity; 2) although the

1The built commonsense test suite will be publicly avail-
able at https://github.com/tjunlp-lab/CommonMT.

commonsense reasoning accuracy is higher
than 50%, the reasoning consistency rate is
far lower than 50% (random guess).

2 Related work

We briefly review recent efforts related to common-
sense reasoning in NLP. We refer readers to Storks
et al. (2019)’s article for a thorough survey in this
area.
Commonsense Datasets
According to Gunning (2018), commonsense
knowledge normally consists of a general theory of
how the physical world works and a basic under-
standing of human motives and behaviors. In recent
years, a wide variety of datasets on the two kinds
of commonsense knowledge have been proposed.
Sap et al. (2019b) introduce Social IQA, containing
38k multiple choice questions for probing the com-
monsense reasoning about emotional and social
in people’s daily life. Similarly, Event2mind and
Atomic (Rashkin et al., 2018; Sap et al., 2019a)
focus on inferred knowledge in the form of if-then
to reason about people’s daily life behavior. For
datasets on physical common sense, PIQA (Bisk
et al., 2020) on commonsense phenomena in the
physical world contains 21K QA pairs. SWAG and
HellaSwag (Zellers et al., 2018, 2019) are datasets
on commonsense NLI, where materials from video
subtitles and wikihow articles are used to construct
cloze tests. Bhagavatula et al. (2019) propose a
dataset for abductive reasoning on events. The well-
known Winograd Schema Challenge (WSC) test
set (Levesque et al., 2012; Sakaguchi et al., 2020)
focus on solving the commonsense problems in
the form of coreference resolution. Different from
them on monolingual data, we provide a bilingual
commonsense test suite for machine translation.
Commonsense Reasoning in NLP
In addition to common sense datasets, we have also
witnessed that commonsense knowledge has been
recently explored in different NLP tasks. Just to
name a few, Trinh and Le (2018), He et al. (2019)
and Klein and Nabi (2019) use language models
trained on huge text corpora to do inference on the
WSC dataset. Ding et al. (2019) use common-
sense knowledge in Atomic (Sap et al., 2019a) and
Event2mind (Rashkin et al., 2018) on downstream
tasks such as script event prediction. Bi et al.
(2019) exploit external commonsense knowledge
from ConceptNet (Speer et al., 2016)) in machine
reading comprehension.
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Commonsense Reasoning Evaluation
With pre-trained language models, like BERT (De-
vlin et al., 2019), GPT-2 (Radford et al., 2019)
being widely used in various NLP tasks, studies
have been performed to examine the commonsense
reasoning capability in pre-trained neural language
models. Wang et al. (2019) and Zhou et al. (2020)
propose to measure the success rate of the pre-
trained language models in commonsense inference
by calculating LM probabilities. Two sentences
which are used to test commonsense inference dif-
fer only in commonsense concepts. Feldman et al.
(2019) further explore unsupervised methods to
generate commonsense knowledge using the world
knowledge of pre-trained language models. Our
commonsense reasoning evaluation resonates with
these evaluation efforts.
Commonsense Knowledge and Reasoning in
Machine Translation
Commonsense knowledge has long been acknowl-
edged as an indispensable knowledge source for
disambiguation in machine translation (Bar-Hillel,
1960b; Davis and Marcus, 2015). Knowledge-
based machine translation (KBMT), one of the pop-
ular machine translation paradigms in 1980s, lays
much stress on extra-linguistic world knowledge
in machine translation (Nirenburg, 1989). Large
ontology that is constructed either manually or au-
tomatically to provide world knowledge is one of
essential components in KBMT (Knight and Luk,
1994).

As data-driven machine translation, such as sta-
tistical machine translation (SMT) and neural ma-
chine translation, becomes de facto standard in ma-
chine translation, world knowledge has been less
explicitly explored. Only a few studies have indi-
rectly and partially exploited world knowledge in
SMT or NMT, by incorporating linked open data
resources such as DBpedia and BabelNet into SMT
with modest improvements (Du et al., 2016; Sri-
vastava et al., 2017; Moussallem et al., 2018).

3 Commonsense Reasoning Test Suite for
Machine Translation

In this section, we discuss the design and construc-
tion of the test suite, including the rules and steps
for building this test suite.

3.1 Test Suite Design

Different from commonsense reasoning in Wino-
gram Schema Challenge (Levesque et al., 2012)

or sentence reasonability judgment (i.e., “He put a
turkey into the fridge” vs. “He put an elephant into
the fridge”) (Wang et al., 2019), where common-
sense reasoning normally happens in one language,
commonsense reasoning in NMT can be done ei-
ther in the encoding of the source language (i.e.,
encoding reasonable source representations) or in
the decoding of the target language (i.e., producing
reasonable target outputs). As it is difficult to de-
tect whether reasonable senses are identified and
encoded in the encoder, we check target outputs
from the decoder to test the commonsense reason-
ing capability of NMT. This is the first rule that we
follow to design the test suite.

In the second rule for building the test suite, we
manually create source sentences with ambiguity
that requires commonsense reasoning. Inspired by
Schwartz and Gomez (2009) and Ovchinnikova
(2012), we ground the commonsense reasoning test
on two types of ambiguity: lexical and syntactic
ambiguity (LA and SA), which are common in
machine translation. An example in LA is the “bat-
ter” in “she put the batter in the refrigerator” (food
material vs. baseball player). SA relates to struc-
tures, for instance, “I saw a man swimming on the
bridge” (I was standing on the bridge vs. The man
was swimming on the bridge). We further refine SA
into contextless (e.g., Example (2) in Figure 1) and
contextual SA (e.g., Example (3) in Figure 1). The
former can be correctly interpreted by resorting to
commonsense knowledge while the latter cannot
be interpreted uniquely if no more context is given.

The third rule that we conform to is to 1) create
two contrastive source sentences for each lexical
or syntactic ambiguity point, where each source
sentence corresponds to one reasonable interpre-
tation of the ambiguity point, and 2) to provide
two contrastive translations for each created source
sentence. This is similar to other linguistic evalua-
tion by contrastive examples in the MT literature
(Avramidis et al., 2019; Bawden et al., 2018; Müller
et al., 2018; Sennrich, 2017). These two contrastive
translations have similar wordings: one is correct
and the other is not correct in that it translates the
ambiguity part into the corresponding translation
of the contrastive source sentence. This translation
makes sense in the contrastive sentence but not in
the sentence in question. Examples of contrastive
source sentences and contrastive translations for
each source sentence are shown in Figure 2, 3 and
4.
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z1主力 部队 已经 对 敌人的 建筑 展开 了 攻关 。

�1
� The main force has already launched an attack on the
enemy’s building.

�1
� The main force has already launched a research on the
enemy’s building.

�2 经过 两年 的 攻关 ， 终于 解决 了 这道 技术
难题。

�2
� After two years of research, this technical problem has
finally been solved.

�2
� After two years of attack, this technical problem has
finally been solved.

Figure 2: An example block in the LA test set.

Finally, we have hired two linguistic experts to
construct ambiguous source sentences and two pro-
fessional human translators to provide contrastive
translations for each source sentence. We ask them
to create and translate with diverse words as much
as possible and hire an extra linguistic expert and
translator to review and double check source sen-
tences and target translations after the two experts
and translators cross check with each other.

3.2 Lexical Ambiguity Test Set

To construct this test set, we select words from
a Chinese polysemous dictionary2 so that the se-
lected words have multiple interpretations. We
avoid selecting words that are semantically close to
one another in order to maintain diversity of the test
set. We do not select words that are polysemous
in Chinese but translated into the same words in
English. Words that are translated into very differ-
ent English words in different context and require
commonsense knowledge to disambiguate are pre-
ferred.

This test set contains 200 example blocks. Each
block is composed of two contrastive triples (z1, er1,
ec1) and (z2, er2, ec2). As shown in Figure 2, z1 and
z2 are contrastive with each other as they contain
the same ambiguous word with different meanings.
er. and ec. are contrastive translations where the for-
mer is correct while the latter not. ec1 and ec2 are
wrong translations in that they incorrectly interpret
the ambiguous word in the way of er2 and er1 respec-
tively. A selected polysemous word is used in only
one example block.

3.3 Syntactic Ambiguity Test Sets

As mentioned before, we have two types of test sets
for syntactic ambiguity: contextless and contextual

2Download link for the Chinese polysemous dictionary

z1维修 桌子 的 桌脚 。

e1
r Repair the legs of the table.

�1
� The leg that repairs the table.

z2维修 桌子 的 锤子 。

�2
� The hammer that repairs the table.

�2
� Repair the hammer of the table.

Figure 3: An example block in the contextless SA test
set.
z1办公室 里 有 两个 党 的 议员 ， 他们 互相 攻击 对方

党派 的 观点 。

�1
� There aremembers of two parties in the office who are
attacking each other’s party views.

�1
� There are two members of the party in the office who are
attacking each other’s party views.

�2办公室 里 有 两个 党 的 议员 ， 他们 在 竞选 党 主席 。

�2
� There are two members of the party in the office who are
running for the party chairman.

�2
� There aremembers of two parties in the office who are
running for the party chairman.

Figure 4: An example block in the contextual SA test
set.

SA. Before we construct the two test sets, we select
Chinese structures that are typically ambiguous,
just like PP attachment in English (e.g., “He ate
the apple in the refrigerator” from Schwartz and
Gomez (2009)).

Feng (1995) has deeply investigated syntactic
ambiguity in Chinese and has found 26 structures
that tend to generate sentences with different inter-
pretations, such as “noun phrase + de (a Chinese
particle) + shi (is) + noun phrase”. From them,
we use 12 structures to construct contrastive exam-
ples, where the subtle differences in Chinese can
be clearly detected in English after translation.

With these 12 structure templates with potential
syntactic ambiguity, we manually create 225 exam-
ple blocks for the contextless SA test set and 175
blocks for the contextual SA test set. Examples
of these two test sets are listed in Figure 3 and 4.
Similar to the LA test set, each block is composed
of two contrastive triples where two translations
for each source sentence are also contrastive with
each other in the way that we translate sentences
in the LA test set. For the blocks in the context-
less test set, we make sure that each ambiguous
source sentence can be correctly interpreted with
commonsense knowledge. We do not need extra
context information for disambiguation. In con-

https://drive.google.com/file/d/1Ejs9xUjHMKTUd8h9W4chALwCox45uGP1/view?usp=sharing
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Test set #triples #unique tokens Average tokens per sentence total token numbers
LA 400 1,246/1,139/1,140 7.3/9.1/9.1 2,920/3,640/3,640
CL-SA 450 838/738/741 5.2/6.3/6.3 2,340/2,835/2,835
CT-SA 350 1,083/997/997 11.1/13.5/13.5 3,885/4,725/4,725
TOTAL 1,200 2,570/2,050/2,063 7.6/9.3/9.3 9,120/11,160/11,160

Table 1: Statistics on the test suite. Numbers a/b/c denote the corresponding number in source sentences/correct
translations/incorrect translations. LA: lexical ambiguity; CL-SA: contextless SA; CT-SA: contextual SA.

Category Descriptions Examples %
Properties properties of objects 你/you嘴/mouth太快了/too fast 25.9
Behaviors Behaviors that objects will take in a particular situation 鸡/ chicken不/not吃了/eat因为/because这只鸡/the chicken已

经/had already吃了/eat太多了/too much.
25.2

Taxonomy Systematic classification of objects and concepts 今年/this year 风调雨顺/weather is good 农民的秋景/the har-
vest of the farmers’ autumn一定/must be很好/very good.

21.1

Action Some actions an object may be involved in 健康的/ healthy医生/doctor正在/is doing手术/surgery. 15.8
Structures Object A is part of Object B 削/Cut西瓜的/the watermelon皮/skin. 8.1
Emotions Description of people’s psychological activities and emotions 她/she 留下/leave 眼泪/tears 倾倒/pour out 她的/her 委

屈/grievances.
2.6

Procedural The type of common sense exercised in the performance of a task 学生/students 被调查/were investigated 因为/because 这些
学生/these students 是/were 这个事件的/the incident 目击
者/witnesses.

1.3

Table 2: Commonsense knowledge categories and their percentages in the test sets.

trast, we have to resort to additional context to
interpret sentences in the contextual SA test set.

4 Test Suite Analysis

We provide statistical analyses on the built test
suite, which cover its size, distribution of knowl-
edge types and the reasoning accuracy of pretrained
language models on target translations of target
translations of this test suite.

4.1 General Statistics

Statistics on the built test suite are displayed in Ta-
ble 1. We show the number of triples, the number
of unique tokens, and the average number of tokens
per sentence in each test set. Although sentences in
the test suite are not very long, they are very chal-
lenging to be correctly translated as commonsense
reasoning is involved, which will be verified in our
experiments.

4.2 Commonsense Knowledge Type

Tandon et al. (2017) categorize commonsense
knowledge into different types. Following their
taxonomy of commonsense types, we compute the
percentage of each type in our test suite, as shown
in Table 2. Commonsense knowledge on properties,
behaviors and taxonomy of objects/concepts are the
top 3 commonsense knowledge types involved in
our test sets.

LA CL-SA CT-SA Total
Random 0.500 0.500 0.500 0.500
GPT 0.775 0.650 0.597 0.678
GPT-2 base 0.803 0.642 0.606 0.688
GPT-2 medium 0.798 0.648 0.611 0.690
BERT-base 0.788 0.642 0.611 0.684
BERT-large 0.818 0.682 0.623 0.712

Table 3: Commonsense Reasoning accuracy of pre-
trained language models on the 1,124 instances of the
test suite.

4.3 Evaluation of Pretrained Language
Models on the Test Suite

In our test suite, we find that target translations of
93.7% instances (1,124 of 1200 test instances) can
be determined if they are correct only from transla-
tions themselves (i.e., by performing commonsense
reasoning), without reference to the corresponding
source sentences. This is exactly what we want
the test suite to be like as the purpose of this test
suite is to evaluate commonsense reasoning rather
than the ability of NMT in exploring source con-
text for translation disambiguation not related to
common sense. This is also consistent with the
first rule for building the test suite: evaluating com-
monsense reasoning from the target side. Since
the reasonability of these translations can be deter-
mined only from themselves, we want to know how
challenging they are for pretrained language mod-
els in terms of commonsense reasoning. Hence,
we evaluate state-of-the-art language models pre-
trained on large-scale data, including BERT (De-
vlin et al., 2019), GPT (Radford, 2018), and GPT-2
(Radford et al., 2019), on these 1,124 translation
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pairs (pairs of reference and contrastive transla-
tions). For notational convenience, we still use the
test suite to refer to these instances as only 76 cases
are excluded for this evaluation.

Following Wang et al. (2019) and Zhou et al.
(2020), for each pair (er, ec), we use a pretrained
language model to compute the language model
score of the two translations. The translation with
a higher score is labelled as the correct one by
the language model. By comparing these labels
with ground-truth labels, we can obtain the com-
monsense reasoning accuracy of the corresponding
language model on these instances.

Results are shown in Table 3. All language mod-
els are better than random guess, validating the
commonsense reasoning ability of them. They per-
form worse on the contextual SA test than on the
other two test sets, demonstrating the difficulty in
cross-sentence commonsense reasoning. BERT-
large achieves the highest accuracy, 0.712. The
number of parameters of BERT-large is equal to
that of GPT2-medium, almost 3 times as large
as that of GPT-2 base and BERT-base (340M vs.
117M). We conjecture that the reason for the supe-
riority of BERT models over GPT/GPT-2 models
is due to bidirectional context in BERT, which res-
onates with the findings of Zhou et al. (2020). The
accuracies of all pretrained language models are all
lower than 72%. This suggests that our test suite is
very challenging in commonsense reasoning even
for language models trained on an amount of data.

5 Experiments

In this section, we conducted extensive experiments
to evaluate the commonsense reasoning capability
of state-of-the-art neural machine translation on the
built test suite.

5.1 Experimental setup

We adopted the CWMT Chinese-English corpus3

of news domain as training data for NMT systems.
This corpus contains 9M parallel sentences. We
used byte pair encoding compression algorithm
(BPE) (Sennrich et al., 2016) to process all these
data and restricted merge operations to a maximum
of 30k.

We trained two neural machine translation mod-
els on the training data: RNNSearch (Bahdanau
et al., 2015) and Transformer (Vaswani et al.,
2017).

3Available at: http://nlp.nju.edu.cn/cwmt-wmt

We used the Transformer base model with 6 lay-
ers and 8 self-attention heads per layer. As for
RNNSearch, we employed neural architecture with
4 layers of LSTM and 512-dimension hidden states.
We used Adam (Kingma and Ba, 2015) to train both
NMT models. β1 and β2 of Adam were set to 0.9
and 0.999, the learning rate was set to 0.0005, and
gradient norm was set to 5. To take full advantage
of GPUs, we batched sentences of similar lengths.
We trained both models on a single machine with
8 1080Ti cards. Each mini-batch contained 32,000
tokens. During decoding, we employed the beam
search algorithm and set the beam size to 5.

5.2 Evaluation Metrics
For translation performance evaluation, we used
sacrebleu (Post, 2018) to calculate case-sensitive
BLEU-4 (Papineni et al., 2001).

To evaluate the commonsense reasoning accu-
racy of NMT on the test suite, we applied NMT
models to score each pair (s, t) as follows:

Score(t|s) = 1

|t|

|t|∑
i=0

logp(ti|t<i, s) (1)

where p(ti|t<i, s) is the probabilty of the target
word ti given the target history and source sentence.
Given a triple (z, er, ec), if an NMT model scores
the reference translation higher than the contrastive
translation (i.e., Score(er|z) > Score(ec|z)), the
NMT model is believed to make a correct common-
sense reasoning prediction. This is reasonable as
er and ec are only different in words or structures
related to the lexical or syntactical commonsense
ambiguity point as described in Section 3.1. By
scoring each triple with an NMT model, we can
measure the commonsense reasoning accuracy of
the model on our test suite.

5.3 Results
BLEU scores for the two NMT models are given
in Table 4. Commonsense reasoning results on the
test suite are provided in Table 5.

From the table and figure, we can observe that

• Both BLEU and commonsense reasoning ac-
curacy clearly show that Transformer is better
than RNNSearch.
• Both RNNSearch and Transformer perform

better on the contextless SA than on the con-
textual SA according to the commonsense rea-
soning accuracy. This is consistent with the re-
sults of pretrained language models shown in

http://nlp.nju.edu.cn/cwmt-wmt
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LA CL-SA CT-SA Total

RNNSearch 25.82 21.59 27.98 25.86
Transformer 31.97 27.84 31.30 30.75

Table 4: BLEU scores on the test sets.

LA CL-SA CT-SA Total

RNNSearch 0.543 0.569 0.551 0.555
Transformer 0.565 0.656 0.571 0.601

Table 5: Commonsense Reasoning accuracy on the test
sets.

Table 3, suggesting that cross-sentence com-
monsense reasoning is also challenging for
NMT. Notice that the commonsense reason-
ing accuracy of pretrained language models
cannot be directly compared to that of NMT
models due to different evaluation procedure,
mechanisms for commonsense reasoning and
different test data. The BLEU scores on the
contextless SA test set are lower than those
on the contextual SA. We conjecture that this
is because the contextless SA test set consists
of very short sentences. Wrongly translated
words therefore have a very big impact on
BLEU scores.
• The performance gap between Transformer

and RNNSearch on the CL-SA test set is
larger than that on the other two test sets. The
reason might be that the self-attention mecha-
nism allows Transformer to more easily detect
collocations (e.g., “leg” and “table” in Figure
3) for disambiguation on the CL-SA test set.
Many CL-SA cases can be disambiguated by
collocations according to our observation on
this test set.
• Compared with the relative BLEU improve-

ment of Transformer over RNNSearch, the
relative improvement in terms of common-
sense reasoning accuracy is smaller (8.2% vs.
18.91% in BLEU), indicating that more efforts
are expected to not only improve translation
quality in terms of BLEU but also to enhance
commonsense reasoning ability in NMT.

5.4 Effect of the Size of Training Data
We conducted experiments to investigate the impact
of the amount of training data on the commonsense
reasoning performance of the state-of-the-art NMT
model Transformer. Results are displayed in Figure
5. Generally, with the increase of training data, The
common-sense reasoning ability of NMT systems
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Figure 6: Commonsense Reasoning accuracy against
the length of source sentences. The percentage of each
group is shown under the corresponding length inter-
val.

rises too. Although we used all CWMT Chinese-
English training data to train NMT, we didn’t have
a chance to see that the commonsense reasoning
accuracy tends to level off. We conjecture that the
growth has the potential to continue. We leave us-
ing more data to measure the growth momentum of
NMT commonsense reasoning to our future work.

Yet another finding from Figure 5 is that the
commonsense reasoning performance on the con-
textless SA test set is always higher that the other
two test sets. As shown in the last subsection, the
reasons for this may be due to shorter sentences
and collocations in this test set.

5.5 Effect of Sentence Length

We carried out an analysis on the impact of the
length of source sentences on commonsense reason-
ing. We divided the test suite into 5 groups accord-
ing to the length of source sentences. The results
are shown in Figure 6. Generally, Transformer is
better than RNNSearch in almost all length groups.
With the length of source sentences increasing, the
commonsense reasoning performance tends to go
down. This may suggest that long-distance or cross-
sentence commonsense reasoning is more challeng-
ing for NMT than short-distance reasoning, which
is consistent with our finding on the CL-SA test
set.
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Figure 7: Commonsense Reasoning accuracy of the
Transformer on the different commonsense knowle-
dge types.

RNNSearch Transformer

LA 0.24 0.26
CL-SA 0.31 0.39
CT-SA 0.27 0.27
Total 0.27 0.31

Table 6: Rates of Reasoning consistency on the
three test sets.

Error type Example %

Common sense errors
Origin: 公园里有三个幼儿园的孩子，总共有6个孩子在做游戏。
Reference: There are children of three kindergartens in the park, and a total of six children are playing games.
Transformer: There are three kindergarten children in the park, a total of 6 children are playing games.

71.6%

Ordinary meaning errors
Origin: 这个工程已经下马。
Reference: This project has been abandoned.
Transformer: The factory is already off.

22.7%

Other errors
Origin: 我写了六天字帖。
Reference: I wrote copybooks for six days.
Transformer: I wrote six days.

5.7%

Table 7: Translation error types. Words related to translation errors are underlined.

5.6 Effect of Commonsense Knowledge Types

Finally, we analyzed the commonsense reasoning
capability of Transformer on different common-
sense knowledge types. Studying different types of
common sense can help us understand what kind of
commonsense knowledge is more needed to solve
commonsense reasoning problems in NMT. The
results are shown in Figure 7. Transformer-based
NMT obtains relatively good results on common-
sense reasoning on properties, structures, actions,
but performs badly on reasoning on behaviors and
emotions.

6 Further Analysis

6.1 Analysis on Reasoning Consistency

Our test suite contains 600 example blocks, each of
which focuses on only one LA/SA ambiguity point.
For the two reasonable interpretations (z1, z2) of a
given ambiguity point, NMT models need to make
two translation predictions: one for (er1, e

c
1) and

the other for (er2, e
c
2). If they choose er1 and er2

(both right reasoning predictions) or ec1 and ec2 (both
wrong reasoning predictions), we treat this as a con-
sistent reasoning, otherwise inconsistent. Partially
inspired by Zhou et al. (2020), we conducted an
analysis on reasoning consistency.

We counted the times that a tested NMT model

made consistent reasoning predictions and calcu-
lated the consistency rate on the three test sets.
Results are shown in Table 6. Disappointingly, the
reasoning consistency rates for both RNNSearch
and Transformer are lower than random guess (0.5).
On the contextless SA test set where both NMT
models have higher reasoning accuracies, the rates
of reasoning consistency are also higher than those
of the other two test sets.

6.2 Analysis on Translation Errors

We have already automatically evaluated common-
sense reasoning in NMT with both reasoning ac-
curacy and reasoning consistency rate. We fur-
ther manually analyzed the translation errors of
Transformer on the entire test suite. We roughly
grouped translation errors into three categories:
common sense errors (translations that are not con-
sistent with common sense), ordinary meaning er-
rors (wrong translations of sources words that are
not commonsense ambiguity points) and other er-
rors (e.g., missing words). These errors were man-
ually detected and labeled by two annotators. They
checked all examples in the test suite. The inter-
annotator agreement, measured as the rate of the
number of labels that the two annotators annotate
consistently against the total number of labels from
the two annotators, is 92%.
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Results are reported in Table 7. The majority
of translation errors are indeed related to common
sense (71.6%). This suggests that our test suite is
a suitable and challenging testbed for evaluating
commonsense reasoning in NMT.

7 Conclusion

In this paper, we have presented a test suite, includ-
ing a lexical ambiguity test set and two syntactic
ambiguity test sets, to evaluate the commonsense
reasoning capability of state-of-the-art neural ma-
chine translation models. We elaborate the rules of
building this test suite and conduct statistical analy-
ses on it. Our evaluation experiments and analyses
on this test suite suggest that commonsense reason-
ing in modern machine translation models is still
in its infant stage and that more efforts are to be
expected to advance NMT in this direction.
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