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Abstract

Semantic parses are directed acyclic graphs
(DAGS), but in practice most parsers treat them
as strings or trees, mainly because models that
predict graphs are far less understood. This
simplification, however, comes at a cost: there
is no guarantee that the output is a well-formed
graph. A recent work by Fancellu et al. (2019)
addressed this problem by proposing a graph-
aware sequence model that utilizes a DAG
grammar to guide graph generation. We sig-
nificantly improve upon this work, by propos-
ing a simpler architecture as well as more ef-
ficient training and inference algorithms that
can always guarantee the well-formedness of
the generated graphs. Importantly, unlike
Fancellu et al., our model does not require
language-specific features, and hence can har-
ness the inherent ability of DAG-grammar
parsing in multilingual settings. We perform
monolingual as well as multilingual experi-
ments on the Parallel Meaning Bank (Abzian-
idze et al.,, 2017). Our parser outperforms
previous graph-aware models by a large mar-
gin, and closes the performance gap between
string-based and DAG-grammar parsing.

1 Introduction

Semantic parsers map a natural language utterance
into a machine-readable meaning representation,
thus helping machines understand and perform in-
ference and reasoning over natural language data.
Various semantic formalisms have been explored
as the target meaning representation for seman-
tic parsing, including dependency-based composi-
tional semantics (Liang et al., 2013), abstract mean-
ing representation (AMR, Banarescu et al., 2013),
minimum recursion semantics (MRS, Copestake
et al., 2005), and discourse representation theory
(DRT, Kamp, 1981). Despite meaningful differ-
ences across formalisms or parsing models, a rep-
resentation in any of these formalisms can be ex-
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Figure 1: The discourse representation structure for
‘We barred the door and locked it’. For ease of refer-
ence in later figures, each box includes a variable cor-
responding to the box itself, at top right in gray.

pressed as a directed acyclic graph (DAG).

Consider for instance the sentence ‘We barred
the door and locked it’, whose meaning representa-
tion as a Discourse Representation Structure (DRS)
is shown in Figure 1. A DRS is usually repre-
sented as a set of nested boxes (e.g. b1), containing
variable-bound discourse referents (e.g. ‘lock(e2)’),
semantic constants (e.g. ‘speaker’), predicates (e.g.
AGENT) expressing relations between variables
and constants, and discourse relations between the
boxes (e.g. CONTINUATION). This representation
can be expressed as a DAG by turning referents
and constants into vertices, and predicates and dis-
course relations into connecting edges, as shown in
Figure 2.

How can we parse a sentence into a DAG?
Commonly-adopted approaches view graphs as
strings (e.g. van Noord and Bos, 2017; van No-
ord et al., 2018), or trees (e.g. Zhang et al., 2019a;
Liu et al., 2018), taking advantage of the linearized
graph representations provided in annotated data
(e.g. Figure 3, where the graph in Figure 2 is rep-
resented in PENMAN notation (Goodman, 2020)).
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Figure 2: The DRS of Figure 1 expressed as a DAG.

(b1/0
:CONTINUATION1 (bo/]
:DRS(e;/bar
:AGENT(c1/speaker)))
:THEME(z1/door?)))
:CONTINUATION2(bs/(]
:DRS(es/ lock
:AGENT ¢
:PATIENTZ1))

Figure 3: The DAG of Figure 2 expressed as a string.

An advantage of these linearized representations
is that they allow for the use of well-understood
sequential decoders and provide a general frame-
work to parse into any arbitrary formalism. How-
ever, these representations are unaware of the over-
all graph strucure they build as well as of reen-
trant semantic relations, such as coordination, co-
reference, and control, that are widespread in lan-
guage. Parsers such as Zhang et al. (2019b) al-
though able to generate reentrancies in their output,
they do so by simply predicting pointers back to
already generated nodes.

Parsing directly into DAGs, although desirable,
is less straightforward than string-based parsing.
Whereas probabilistic models of strings and trees
are ubiquitous in NLP, at present, it is an active
problem in modern formal language theory to de-
velop formalisms that allow to define probability
distributions over DAGs of practical interest.! A
successful line of work derives semantic graphs us-
ing graph grammars that allow to generate a graph
by rewriting non-terminal symbols with graph frag-
ments. Among these, hyperedge replacement gram-
mar (HRG) has been explored for parsing into se-
mantic graphs (Habel, 1992; Chiang et al., 2013).
However, parsing with HRGs is not practical due to
its complexity and large number of possible deriva-
tions per graph (Groschwitz et al., 2015). Thus,
work has looked at ways of constraining the space
of possible derivations, usually in the form of align-

"See Gilroy (2019) for an extensive review of the issue.

ment or syntax (Peng et al., 2015). For example,
Groschwitz et al. (2018) and Donatelli et al. (2019)
extracted fine-grained typed grammars whose pro-
ductions are aligned to the input sentence and com-
bined over a dependency-like structure. Similarly,
Chen et al. (2018) draw on constituent parses to
combine together HRG fragments.

Bjorklund et al. (2016) show that there exists a
restricted subset of HRGs, Restricted DAG gram-
mar (RDQG), that provides a unique derivation per
graph. A unique derivation means that a graph
is generated by a unique sequence of productions,
which can then be predicted using sequential de-
coders, without the need of an explicit alignment
model or an underlying syntactic structure. Fur-
thermore, the grammar places hard constraints on
the rewriting process, which can be used to guar-
antee the well-formedness of output graphs during
decoding. Drawing on this result, a recent work by
Fancellu et al. (2019) introduces recurrent neural
network RDGs, a sequential decoder that models
graph generation as a rewriting process with an
underlying RDG. However, despite the promising
framework the approach in FA19? falls short in
several aspects.

In this paper, we address these shortcomings,
and propose an accurate, efficient, polyglot model
for Neural RDG parsing. Specifically, our contri-
butions are as follows:

Grammar: In practice, RDGs extracted from train-
ing graphs can be large and sparse. We show a
novel factorization of the RDG production rules
that reduces the sparsity of the extracted grammars.
Furthermore, we make use of RDGs extracted on
fully human annotated training data to filter out
samples from a larger noisy machine-generated
dataset that cannot be derived using such gram-
mars. We find that this strategy not only drastically
reduces the size of the grammar, but also improves
the final performance.

Model: FA19 use a syntactic parsing inspired ar-
chitecture, a stackLSTM, trained on a gamut of
syntactic and semantic features. We replace this
with a novel architecture that allows for batched
input, while adding a multilingual transformer en-
coder that relies on word-embedding features only.
Constrained Decoding: We identify a limitation
in the decoding algorithm presented by FA19,
in that it only partially makes use of the well-

For the sake of brevity, we refer to Fancellu et al. (2019)
as FA19 throughout the paper.
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formdness constraints of an RDG. We describe the
source of this error, implement a correction and
show that we can guarantee well-formed DAGs.
Multilinguality: Training data in languages other
than English is often small and noisy. FA19 ad-
dressed this issue with cross-lingual models using
features available only for a small number of lan-
guages, but did not observe improvements over
monolingual baselines in languages other than En-
glish. We instead demonstrate the flexibility of
RDGs by extracting a joint grammar from graph
annotations in different languages. At the same
time, we make full use of our multilingual encoder
to build a polyglot model that can accept training
data in any language, allowing us to experiment
with different combinations of data. Our results
tell a different story where models that use com-
bined training data from multiple languages always
substantially outperform monolingual baselines.

We test our approach on the Parallel Meaning
Bank (PMB, Abzianidze et al., 2017), a multilin-
gual graphbank. Our experimental results demon-
strate that our new model outperforms that of FA19
by a large margin on English while fully exploiting
the power of RDGs to always guarantee a well-
formed graph. We also show that the ability of
simultaneously training on multiple languages sub-
stantially improves performance for each individual
language. Importantly, we close the performance
gap between graph-aware parsing and state-of-the-
art string-based models.

2 Restricted DAG Grammar

We model graph generation as a process of graph
rewriting with an underlying grammar. Our
grammar is a restricted DAG grammar (RDG,
Bjorklund et al., 2016), a type of context-free gram-
mar designed to model linearized DAGs. For ease
of understanding, we represent fragments in gram-
mar productions as strings. This is shown in Fig-
ure 4, where the right-hand-side (RHS) fragment
can be represented as its left-to-right linearization,
with reentrant nodes flagged by a dedicated $ sym-
bol.

An RDG is a tuple (P, N, 3, S, V) where P is
a set of productions of the form a — 3; N is
the set of non-terminal symbols {L, Tp, - - -, T}, }
up to a maximum number of n; X is the set of
terminal symbols; S is the start symbol; V' is an
unbounded set of variable references {$1, $2,...},
whose role is described below.

b,/0

CONTINUATION CONTINUATION

S —

TQ T2

S — (b1/0J :CONTINUATION T5($1, $2) :CONTINUATION
T>($1, $2))

Figure 4: An example production for a grammar. The
graph fragment on the right-hand side can be replaced
with a string representing its depth-first traversal.

The left-hand-side (LHS) « of a production p €
P is a function T; € N (where 7 is the rank) that
takes ¢ variable references as arguments. Variable
references are what ensure the well-formedness of
a generated graph in an RDG, by keeping track of
how many reentrancies are expected in a deriva-
tion as well as how they are connected to their
neighbouring nodes. Rank, in turn, is an indication
of how many reentrancies are present in a graph
derivation. For instance, in the graph fragment
in Figure 4, given that there are two variable ref-
erences and a non-terminal of rank 2, we are ex-
pecting two reentrant nodes at some point in the
derivation. The RHS £ is a typed fragment made
up of three parts: a variable v describing the se-
mantic type’, a label non-terminal L, and a list of
tuples (e, s) where e is an edge label from a set of
labels E and s is either a non-terminal function T’
or a variable reference. The non-terminal L can
only be rewritten as a terminal symbol [ € X. If
a node is reentrant, we mark it with a superscript
* over v. Variable references are percolated down
the derivation and are replaced once a reentrant
variable v* is found on the RHS.

Following FA19, we show a complete derivation
in Figure 5 that reconstructs the graph in Figure 2.
Our grammar derives strings by first rewriting the
start symbol S, a non-terminal function 7y. At
each subsequent step, the leftmost non-terminal
function in the partially derived string is rewritten,
with special handling for variable references de-
scribed below. A derivation is complete when no
non-terminals remain.

Variable references are resolved when applying
a production that maps a reentrant variable name

*where v € {e,x,t,s,¢,b} (e=event, x=individual,
s=state, t=time, c=constant, b=box). Note that type is op-
tional: in other formalisms like AMR variable do not have
a semantic type, hence one may name all variables with the
same letter.
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Step Production Result

(b1/0 :CONT (b2/0 :DRS (e1/bar :AGENT (c*/speaker) :THEME (x*/L))))

(b1/0 :CONT (b2/0 :DRS (e1/bar :AGENT (c*/speaker) :THEME (x* /door?))))

1 r (b1/L :CONT T2(%1,$2) :CONT 7>($1, $2))

2 (b1 /00 :CONT (b2/L :DRs T2 ($1,$2)) :CONT T ($1,$2))

3 r3 (b1/00 :CONT (b2/00 :DRS (e1/L :AGENT T1($1) : THEME T1($2))))
:CONT T»($1, $2))

4 ry (b1/0 :CONT (b2/0 :DRS (e1/bar :AGENT (¢*/L) :THEME T1($2))))
:CONT T5(c, $2))

5 Ts5
:CONT Tx(c, x))

6 T2
:CONT (b3/0 :DRs Tz(c, x)))

7 T6

(b1/0 :CONT (b2/00 :DRS (e1/bar :AGENT (c*/speaker) :THEME (x* /door?))))

:CONT (b3/0 :DRS (e2/lock :AGENT c :PATIENT x)

Figure 5: A full RDG derivation for the graph in Figure 2. At each step ¢ the leftmost non-terminal 7}, (in blue)
is rewritten into a fragment (underlined) and its label non-terminal L (in red) replaced with a terminal. Variable
references are percolated down the derivation unless a reentrant variable v* is found (step 4 and 5).

to a reference, as shown for production 74, where
the variable ¢ is mapped to $1. Once this mapping
is performed, all instances of $1 in the RHS are
replaced by the corresponding variable name. In
this way, the reference to c is kept track of during
the derivation becoming the target of AGENT in 7.
Same applies in 75 where x is mapped to $2.

All our fragments are delexicalized. This is
achieved by the separate non-terminal L that at ev-
ery step is rewritten in the corresponding terminal
label (e.g. bar). Delexicalization allows to reduce
the size of grammar and factorize the prediction of
fragments and labels separately.

However, DAG grammars can still be large due
to the many combinations of how edge labels and
their corresponding non-terminals can appear in a
fragment. For this reason, we propose a further
simplification where edge labels are replaced with
placeholders ¢é;...¢|¢|, which we exemplify using
the production in Figure 4 as follows:

S = (bi/L é; Tx($1, $2) e To($1, $2))

After a fragment is predicted, placeholders
are then replaced with actual edge labels by a
dedicated module (see § 3.2 for more details).

Comparison with Groschwitz et al. (2018)’s
AM algebra. RDG is very similar to other graph
grammars proposed for semantic parsing, in partic-
ular to Groschwitz et al. (2018)’s AM algebra used
for AMR parsing. Groschwitz et al. (2018)’s frame-
work relies on a fragment extraction process similar
to ours where each node in a graph along with its
outgoing edges makes up a fragment. However, the
two grammars differ mainly in how typing and as a

consequence, composition is thought of: whereas
in the AM algebra both the fragments themselves
and the non-terminal edges are assigned thematic
types (e.g. S[ubject], O[bject], MOD[ifier]), we
only place rank information on the non-terminals
and assign a more generic semantic type to the
fragment.

The fine-grained thematic types in the AM al-
gebra add a level of linguistic sophistication that
RDG lacks, in that fragments fully specify the roles
a word is expected to fill. This ensures that the out-
put graphs are always semantically well-formed;
in that AM algebra behaves very similar to CCG.
However this sophistication not only requires ad-
hoc heuristics that are tailored to a specific formal-
ism (AMR in this case) but also relies on alignment
information with the source words.

On the other hand, our grammar is designed
to predict a graph structure in sequential models.
Composition is constrained by the rank of a non-
terminal so to ensure that at each decoding step the
model is always aware of the placement of reen-
trant nodes. However, we do not ensure semantic
well-formedness in that words are predicted sepa-
rately from their fragments and we do not rely on
alignment information. In that our grammar extrac-
tion algorithm does not rely on any heuristics and
can be easily applied to any semantic formalism.

3 Architecture

Our model is an encoder-decoder architecture that
takes as input a sentence and generates a DAG G as
a sequence of fragments with their corresponding
labels, using the rewriting system in § 2. In what
follows we describe how we obtain the logits for
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each target prediction, all of which are normalized
with the softmax function to yield probability dis-
tributions. A detailed diagram of our architecture
is shown in Figure 7 in Appendix A.

3.1 Encoder

We encode the input sentence wy, . . ., wy,| using
a pre-trained multilingual BERT (mBERT) model
(Devlin et al., 2018).* The final word-level repre-
sentations are obtained through mean-pooling the
sub-word representations of mBERT computed us-
ing the Wordpiece algorithm (Schuster and Naka-
jima, 2012). We do not rely on any additional
(language-specific) features, hence making the en-
coder polyglot. The word vectors are then fed to
a two-layer BiILSTM encoder, whose forward and
backward states are concatenated to produce the

final token encodings s{"¢, ..., s/ "¢

3.2 Decoder

The backbone of the decoder is a two layer LSTM,
with two separate attention mechanisms for each
layer. Our decoding strategy follows steps similar
to those in Figure 5. At each step we first predict a
delexicalized fragment f;, and substitute a terminal
label I; in place of L. We initialize the decoder
LSTM with the encoder’s final state s$"¢. At each
step ¢, the network takes as input [f;_1; 1;_1], the
concatenation of the embeddings of the fragment
and its label output at the previous time step. At
t = 0, we initialize both fragment and label en-
codings with a (START) token. The first layer in
the decoder is responsible for predicting fragments.
The second layer takes as input the output repre-
sentations of the first layer, and predicts terminal
labels. The following paragraphs provide details
on the fragment and label predictions.

Fragment prediction. We make the prediction
of a fragment dependant on the embedding of the
parent fragment and the decoder history. We de-
fine as parent fragment the fragment containing
the non-terminal the current fragment is rewriting;
for instance, in Figure 5, the fragment in step 1
is the parent of the fragment underlined in step 2.
Following this intuition, at time ¢, we concatenate
the hidden state of the first layer h} with a context
vector ¢; and the embedding of its parent fragment
uy. The logits for fragment f; are predicted with

4 Available through the HuggingFace Transformers library
(Wolf et al., 2019) at https://huggingface.co/.

a single linear layer W/ [c}; u;; h}] + b. We com-
pute c} using a standard soft attention mechanism
(Xu et al., 2015) as follows, where s{'1§ represents

the concatenation of all encoding hidden states:

N
ci =) os{™ (1)

i
a = MLP' [hy; s{'¥] )

e
o = 3)
Y j &

MLP!(x) = ReLU(Wx + b) (4)
Label prediction. Terminal labels in the output

graph can either correspond to a lemma in the in-
put sentence (e.g. ‘bar’, ‘lock’), or to a semantic
constant (e.g. ‘speaker’). We make use of this dis-
tinction by incorporating a selection mechanism
that learns to choose to predict either a lemma from
the input or a token from a vocabulary of L. We
concatenate the hidden state of the second layer h?
with the embedding of the fragment predicted at
the current time-step f; and the second layer con-
text vector c2. Let us refer to this representation
as z; = [f;;h?;c?]. The context vector for the
second layer is computed in the same way as c;,
but using h? in place of h} and separate attention
MLP parameters. To compute the logits for label-
prediction we apply a linear transformation to the
encoder representations e = W?s77. We concate-
nate the resulting vector with the label embedding
matrix L and compute the dot product z/ [e; L] to
obtain the final unnormalized scores jointly for all
tokens in the input and L.

In the PMB, each label is also annotated with
its sense tag and information about whether it is
presupposed in the context or not. We predict the
former, s, from a class of sense tags S extracted
from the training data, and the latter, p;, a binary
variable, by passing z; two distinct linear layers to
obtain the logits for each.

Edge factorization. In§ 2, we discussed how we
made grammars even less sparse by replacing the
edge labels in a production fragment with place-
holders. From a modelling perspective, this allows
to factorize edge label prediction, where the de-
coder first predicts all the fragments in the graph
and then predicts the edge labels e;...e|| that sub-
stitute in place of the placeholders.

To do so, we cache the intermediate represen-
tations z; over time. We use these as features, to
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replace the edge-placeholders é; with the corre-
sponding true edge labels e;. To obtain the edge-
label logits we pass the second-layer representation
for the child fragment z¢ and parent fragment z? to
a pairwise linear layer: W¢[W¢z¢ © WPzP].

3.3 Graph-aware decoding

At inference time, our graph decoder rewrites non-
terminals left-to-right by choosing the fragment
with the highest probability, and then predicts termi-
nal and/or edge labels. The rank of a non-terminal
and the variable references it takes as arguments
place a hard constraint on the fragment that rewrites
in its place (as shown in § 2). Only by satisfy-
ing these constraints, the model can ensure well-
formedness of generated graphs.

By default, our decoder does not explicitly fol-
low these constraints and can substitute a non-
terminal with any fragment in the grammar. This
is to assess whether a vanilla decoder can learn to
substitute in a fragment that correctly matches a
non-terminal. On top of the vanilla decoder, we
then exploit these hard constrains in two different
ways, as follows:

Rank prediction. We incorporate information
about rank as a soft constraint during learning
by having the model predict it at each time step.
This means that the model can still predict a frag-
ment whose rank and variable references do not
match those of a non-terminal but it is guided not
to do so. We treat rank prediction as a classifica-
tion task where we use the same features as frag-
ment prediction that we then pass to a linear layer:
r; = W7[c};u;ht] + b”. Note that the range
of predicted ranks is determined by the training
grammar so it is not possible to generate a rank that
has not been observed and doesn’t have associated
rules.

Constrained decoding. We explicitly ask the
model to choose only amongst those fragments
that can match the rank and variable references of a
non-terminal. This may override model predictions
but always ensures that a graph is well-formed.
To ensure well-formedness, FA19 only checks for
rank. This can lead to infelicitous consequences.
Consider for instance the substitution in Figure 6.
Both fragments at the bottom of the middle and
right representations are of rank 2 but whereas the
first allows for the edges to refer back to the reen-
trant nodes, the second introduces an extra reen-
trant node, leaving therefore one of the reentrant

nodes disconnected. Checking just for rank is there-
fore not enough; one also needs to check whether
a reentrant node that will substitute in a variable
reference has already been generated. If not, any
fragment of the same rank can be accepted. If such
a node already exists, only fragments that do not
introduce another reentrant node can be accepted.
This constrained decoding strategy is what allows
us to always generate well-formed graphs; we inte-
grate this validation step in the decoding algorithm
when selecting the candidate fragment.

Finally, we integrate these hard constraints in the
softmax layer as well. Instead of normalizing the
logits across all fragment types with a single soft-
max operation, we normalize them separately for
each rank. The errors are only propagated through
the subset of parameters in W/ and b7 responsible
for the logits within the target rank 7.

3.4 Training objective

Our objective is to maximize the log-likelihood
of the full graph P(G|s) approximated by the de-
composition over each prediction task separately:

Z log P(f;) + log P(¢;) 4 log P(ry)
t

+1log P(s;) +log P(p) + > log P(es)

6))

where f; is the fragment; ¢; is the label; r; is the
(optional) rank of f;; s; and p; are the sense and
presupposition label of terminal label Z¢; e;...e||
are the edge labels of f;. To prevent our model
from overfitting, rather than directly optimizing the
log-likelihoods, we apply label smoothing for each
prediction term (Szegedy et al., 2016).

4 Experimental setup

4.1 Data

We evaluate our parser on the Parallel Meaning
Bank (Abzianidze et al., 2017), a multilingual
graph bank where sentences in four languages (En-
glish (en), Italian (it), German (de) and Dutch (nl))
are annotated with their semantic representations
in the form of Discourse Representation Structures
(DRS). We test on v.2.2.0 to compare with previ-
ous work, and present the first results on v.3.0 on
all four languages. We also present results when
training on both gold and silver data, where the lat-
ter is ~10x larger but contains machine-generated
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# training  # fragments # fragments  avg.

instances +edge label -edge label rank
PMB2.2.0-g 4585 1196 232 1.56
PMB2.2.0-s 63960 17414 2586 2.85
PMB3-g 6618 1695 276 222
PMB3-s 94776 36833 6251 3.01
PMB3-it 2743 1827 378 2.32
PMB3-de 5019 4025 843 2.61
PMB3-nl 1238 1338 318 2.29

Table 1: Statistics for the grammars extracted from the
PMB (g - gold; s - silver).

parses, of which only a small fraction has been
manually edited. Statistics for both versions of the
PMB are reported in Appendix B.

Our model requires an explicit grammar which
we obtain by automatically converting each DAG
in the training data’ into a sequence of productions.
This conversion follows the one in FA19 with mi-
nor changes; we include details in Appendix C.

Statistics regarding the grammars extracted from
the PMB are presented in Table 1, where along with
the number of training instances and fragments, we
report average rank — an indication of how many
reentrancies (on average) are present in the graphs.
RDGs can be large especially in the case of silver
data, where incorrect parses lead to a larger number
of fragments extracted and more complex, noisy
constructions, as attested by the higher average
ranks. More importantly, we show that removing
the edge labels from the fragments leads to a drastic
reduction in the number of fragments, especially
for the silver corpora.

4.2 Evaluation metrics

To evaluate our parser, we need to compare its
output DRSs to the gold-standard graph structures.
For this, we use the Counter tool of Van Noord et al.
(2018), which calculates an F-score by searching
for the best match between the variables of the
predicted and the gold-standard graphs. Counter’s
search algorithm is similar to the evaluation system
SMATCH for AMR parsing (Cai and Knight, 2013).

There might be occurrences where our graph is
deemed ill-formed by Counter; we assign these
graphs a score of 0. The ill-formedness is however
not due to the model itself but to specific require-
ments placed on the output DRS by the Counter
script.

>Our DAGs are different from the DRG (Discourse Rep-

resentation Graphs) of Basile and Bos (2013); we elaborate
more on this in Appendix C.

P R F
baseline 80.0 70.9 75.2
+ rank-prediction 81.0 72.3 76.4

+ constrained-decoding 80.5 75.2 77.8
+ edge-factorization 82.5 78.5 80.4
ours-best + silver 83.8 80.6 82.2
ours-best + filtering 83.1 80.5 81.8

Table 2: Ablation results on the dev portion of
PMB2.2.0. The top half shows results for models
trained on gold data only. The bottom half shows re-
sults of models trained on silver+gold data.

5 Experimental Results

We first present results of ablation experiments
to understand which model configuration per-
forms best (§ 5.1). We then compare our best-
performing model with several existing semantic
parsers (§ 5.2), and present our model’s perfor-
mance in multilingual settings (§ 5.3).

5.1 Ablation experiments

Table 2 shows results for our model in various set-
tings. Our baseline is trained on gold data alone,
uses a full grammar and performs unconstrained de-
coding, with and without rank prediction. Note that
unconstrained decoding could lead to ill-formed
graphs. To better understand the effect of this, we
compare the performance of the baseline with a
model that uses constrained decoding and thus al-
ways generates well-formed graphs. We train all
our models on a single TitanX GPU v100. We re-
port hyperparameters and other training details in
Appendix D.

Our results are different from that of FA19, who
show that a baseline model outperforms one with
constrained decoding. Not only we find that con-
strained decoding outperforms the baseline, but
we observe that without it, 26 graphs (~4%) are
ill-formed. In addition, our results show that pre-
dicting edge labels separately from fragments (edge
factorization) leads to a substantial improvement
in performance, while also drastically reducing the
size of the grammar (as shown in Table 1).

We also train our best-performing model (ours-
best) on the silver and gold data combined (+silver).
This is to assess whether more data, albeit noisy,
results in better performance. However, noisy data
can lead to noisy grammar; to reduce this noise, we
experiment with first extracting a grammar from
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(bu/d

b,/
(by/0 ‘CONTINUATION: (52/1 ( \CONTINUATION (by/T]
1 . :
-CONTINUATION; (bs/C] ‘DRS(er/bar :DRS(e1/bar
:AGENT(c7/speaker) .

:DRS(eq/bar “THEME(z " /door”))) :AGENT(c1/speaker)
:AGENT(c}/speaker) :CONTINUATIIONg(bg/E\ ‘THEME(z1/door?)))
:THEME(z]/door?))) :DRS (e/ lock ICONTIN*UATIONQ(bg/D

:CONTINUATION(b3/] :DRS (e3/ lock

:AGENT ¢,

:DRS Ty (c,x))) :PATIENT x1)))

T2($1,$2) — (e/L :AGENT $1 :PATIENT $2)

:AGENT z1))))
XT2($1,$2) — (e¢*/L :AGENT $2)

Figure 6: Example of correct (middle) and wrong (right) substitution of non-terminal function (left, in blue) during

constrained decoding.

the gold training set, and use it to filter the silver
set, where only instances that can be derived us-
ing the gold grammar are kept (+filtering). The
filtering results in smaller grammar (232 vs. 2586
fragments), while at the same time sacrificing only
a small percentage of training instances (10%).

van Noord et al. (2019), Liu et al. (2019) and
FA19 found that models trained on silver data re-
quires an additional training fine-tuning on gold
data alone to achieve the best performance; we also
follow this strategy in our experiments. Overall,
results show that adding silver data improves per-
formance, and that filtering the input silver data
leads only to a slight loss in performance while
keeping the size of the grammar small.

5.2 Comparison to previous work

We compare our best-performing model against
previous work on PMB2.2.0. We first compare the
performance on models trained solely on gold data.
Besides the DAG-grammar parser of FA19, we
compare with the transition-based stackLSTM of
Evang (2019) that utilizes a buffer-stack architec-
ture to predict a DRS fragment for each input token
using the alignment information in the PMB; our
graph parser does not make use of such information
and solely relies on attention.

We then compare our best-performing model
with two models trained on gold plus silver data.
van Noord et al. (2019) is a seq2seq parser that
decodes an input sentence into a concatenation
of clauses, essentially a flattened version of the
boxes in Figure 1. Similar to FA19, their model
also uses a wide variety of language-dependent fea-
tures, including part-of-speech, dependency and
CCQG tags, while ours relies solely on word embed-
dings. In this respect, our model is similar to Liu
et al. (2019)’s that uses the same architecture as the
model of van Noord et al. (2019) but replaces the
LSTM encoder with a transformer model, without

P R F
Fancellu et al. (2019) - - 734
Evang (2019) - - 744
ours-best 84.5 81.3 82.9
van Noord et al. (2019) - - 86.8
Liu et al. (2019) 85.8 84.5 85.1
ours-best + silver 86.1 83.6 84.9

Table 3: Comparison with previous work on the fest
portion of PMB2.2.0. Results in the top half are
for models trained on gold data, whereas bottom half
shows results for models trained on silver+gold data.

the use of additional features.

Results are summarized in Table 3. When
trained on gold data alone, our model outperforms
previous models by a large margin, without relying
on alignment information or extra features besides
word embeddings. When trained on silver+gold,
we close the performance gap with state-of-the-art
models that decode into strings, despite relying
solely on multilingual word embeddings.

5.3 Multilingual experiments

Table 4 shows the results on languages other than
English. In our multilingual experiments, we first
train and test monolingual models in each language.
In addition, we perform zero-shot experiments by
training a model on English and testing it on other
languages (cross-lingual). We also take full advan-
tage of the fact that our models rely solely on multi-
lingual word embeddings, and experiment with two
other multilingual settings: The bilingual models
are trained on data in English plus data in a tar-
get language (tested on the target language). The
polyglot models combine training data of all four
languages (tested on each language). Parameters
for all languages in the bilingual and polyglot mod-
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PMB2.2.0

en de nl it
FA19 (monolingual) - 679 658 759
FA19 (cross-lingual) -  63.5 65.1 72.1

ours (cross-lingual) - 734 739 769

ours-best (various) trained and tested on PMB3

monolingual 80 642 609 715
cross-lingual - 732 741 752
bilingual - 718 1760 77.7
polyglot 79.8 725 741 719

Table 4: Results for the multilingual experiments on the
test sets for PMB2.2.0 (top half) and PMB3.0 (bottom
half). For the sake of brevity, we report only F; scores
here, and refer the reader to Table 6 in Appendix E for
Precision and Recall values.

els are fully shared.

FA19 only experiment with a cross-lingual
model trained with additional language-dependent
features, some of which available only for a small
number of languages (on PMB2.2.0). We therefore
compare our cross-lingual models with theirs on
PMB2.2.0. We then introduce the first results on
PMB3, where we experiment with the other two
multilingual settings.

Our results tell a different story from FA19,
where all of our multilingual models (bilingual,
polyglot and cross-lingual) outperform the corre-
sponding monolingual baselines. We hypothesize
this is mainly due to the fact that for languages
other than English, only small silver training data
are available and adding a large gold English data
might help dramatically with performance. This
hypothesis is also reinforced by the fact that a cross-
lingual model training on English data alone can
reach a performance comparable to the other two
models.

6 Conclusions

In this paper, we have introduced a graph parser
that can fully harness the power of DAG grammars
in a seq2seq architecture. Our approach is efficient,
fully multilingual, always guarantees well-formed
graphs and can rely on small grammars, while out-
performing previous graph-aware parsers in En-
glish, Italian, German and Dutch by large margin.
At the same time, we close the gap between string-
based and RDG-based decoding. In the future, we
are planning to extend this work to other semantic
formalisms (e.g. AMR, UCCA) as well as test-

ing on other languages, so to encourage work in
languages other than English.
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A System architecture

An illustration of our system architecture is shown
in Figure 7.

B PMB - data statistics

train dev test
PMB2.2.0-g 4597 (4585) 682 650
PMB2.2.0-s 67965 (63960) - -
PMB3-¢g 6620 (6618) 885 898
PMB3-s 97598 (94776) - -
PMB3-it 2772 (2743)* 515 547
PMB3-de 5250 (5019)* 417 403
PMB-nl 1301 (1238)* 529 483

Table 5: Data statistics for the PMB v.2.2.0 and 3.0(g
- gold; s - silver). Numbers in paranthesis are the in-
stances we used during training that we were able to
extract a derivation tree for. *: training instances for
languages other than English are silver, whereas dev
and test are gold

C DAG-grammar extraction

Our grammar consists of three steps:

Preprocess the DRS. First, we treat all con-
stants as lexical elements and bind them to a
variable c. For instance, in Figure 1 we bind
‘speaker’ to a variable c¢; and change the relations
AGENT(e1, ‘speaker’) and AGENT(eg, ‘speaker’)
into AGENT(ey, c¢1) and AGENT(eo, ¢1), respec-
tively. Second, we deal with multiple lexical ele-
ments that map to the same variables (e.g. cat(x)
A entity(z1), where the second predicate specify
the ‘nature’ of the first) by renaming the second
variable as 7 and creating a dummy relation OF that
maps from from the first to the second. Finally,
we get rid of relations that generate cycles. We
found 25 cycles in the PMB, and they are all related
to the same phenomenon where the relationships
‘Role’ and ‘Of” have inverted source and target (e.g.
person(x1) - Role - mother(x4), mother(x4) - Of -
person(x1)). We remove cyclicity by merging the
two relations into one edge label. All these changes
are then reverted before evaluation.

Converting the convert the DRS into a DAG. We
convert all main boxes, lexical predicates and con-
stants (now bound to a variable) to nodes whereas
binary relations between predicates and boxes are
treated as edges. For each box, we identify a root
variable (if any) and attach this as child to the box-
node with an edge :DRS. A root variable is defined

as a variable belonging to a box that is *not* at
the receiving end of any binary predicates; in Fig-
ure 1, these are e; and es for be and b3 respectively.
We then follow the binary relations to expand the
graph. In doing so, we also incorporate presup-
positional boxes in the graph (i.e. by in Figure 1).
Each of these boxes contain predicates that are pre-
supposed in context (usually definite descriptions
like ‘the door’). To link presupposed boxes to the
main boxes (i.e. to get a fully connected DAG)
we assign a (boolean) presupposition feature to the
root variable of the presupposed box (this feature
is marked with the superscript ? in Figure 2). Any
descendant predicates of this root variable will be
considered as part of the presupposed DRS. During
post-processing, when we need to reconstruct the
DRS out of a DAG, we rebuild the presupposed
box around variables for which presupposition is
predicted as ‘True’, and their descendants.

Note that Basile and Bos (2013) proposed a similar
conversion to generate Discourse Representation
Graphs (DRG), exemplified in Figure 8 using our
working example. We argue that our representation
is more compact in that: 1) we ignore ‘in’ edges —
where each variable is explicitly marked as part of
the box by means of a dedicated edge. This is pos-
sible since each box (the square nodes) has a main
predicate and all its descendants belong to the box;
2) we treat binary predicates (e.g. AGENT) as edge
labels and not nodes; 3) we remove presupposition
boxes (in Figure 8, the subgraph rooted in a P la-
belled edge) and assign a (boolean) presupposition
variable to the presupposed predicates.

Convert the DAGs into derivation trees. DAGs
are converted into derivation trees in two passes
following the algorithm in Bjorklund et al. (2016),
which we summarize here; the reader is referred to
the original paper for further details. The algorithm
consists of two steps: first, for each node n we
traverse the graph post-order and store information
on the reentrant nodes in the subgraph rooted n.
To be more precise, each outgoing edge e; from n
defines a subgraph s; along which we extract a list
of all the reentrant nodes we encounter. This list
also includes the node itself, if reentrant.

We then traverse the tree depth-first to collect
the grammar fragments and build the derivation
tree. Each node contains information of its variable
(and type), lexical predicate and features as well
as a list of the labels on outgoing edges that we
plug in the fragments. In order to add variable
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= ie2 (e/bar ie2 (e/bar :
/spe: er

/di
r hY 1e5 Ta(e, x)
We barred the door and locked it .

Figure 7: Overview of our architecture, following the description is § 3. Our encoder (on the left) computes
multilingual word-embeddings using MBERT which then feed into a 2-layers BILSTM. At the time step ¢, a
2 layers decoder LSTM (on the right) reconstructs a graph GG by predicting fragment f; and terminal label ;.
Additionally, parsing on PMB requires to predict for each label /; a sense tag s; and presupposition information p;
(a boolean flag). To predict f; we use the hidden state of the decoder first layer (in blue) along with context vector
c,{ and information about the parent fragment u; (yellow edges). All other predictions are done using the hidden
state of the decoder second layer (in red) along a separate context vector c.. Both context vectors are computed
using soft attention over the input representations (top left). Fragments predicted are used to substitute the leftmost
non-terminal in the partial graph G (in pink), as shown at the top for G...G5. For G the first fragment predicted
initializes the graph (this corresponds to substituting the start symbol .S). The edge labels in the fragments above
are replaced with placeholders e;...¢|| to display how edge factorization works. We assume here, for brevity, that
G5 is our final output graph and show the prediction of two edges that substitute in place of the placeholders (box
at the bottom). For edge prediction, we use a bundle of features collected during decoding, namely the parent and
children fragment embedding f;, the second layer hidden state (in red) and the context vector ¢! at time .
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en de nl it
P R F|P R F|P R F|P R F
monolingual  81.6 784 80 | 645 64 642|626 592 609|724 706 715
cross-lingual - - - | 728 736 732|734 749 741742 762 752
bilingual - - - |72 715 718|767 753 76 |768 786 777
polyglot 81 788 79.8|722 729 725|743 738 741|782 715 779

Table 6: Results for the multilingual experiments on PMB v.3.0 (test set). Monolingual results (top half) are
compared with different combinations of multilingual training data (bottom half).

CONTINUATION

Agent

speaker

Figure 8: The DRS of Figure 2 expressed as a Dis-
course Representation Graph (DRG).

references, if any, we need to know whether there
are any reentrant nodes that are shared across the
subgraphs s;...s|¢. If so, these become variable
references. If the node n itself is reentrant, we flag
it with * so that we know that its variable name can
substitute a variable reference.

D Implementation Details

We use the pre-trained uncased multilingual BERT
base model from Wolf et al. (2019). All models
trained on English data, monolingual or multilin-
gual, share the same hyper-parameter settings. Lan-
guages other than English in the PMB v3.0 have
less training data, especially in the cases of Dutch
and Italian. Hence, we reduce the model capac-
ity across the board and increase dropout to avoid
over-fitting. Hyperparameter settings are shown in
Table. 7.

We found fine-tuning BERT model necessary to
achieve good performance. Following Sun et al.
(2019) and Howard and Ruder (2018), we exper-
imented with different fine-tuning strategies, all
applied after model performance plateaued:

1. setting constant learning rate for BERT layers

2. gradually unfreezing BERT layer by layer
with decaying learning rate

3. slanted-triangular learning rate scheduling
following Howard and Ruder (2018).

We have concluded that strategy 1 works best for
our task, with fine-tuning learning rate of 2e-5 for
English and a smaller learning rate of 1e-5 for other
languages.

Model Parameters

BERT 768
Num of Encoder Layer 2
en 2@512
Encoder de/nlfit 1@512
Fragment/Relation/Label en 100
& demlit 75
.. en 100
Edge Prediction Layer de/nl/it 75
en 1024
Decoder de/mliit 512
Optimization Parameters
Optimizer ADAM
Learning Rate 0.001
Weight Decay le-4
Gradient Clipping 5
Label Smoothing e 0.1
. en 2e-5
Bert Finetune LR defnlfit 1e5
Dropout en 0.33

de/nl/it 0.5

Table 7: Hyper-parameter Settings

E Multilingual experiments - full results

All results for the multilingual experiments includ-
ing precision and recall are shown in Table 6.
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